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PREFACE 

This volume contains the proceedings of the symposium Tight-Binding 
Approach to Computational Materials Science", held in Boston, 
Massachusetts, December 1-3, as part of the 1997 MRS Fall Meeting. 
Symposium R provided three days of leading-edge research on formal 
developments in electronic structure studies of materials properties based on 
the tight-binding approach.   The organization of the symposium was 
motivated both by the usefulness of the tight-binding approximation in the 
study of the electronic structure of solids, and its ever increasing popularity 
among materials scientists for simulating properties of complex systems. 

The tight-binding model is the simplest scheme within a quantum 
mechanical framework for describing the energetics of materials which are 
characterized by fairly localized electrons, such as transition metals and their 
alloys, or by covalent bonding, such as semiconductors and insulators. 
Modern tight-binding theory provides a conceptual framework for a physical 
understanding of the structure of materials and relates the full-scale 
microscopic, quantum-mechanical computation of materials properties with 
intuitive chemical and physical arguments.   This link between ab initio 
methods and phenomenological concepts allows one to address a wide range 
of complex materials issues, and at the same time retain the underlying 
physics responsible for typical materials behavior.   Significant efforts were 
reported at the symposium that improve the computational techniques 
relying on the tight-binding model in an attempt to bridge efficiently the 
length and time scales in predicting materials properties in a physically 
transparent way. 

The symposium brought together researchers working on various aspects 
of tight-binding theory and on its applications to materials science.   On the 
formal front, important inroads were reported in our understanding of 
first-principles tight-binding methods, the use of tight-binding theory to study 
the effects of correlations in solids, the development of O(M) methods for 
electronic structure calculations and molecular dynamics, and 
parametrization schemes for use with semi-empirical tight-binding models. 
It was pointed out that electronic structure theory is on the verge of being 
able to address macroscopic phenomena such as the mechanical properties 
of metals, using energies obtained from the quantum mechanics of 
electronic motion.   In order to achieve this goal, the calculation of electronic 
energies for systems with large numbers of inequivalent atoms must be 
made more efficient than they are at present.   Some of the steps for 
achieving this efficiency based on the use of localized basis sets and the 
development of new electron energy functionals were reviewed.   Recent 
developments of quantum Monte Carlo in combination with tight-binding 
models were discussed. Over the last decade, these types of calculations 
have made the transition from addressing abstract issues concerning the 
effects of electron-electron correlations on magnetic and metal-insulator 
transitions, to concrete contact with experiments.   Several speakers 



discussed ways of obtaining parameters for an implementation of a 
semi-empirical tight-binding approach to materials science.   It was shown 
that the increased popularity of the tight-binding method is due to the 
development of linear-scaling methods that allow the use of this formalism 
in molecular dynamics simulations of large-scale systems. 

The application of tight-binding theory to the calculation of materials 
properties was an important component of the symposium.   In this regard, 
methodology was presented for treating the interaction of light with matter 
with exciting possible applications to lasers and other systems.   As shown by 
a number of speakers, we know now that tight-binding theory can be 
generalized to incorporate time-dependent electromagnetic fields in a 
systematic and gauge-invariant manner.   The physics of semiconductors and 
surfaces, transport in magnetic multilayers, and the properties of 
thermoelectrics were given ample coverage.   Recent developments to 
calculate conductivities and other linear-response functions, and to provide a 
new approach to mean-field theories of alloy stability in periodic and 
nonperiodic systems   were reported. This makes possible the prediction of a 
wider range of materials properties than is hitherto possible. These include 
optical constants, luminescence in heterostructures, properties in ultra-high 
magnetic fields, and lattice dynamics in polar materials.   Recent progress in 
the theory of the atomic and electronic structure and magnetism of 
disordered metallic alloys, surfaces and multilayers was also reported.   The 
predictive power of semi-empirical tight-binding in providing a physical 
picture of the links between bonding, stability and other properties was 
illustrated for various systems, such as suicides, carbides, amorphous 
silicon, nanoclusters and others.   The limits of applicability of tight-binding 
models in the study of surfaces of bimetallic systems were indicated in 
connection with equilibrium and dynamical processes.   A number of 
applications involving the combination of tight-binding-based electronic 
structure and molecular dynamics simulations were reported.   Finally, the 
structural properties of elemental covalent liquids, such as arsenic and 
antimony, as well as amorphous covalent materials, such as Qa-As and Si, 
can be described accurately through the use of tight-binding simulations. 
Overall, the symposium discussed in lively and constructive fashion current 
research issues and the implementation of tight-binding concepts in efficient 
computational tools which are relevant for addressing the increasingly 
complex materials challenges of the future, with ample illustrations. 

Support for the symposium was generously provided by CNR-QMSM, 
ENEA, Hewlett-Packard Laboratory, Lawrence Livermore national Laboratory, 
Max Planck Institute-Stuttgart, the Office of naval Research, the University of 
Milan (Department of Materials Science), and the Materials Research Society. 
We hereby express our sincere gratitude to these agencies for making the 
symposium possible. 

Patrice E.A. Turchi 
Antonios Qonis 
Luciano Colombo 

January 1998 
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THIRD-GENERATION TB-LMTO 

O.K. ANDERSEN, C. ARCANGELI, R.W. TANK, 

T. SAHA-DASGUPTA, G. KRIER, 0. JEPSEN, and I. DASGUPTA. 

Max-Planck Institut für Festkörperforschung, Stuttgart, Germany 

ABSTRACT 

We describe the .screened Korringa-Kohn-Rostoker (KKR) method and the third- 

generation linear muffin-tin orbital (LMTO) method for solving the single-particle 

Schrödinger equation for a MT potential. In the screened KKR method, the eigenvec- 

tors cRLti are given as the non-zero solutions, and the energies £,- as those for which such 

solutions can be found, of the linear homogeneous equations: J^RL KR,L, RL (e;) cRLii = 0, 

where K" (e) is the screened KKR matrix. The screening is specified by the boundary con- 

dition that, when a screened spherical wave 4)RL(e,rR) is expanded in spherical harmonics 

VR'L' (fß') about its neighboring sites R', then each component either vanishes at a radius, 

rR'=aRiLi, or is a regular solution at that site. When the corresponding "hard" spheres are 

chosen to be nearly touching, then the KKR matrix is usually short ranged and its energy 

dependence smooth over a range of order 1 Ry around the centre of the valence band. The 

KKR matrix, K (e„), at a fixed, arbitrary energy turns out to be the negative of the Hamil- 

tonian, and its first energy derivative, K (e„), to be the overlap matrix in a basis of kinked 

partial waves, $M (e„, rR), each of which is a partial wave inside the MT-sphere, tailed with 

a screened spherical wave in the interstitial, or taking the other point of view, a screened 

spherical wave in the interstitial, augmented by a partial wave inside the sphere. When of 

short range, K (e) has the two-centre tight-binding (TB) form and can be generated in real 

space, simply by inversion of a positive definite matrix for a cluster. The LMTOs, XRL [ev), 

are smooth orbitals constructed from $RL{ev,rR) and $RL{ev,rR), and the Hamiltonian 

and overlap matrices in the basis of LMTOs are expressed solely in terms of K (e„) and its 

first three energy derivatives. The errors of the single-particle energies £; obtained from the 

Hamiltonian and overlap matrices in the $ (e„)- and x {ev) bases are respectively of second 

and fourth order in e,- — e„. Third-generation LMTO sets give wave functions which are 

correct to order e; — ev, not only inside the MT spheres, but also in the interstitial region. 

As a consequence, the simple and popular formalism which previously resulted from the 

atomic-spheres approximation (ASA) now holds in general, that is, it includes downfolding 

and the combined correction. Downfolding to few-orbital, possibly short-ranged, low-energy, 

and possibly orthonormal Hamiltonians now works exceedingly well, as is demonstrated for 

a high-temperature superconductor. First-principles sp3 and sp3d5 TB Hamiltonians for the 

valence and lowest conduction bands of silicon are derived. Finally, we prove that the new 

method treats overlap of the potential wells correctly to leading order and we demonstrate 

how this can be exploited to get rid of the empty spheres in the diamond structure. 
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INTRODUCTION 

There is a need for an intelligible and accurate first-principles electronic-structure method. 

Our efforts have been directed towards developing a single-particle basis which, for the 

application at hand, can be adjusted to a useful compromise between being shorf ranged, 

minimal, and accurate. 

Recent developments of Multiple Scattering Theory 

Since atoms are nearly round, it seems most natural to start out using spherical waves, 

jl (/cr) Yi (f) and n\ (KT-) YL, (r), where L=lm, as done when solving Schrödinger's equation 

with the classical multiple-scattering method due to Korringa, Kohn, and Rostoker (KKR).1 

In this method the scattering by the atom at site R is specified by the phase shifts, nni (K) , 

of its potential well, and the structure of the solid is specified by a Hermitian matrix with ele- 

ments Bnifiiy (K) , the structure, constants. In terms of these, the wave-function coefficients, 

c-RL,i, are the solutions of the homogeneous, linear equations, one for each R'JJ : 

YI [BlVL',RL (K) + K COt n/il {K) SR'L'.RL] CRL.i = 0, (1 ) 
Rh 

and the energies, e,-, are the values of K
2
 (= e) for which solutions can be found, i.e. the 

determinant of B (K) + K,cotn(n) vanishes. There are merely 4-16 equations per atom 

because all phase shifts with / > 1-3 vanish. The KKR equations provide the exact solutions 

of Schrödinger's equation, but only for a muffin-tin (MT) potential, V (r) = ^2R VR (|r — R|), 

which is a superposition of spherically symmetric, non-overlapping potential wells, Vfi(r), 

of ranges SR. 

There are three problems with the KKR. method: First of all, a non-overlapping MT 

potential is a poor representation of the self-consistent potential in any, except the most close 

packed solid. Secondly, the structure constants have long range, and thirdly, strong energy 

dependence. Specifically, the energy dependence of the KKR matrix, B (K) + K cot T](K), 

is not linear like that of the secular matrix, H — eO, for an energy eigenvalue problem in 

an energy-independent, possibly non-orthonormal representation. The main reason for the 

second and third drawbacks is that the spherical Bessel (ji) and Neumann (n;) functions 

have long range and depend on energy. This leads to interferences, which cause long range 

and strong energy dependence of the structure matrix. For a crystal with lattice translations 

T, the Bloch-summed structure matrix, BH'Z/,R/, (K, k) = &exP(?k-T) B(R'+T)L\RL (K) , 

must be evaluated by the Ewald procedure, has poles at the free-electron parabola, K
2
 = 

Y^a |k + G|2 , and a branch cut at the bottom of the continuum, K=0. 

It was recently shown,2 and we shall present a slightly different proof below, that even 

when the potential wells overlap, the KKR. equations do hold to first, order in the potential 

overlap. This, as we shall demonstrate, allows the use of MT spheres with up to at least 50 

per cent radial overlap [SR + SR> < 1.5 |R — R'| for R and R' denoting nearest neighbors], 

and hence treat the potential between the atoms in a more realistic way. With such large 

overlaps, the zero of the potential moves from the potential threshold between the atoms 



towards the vacuum level, and this means that the energies for the occupied states are usually 
negative. 

It was furthermore shown,2 that transformation to linear combinations of spherical Bessel 

and Neumann functions, so-called screened spherical waves, characterized by a set of back- 

ground phase shifts aR, (re) , can remove the long range and the strong energy dependence 

from the structure matrix, provided that the energy is not too high. This screening trans- 

formation may be expressed as: 

tan a _ \ , +aT, „   Qt» \       i , a      ,      ._..            i  mry-i-i       r*-^  . tana \na) = \n) [1 - -^ Baj , where tan rf = tan r, - tan a, and [B"]'1 = B_1 + ^A  (2) 

These are, respectively, vector-, scalar-, and matrix equations. The superscript labels the 

representation. In the first equation, we have used a notation in which \n) is a row vector 

of functions with components n, (nrR) Ylm (rR) and where rR = r - R. The last equation 

involves inversion of the matrix B + re cot a. For a set of background phase shifts, which are 

known to give short range, this inversion may be performed in real space and the screened 

KKR method is basically a first principles tight-binding (TB) method. At the time,2 how- 

ever, the relation between range and background phase shifts was poorly understood. This 

problem was solved later3 by expressing the background phase shifts in terms of their hard- 

sphere radii, üRL, defined by 

tan aRL (re) = j, (naRL) /n, (reaRL), (3) 

or equivalently, by letting the background phase shifts be those of repulsive potential wells.4 

Looked upon in this way, the role of the confinement is to push the bottom of the continuum 

up in energy with respect to the floor of the MT potential, and thereby, to leave below a 

range of energies in which the confined wave-equation solutions are localized and which, in 

order to be useful, should include the range of the occupied bands for the real (attractive) 

potential. With the definition (2), the screened spherical waves, \na), are still quite energy 

dependent, but only due to their normalization. A more suitable normalization followed 

naturally from the hard-sphere point of view.3 

Finally, it was pointed out2 that the screening transformation may also be used to remove 

unwanted channels from the KKR equations by choosing, for those channels, the background 

phase shifts equal to the real phase shifts, a (re) = n (re). This is a transformation to a minimal 

basis. 

With these three recent developments, we have the basic ingredients for the Schrödinger 

part of an intelligible and accurate method, the third-generation LMTO method. 

Earlier developments; the Atomic Spheres Approximation 

The attempts to develop from the KKR method an intelligible first-principles method 

were initiated 25 years ago5 and overlapping spheres, the two-centre interpretation, and 

screening transformations6 have been used routinely for a long time. The new development,3 

which started six years ago,2 and which will be further elaborated on in the present paper, 



aims at making the method also accurate without loss of simplicity and elegance. Whereas 

in the earlier developments reduced range and energy dependence were achieved through a 

physically motivated approximation, namely the atomic-spheres approximation (ASA), this 

is now achieved exactly, and that in turn, allows a controlled approximation for the potential 

overlap. 

The ASA5'7 consists of letting the MT spheres overlap to the extent that they become 

space filling, whereby the interstitial region is effectively eliminated so that one may neglect 

the energy dependence of the wave functions in this region and, hence, the energy depen- 

dence of the structure matrix. The remaining energy dependence now occurs only along the 

diagonal of the KKR-ASA matrix where it enters through the radial logarithmic derivatives 

evaluated at the atomic sphere, 

D{<f>Ri{s,sR)} = sR(f>'nl(e,sR) /4>m(e,sR). (<l) 

If, as is usually done, the kinetic energy in the interstitial is taken to be zero (K
2
 = 0), the 

suitably renormalized KKR-ASA equations become: 

E [
S

°R'L',RL - Pffl (e) &n<L>,Ri] cni„i = 0,    where 
RL 

-1 

are the potential functions for well vn(r) , and CRI, ARl, and 7/;, are potential parameters. 

S° is the structure matrix given by: 

S°n8itc = 0, SL = ~2(Wrf), SV = 2v/3(W^)2, , S3,,,.,,*, = 10("'/rf)5 (-6,4,-1),   (5) 

when we choose R' - R = id and w is an arbitrary length scale, usually chosen to be 

the average Wigner-Seitz radius. The structure matrix thus consists of effective hopping 

integrals. For monatomic crystals, this gave rise to the concept of canonical bands.5 However, 

the (/"'"''"'-decay of the hopping integral between orbitals of angular-momentum characters 

I and /' is too slow for a tight-binding scheme, except for d- and /-orbitals. 

It was therefore a breakthrough when it became understood that similarity transfor- 

mations could be performed on the KKR-ASA (K
2
 = 0) equations and could lead to short 

range.6 The transformation from the bare to a screened representation, specified by screening 

constants a^/,, is given by: 

P'OO-^P0 (£)"'-a    and     [S']"' = [S0]"' - a, (6) 

which are respectively scalar- and matrix equations, a is a diagonal matrix with elements 

a«. The corresponding transformation for the resolvent, useful for Green-function and CPA 

calculations,8 is: 

[ptw_s"]-, = (b-.)^ + ^|[p-w-sr,^j- o) 



This involves no matrix multiplications, but merely rescaling of matrix elements. As for 

TB theory, the screening transformation gave a formalism for the "kinetic" part of the often 

observed dependence of the hopping integrals and on-site elements on the environment.9 The 

screening constants yielding short range were found empirically. The potential-dependent 

choice aK;=7M, on the other hand, makes the energy dependence of the KKR-ASA ma- 

trix linear (to second order) so that C + y/ES"'y/K = K1 becomes the Hamiltonian in an 

orthonormal, but not necessarily short-ranged basis. The transformation finally made it pos- 

sible to remove channels from the KKR-ASA equations by choosing afli (e) = P% (e)_1 for 

such channels.10 This removal, qr "downfolding", however, reintroduced energy dependence 

of the structure matrix. 

When performing density-functional calculations one needs to solve not only 

Schrödinger's but also Poisson's equation, and with the ASA method this involves approx- 

imating not only the potential but also the charge density by a superposition of slightly 

overlapping, spherically symmetric contributions. This gives a very simple scheme which 

fails badly in describing total-energy changes caused by symmetry-lowering distortions,11 

however, e.g. the ASA can be used for calculation of pressure-volume relations,12 but not 

for calculation of phonon frequencies. Moreover, since the potential spheres are supposed to 

be space filling in the ASA, open structures can only be treated if the interstices between 

the atoms are filled with "empty" spheres and this works well only for structures such as the 

diamond structure, where the interstices have high symmetry. Even in such a case, for the 

description to be intelligible all empty-sphere channels must be downfolded, and that intro- 

duces a rather strong, non-linear energy dependence of the structure matrix which cannot 

be treated in the LMTO-ASA approach to be discussed below.10 

Linear Muffin-Tin Orbitals of the first and second generations 

In practice one does not solve the KKR equations, but one uses Green functions in 

a short-ranged representation and at complex energies,8 or one solves energy eigenvalue 

equations, J2RL [HR>L',RL — CORILIJU,] cRLti = 0, which are equivalent with the KKR equa- 

tions in a certain energy range around some chosen energy, e„. In the linear muffin-tin 

orbital (LMTO) method,13'5 such an eigenvalue problem is arrived at by using the Raleigh- 

Ritz variational principle for the Hamiltonian in a basis of LMTO's constructed from the 

radial Schrödinger-equation solutions, <j>Rl (e, r) , for the potential wells and their first en- 

ergy derivatives, 4>m (e,r), at the chosen energy, e=e„. In the interstitial region, the first 

and second generation LMTOs use the spherical waves at K
2
, but not their first energy 

derivatives, so that the energy dependence in the interstitial is suppressed. The second- 

generation LMTO formalism6 is elegant, but only in the ASA and only if no channels have 

been downfolded. Under these conditions, the Hamiltonian and overlap matrices are ex- 

pressed solely in terms of the structure matrix and the potential functions: The struc- 

ture matrix enters the formalism in the form of a first-order, two-centre TB-Hamiltonian: 

h = P~1/2 (S - P) P"1/2, where as usual P (e) is a diagonal matrix. Here and in the follow- 



ing, the common superscript a is dropped and an omitted energy argument means that the 

energy is set to e„. In terms of this two-centre Hamiltonian the LMTO set may be expressed 

as \x) = \<l>) + |</>) h, a form which may be regarded as the matrix equivalent of the lin- 

ear approximation rf>m (e, r) « 4>m (r) + <j>m (r) (e - e„). In the basis of these LMTOs the 

Hamiltonian and overlap matrices are respectively: 

<x|-A+K-e„|x)= h(l+oh)     and     (X | X> = (1 + ho) (1 + oh) + hph,        (8) 

where 

o=(^)=ip/P    and    p + o2= (^2)= -P/P (9) 

are diagonal matrices and it has been assumed that <f>m (rR) Y!rn (ffl) is normalized to unity in 

its sphere, i.e. that (</>2) = 1. The overlap matrix is seen to be nearly fartorized and one may 

therefore transform to the Löwdin-orthonormalized representation, x1) = \x) {x I X') ~ 

|x) (1 + oh)~^ = |x7) , >n which one finds the following expansion for the Hamiltonian: 

(x1 l-A + V - e„| xX) = h - hoh + h [oho - (ph + hp) /2] h + ... . (10) 

When a gives short range this is a power series in a TB Hamiltonian, ha. Truncation of this 

series after the first term yields a spectrum which is accurate in an energy window of size 

~ (10o)_1 = |P/P around e„, but distorted further away. Adding terms, increases the size 

of this window at the expense of including further hoppings. The form (10) has been useful 

in recursion calculations1,1 for structurally disordered condensed matter.15 

For a case like the diamond structure, where one only wants LMTOs centered on atoms, 

downfolding of the empty-sphere LMTOs is achieved by transformation of the structure ma- 

trix using: aE = P°E l^)-' . wltn E referring to the empty-sphere channels. The energy is here 

set to e„ because in the LMTO-ASA formalism the structure matrix must be energy indepen- 

dent. Now, an atom-centered LMTO has a tail which extends into the empty spheres, and 

here, it is substituted by the corresponding partial waves. The atom-centered LMTO is there- 

fore: \XA) = \4>A) + \4>A) hAA + \4>E) ''EA, with hEA = [-dP% (e)"1 /<H„]~1/2 SEA (e„) P^/2- 

This is the way in which the energy dependence of aE (e) enters, but only to linear order. The 

overlap matrix {XA I XA) will now contain the term hAF)iEA involving A - E - A hoppings, 

in addition to the terms in (8). This is clumsy and ruins the near factorization of the overlap 

matrix. With downfolding, the power-series expression (10) for the LMTO Hamiltonian in 

the Löwdin-orthonormalized basis does therefore not apply. 

Most LMTO calculations include non-ASA corrections to the Hamiltonian and overlap 

matrices, such as the combined correction for the neglected integrals over the interstitial 

region and the neglected partial waves of high /. This brings in the first energy derivative of 

the structure matrix, S, in a way which makes the formalism clumsy.5'9 Our current, second- 

generation LMTO code16 is useful and quite accurate for calculating energy bands because it 

includes downfolding in addition to the combined correction,17 but the underlying formalism 

is so complicated that we never tried to publish it.    On the other hand, the combined 



correction is often important, and so is downfolding because it is the only accurate means of 

avoiding "ghost bands". The reason for the lost elegance beyond the ASA is that, whereas 

the LMTO basis is complete to first order in e - e„ inside the spheres, it is only complete 

to zeroth order in the interstitial. A compact formalism is therefore obtained only when 

the interstitial region is neglected, and that is what the ASA does, simply by substituting 

the MT spheres by space-filling spheres and neglecting the overlap errors. The proof that 

the KKR equations hold to leading order for overlapping potentials2 does not apply to the 

LMTO-ASA formalism. 

There are LMTO methods sufficiently accurate to provide ab initio structural energies 

and forces within density-functional theory18 For the reason mentioned above, the LMTOs 

for such methods19 are defined with respect to non-overlapping potentials, and since there 

is considerable probability that a valence or conduction electron is in the interstitial region, 

outside atom-centered, non-overlapping spheres, an accurate basis has to include extra de- 

grees of freedom to describe this region, empty-sphere orbitals centered at interstitial sites 

and/or atom-centered LMTOs with tails of different kinetic energies (multiple kappa-sets). 

Moreover, these methods do not use small and short-ranged representations. Finally, since a 

non-overlapping MT potential is a poor approximation to the self-consistent potential, these 

methods must include the matrix elements of the full potential. Hence, the formalisms are 

set up to provide final, numerical results and by themselves provide little insight. 

Third-generation LMTOs 

In this paper we shall modify the LMTO set without increasing its size, in such a way that 

it becomes complete to first order in the interstitial region too. This is a rather natural thing 

to do, once the screened spherical waves have been defined in terms of hard-sphere radii. For 

the MT Hamiltonian, including downfolding, we shall regain the simple formulas from the 

ASA, provided that \<f>), h, o, and p are suitably redefined. The Hamiltonian and overlap 

matrices are now given solely in terms of the screened and renormalized KKR matrix, which 

we shall name K (e„), and its first three energy derivatives, K (e„), K (e„), and K {ev); the 

potential parameters and the structure matrix do not occur individually as in the formalisms 

of the previous generations. Third-generation LMTOs3 thus do satisfy the definition that 

they form a basis constructed to reproduce the wave functions, \P,- (r), for a MT potential 

to linear order in the deviation of the single-particle energy, £;, from a freely chosen level, 

£„. That is, the error of the wave functions is of second order in £; — e„ and the error of 

the single-particle energy is then of fourth order. When we use potential wells that overlap, 

the wave functions will be correct to linear order in the potential overlap and the energy 

error will be of second order. As we shall demonstrate, this will remedy all shortcomings 

mentioned above for the previous LMTO generations. 

We shall only be concerned with solving Schrödinger's equation in the present paper and 

leave our LMTO-like expansion of the charge density, solution of Poisson's equation, and 

evaluation of the total energy and forces for future papers.20 



We start with a concise yet self-contained derivation of the screened KKR method, which 

will lead to suitably renormalized versions of Eq.s (2). Then we derive an expression for the 

error caused by using this method for potential wells which overlap, and find that the error is 

of second order in the overlap. The weak energy dependence and short range of the screened 

and renormalized KKR matrix, K (e), is exploited by using it to generate few-orbital, low- 

energy, possibly orthonormal and short-ranged Hamiltonians for a generic high-temperature 

superconductor (HTSC). Thereafter we derive the new LMTO method and demonstrate by 

application to free electrons that its energy errors are really of fourth order in £, — £„. The 

power and flexibility of the new method is demonstrated by deriving for the HTSC and for 

diamond-structured silicon various LMTO sets. Using non-orthogonal sp3 sets for Si, we can 

get an accurate first-principles description of the valence and conduction bands if a 12th- 

nearest-neighbor range is allowed in the Hamiltonian and overlap matrices. With eu chosen 

in the middle of the valence band, a 6th-n.n. ,sp3-set suffices for an accurate description of 

the valence band and a reasonable description of the conduction band. In order to halve the 

number of matrix elements, even for a non-orthogonal basis, we use a formalism analogous 

to (8) where the off-diagonal elements of o and p have been neglected so that h is the only 

matrix. With this simplification of the Hamiltonian and overlap matrices, retaining the 

6th-n.n. sp3 basis and the low e„, the description of the valence band remains good and 

merely the conduction band deteriorates. Finally, it is possible to limit the range to 3rd 

nearest neighbors provided that rf-orbitals are included in the basis. In the last section, we 

demonstrate that not only for the KKR method, but also for the new LMTO method, the 

overlap error is of second order and that this can be exploited to get completely rid of the 

empty-sphere wells in the diamond structure. 

SCREENED SPHERICAL WAVES 

We start by defining sets of solutions of the wave equation, [A + e] 4' (£,r) = 0, so-called 

screened-spherical-wave sets, {4>RL (e, r - R)} , which will serve as interstitial (envelope) 

functions for the basis that we shall use for solving Schrödinger's equation. The members 

of a screened-spherical-wave (SSW) set are obtained by letting R run over all atomic sites 

and L over all angular-momenta for which the scattering is strong. The set is labelled by 

the superscript a. Instead of defining ipRL (S, J"R) as a specific linear combination of spherical 

Neumann functions like in Eq. (2), we specify it in terms of an inhomogeneous boundary 

condition which is illustrated in Fig.s 1 and 2 and is given as follows: 

Concentric with each MT sphere, R', we imagine a series of possibly coinciding "hard" 

spheres with radii aR,Li. Now, ipR[j(e,rR) is that solution of the wave equation whose 

YR'L' (?/?') projection on the R!IJ sphere equals 5RT,,R'L', that is, 1 on its own sphere and 

0 on all other spheres. We do not associate SSWs and hard spheres with weakly- and non- 

scattering channels. For such a channel, the YR<V (TRI) projection of the SSWs is defined to 

be a regular solution of the corresponding radial Schrödinger equation, that is, it matches 

onto the irregular wave-equation solution jV (KTH<) - tan X)RI\' («0 "(' {K-TR
1
) , times some con- 

10 



stant, cR,L,RL (e). The weakly- and non-scattering channels are thus parts of the SSW and 

will not enter the screened KKR- and LMTO matrices explicitly. All high-/' channels are non- 

scatterers [tan r)KV (K) = 0] due to the dominance of the centrifugal barrier. Empty spheres 

are examples of a weak scatterers. Strong scatterers are then, by definition, those channels 

with which we associate SSWs and hard spheres. Note that all SSWs in the set have the 

same boundary condition, except for the SRL,R>L'- The SSW set, {ipRL (e,rß)} = \RL) (r|, 

may thus be considered as an unperturbed Green function in a hybrid representation. 

Fig. 2 shows an SSW for the hypothetical case of only strong scattering. Weak- and non- 

scattering channels would have shown up as little tails extending into the two hard spheres. 

Such tails may be seen in Fig. 4 where the dashed curve is an SSW for Si. In this figure 

we have set the radial functions of the strongly scattering channels to zero inside the hard 

spheres and, defined in this way, ipRL (e, rR) jumps by the amount YL (rR) at its own hard 

sphere, rR=aRL, and has kinks at all hard spheres. Had we instead chosen to continue also 

the strongly scattering channels of the SSW into the hard spheres, the SSW would have been 

smooth, but diverging at the sites of the strongly scattering atoms, each radial part going 

as jv {KTRI) — tan aWy (K) nv (KTRI) . In order to get more feeling for SSWs, let us consider 

some limiting cases: 

If we specify aRL = a ->■ 0 for all channels, we obtain the bare spherical waves. These are 

Figure 1: (above). Boundary condition for 
the screened spherical wave, tj>RL(e,rR). 
Only strongly-scattering channels are in- 
dicated and all hard-sphere radii are 
equal. 

Figure 2: (right). Screened spherical wave 
centered at the origin, 4>o {e, r), and its 
slopes, SR0 (top).   The same for its first 

energy-derivative function, i/>(J(e,r) (bot- 
tom). 
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known analytically but, except maybe for small molecules, we never use them. Nevertheless, 

with the normalization specified above they are:3 

i    I'+I (Ka) 
J>L(e,r) 

(2/-1)!! 

(K<I) 

n/(/cr)Vt(f) = 
i+i 

1 + 
2(2/-1) YL(*) 

I+I cos (nr — lir/2),,  ... 
 —>t(r), for    r —> co, 

(2/-1)!! Kr 

whene > 0, and where (2/ - 1)!! = (2/ - 1) (2/ - 3).. • 1 and (-1)!! EE -1. When e <0 

V4(^,r)    =    - 
(na) 1+1 

(21-1)!! 
[n,(Kr) + iji(Kr)]YL(r) 

l+i 
1 + 

2(2/ — 1) 

(er2) r 

(2/+ 1) [(2/-I)!!]' 2(2/ + 3) Vi-(f) 

-» 
a'+1 (>/=£)'exp(-rV=i) 

Vt(f),    for 
(2/-1)!! r 

These expressions hold only for r 2> a. Unlike screened spherical waves, the bare ones are 

eigenfunctions of angular momentum and are independent of the surroundings. For positive 

energies they have long range. Like all screened spherical waves, the normalization of the 

bare ones is such that they are dimcnsionlcss and, unlike the Bessel and Neumann functions, 

they depend little on energy near the hard spheres. 

Another case is when we specify anl=aR for all L, and take e=0. Then IJ'OL (0, r) is pro- 

portional to the electrostatic potential from a 2'-pole at the origin, surrounded by grounded 

conducting spheres with radii an centered at the other sites. Since the hard spheres at 

the neighbors break the spherical symmetry around the origin, the SSW has pure angular- 

momentum character merely at its own sphere, and this holds only as long as the own sphere 

coincides with all other spheres concentric with it. Changing the energy will not change the 

SSW much. If we now let aR>u be zero for high l"s, the SSWs will "wobble" into the hard 

spheres. 

If the hard-sphere radii arc generated from repulsive potential wells,4 the SSWs are the 

"impurity states" for that repulsive MT potential. 

Since the strongly-scattering components of the SSWs are forced to vanish at all sur- 

rounding hard spheres, the range of the SSWs depends on the choice of hard spheres and 

energy: Consider the spectrum £° of the wave equation with the homogeneous boundary 

condition that the solutions vanish at all spheres. This spectrum has a continuum starting 

at e°, which in the absence of screening is at zero and which rises with increasing hard-sphere 

radii. Now, the SSWs are localized or delocalized depending on whether their energy is below 

or above the bottom of the continuum. Since we choose energy-independent boundary con- 

ditions for the SSWs, their energy dependence merely enters through the wave equation, that 

is through their curvature, and is therefore small when the wavelength exceeds the diameter 

of the largest interstitial in the hard-sphere solid. 

12 



If all hard spheres centered on the same site would coincide, then the hard spheres would 

have to be smaller than touching because, if two spheres had a point (or a circle) in common, 

then each one of the SSWs centered on the two spheres would be required to be both zero 

and non-zero at that point (or circle). When only a few low-/ channels scatter strongly, 

neighboring hard spheres may intersect. With decreasing hard-sphere interstitial, the SSW 

sets thus in general become more and more localized, until the hard spheres start to intersect. 

Since from there on, the SSWs are forced to change rapidly near the common circles, their 

behavior becomes chaotic as the circles grow. 

We shall generate the screened spherical waves from the bare ones, because those are 

the only ones we know analytically. Hence, we first consider the question of how to expand 

an arbitrary wave-equation solution, $ (e,r), which is regular in all space, except possibly 

at the atomic sites, in an SSW set, {ipRL (e, rR)} , with the same energy. If the number of 

atoms is finite, this energy is supposed to be negative. Moreover, since <f (e,r) is a solution 

of the wave equation, the SSW set is supposed to have no weakly-scattering channels and, 

a priory, we treat all channels as strong scatterers. Finally, we shall not truncate the SSWs 

inside the hard spheres, but let them continue to the centers. We now expand \P (e, r) in 

spherical harmonics on the hard spheres of the SSW set, thus obtaining the coefficients, 

^Rlm (e, a, Rim) ■ Unless all of these vanish, the linear combination converges to \P (e, r) : 

A*      ( 

1™  EEE V>fl;m(e,rÄ) Wflim(e,aß(m) = W(£,r) 
XR

~+°°   R   1=0 m=-l 

because, by construction, the linear combination is a solution of the wave equation with the 

proper energy, and this solution matches \P (e, r) channel by channel. In order to convince 

oneself that the latter is sufficient, one may start repeating the argument using an SSW set 

with L-independent hard spheres. In that case, \P (e, r) coincides with the linear combination 

on a closed boundary, because in the case where the system is infinite such a boundary is 

formed by the entity of all hard spheres, and in the case where the system is finite, the 

boundary is formed by the hard spheres plus the infinity, where both \P (e, r) and the linear 

combination vanish since the energy is negative. 

If all the coefficients ^wm (e, amm) vanish then \P (e, r) is an eigenfunction of the hard- 

sphere solid. In this case a complete set must include, in addition to the SSWs, the degenerate 

eigenfunctions, or we may choose a different SSW set for the expansion of \P (e, r). 

Changing the hard-sphere radii, but not the sites and the energy, produces another set 

of SSWs which is also complete in the above-mentioned sense. All such sets are therefore 

linearly dependent. A set of hard-sphere radii is said to specify a representation and the 

transformation from the a to the b representation is obtained by substituting ißR,L, (e,i\R/) 

for \t (e, r) in the above. Hence, the transformation is 

Ä*(£,fff) = Z>k(e,rÄ) i>b
RL,RIL.{e,aRL), (11) 

RL 

where V'RL.R'L' (
£

J 
ü

RL) 
are the RL components at ajjt-spheres of the functions ipb

R,L, (e, TRI) . 
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Expanding now the left and right-hand sides in spherical harmonics on the 6/j"L»-spheres we 

obtain: 

SR»R>SL»L' = J2 ^R"L",RL (e> hl"L") TpRl.WIJ (£. aRi) ■ (12) 
RL 

The two matrices i/>° (e, 6) and ij)h (e, a) are thus each others inverses. 

SLOPE AND STRUCTURE MATRICES 

We have specified the SSWs by their nodes and shall need their radial derivatives at the 

hard spheres, that is, the dimensionless slope matrix. Its element SR,Li RI{e) is defined as 

a,Riy times the //-component of the radial derivative at the a/f^-sphero, with the positive 

direction taken outwards from R', of ipRL (e, rR) . This is illustrated in Fig. 2. 

In fact knowledge of the hard spheres and the slope matrix makes generation of the SSW 

set a simple matter: The spherical-harmonics expansion around any site, R', of any member, 
1
1'RL{

£
-I
T

R)^ °f the set is given by radial functions and the function for the V channel is: 

VR'L',RL (e> rR') =  /(' (£. aR'L',rw) &R'V,RL + gv (e, «/?<//, rRI) SR,VRL (e).        (13) 

The local expansion converges for rRi smaller than the distance to the nearest site. In (13), 

fi and gi are solutions of the radial wave equation, [d2/dr2 — I (I + 1) /r2 + e] rf\ = 0, with 

the following boundary conditions for r=a : f has value one and slope zero, and g has value 

zero and slope I/o. 

The SSW-set, \ij)a (e)) , may also be expressed globally as a linear combination of some 

known set, w1 (e)) , as we saw in Eq. (11). The transformation matrix, ij>a(£,b), is then 

given by Eq. (13) with TR» substituted by bn<v- With the use of Eq. (13), the completeness 

relation (12) thus expresses the transformation from Sh (e) to S° (e). 

In order to generate the slope matrix, we transform to the bare set, which is known 

analytically: Using Eq. (13), Sa (e) is expressed in terms of V'°(e,0), which is com- 

puted as the inverse of ip°(e,a). The latter follows from the local, spherical-harmonics 

expansion about R' of the Ncuman function centered at R (/ R'): nnt (nrR) Vj, (?A) = 

T.L'3l' (««"/?') Yy (ffi.) BKVtRL (K) , where 

BR,U,RL («) = £ 4^ i"'+''"'"C^'i» «m» (K |R - R'l) V,r,,m,_m (HTR') (14) 

is the KKR structure matrix, which is Hcrmitian. The summation runs over /" = 

\{> - l\, \l' - l\ + 2, ..., I' + I, and ;-'+''-'" is real because CLVL" = I YL(f)Y^{f)YLn{f)df. 

The on-site elements of B (K) vanish. In this way, we obtain the most important result: 

aSa (e) - aD{j («a)} = -?—■ [B (K) + K cot a (K)]"
1
 T^—, (15) 

where o, j (/ca.), D {j (/en)} , and coto(K) are diagonal matrices with elements 

(Jfl/,, jl(K.aRfj), D{ji («-0/(7,)} =KCRLJ' (K(I)/J(K(I), and cot. o^f, (K) . The quantity 

aR'L'SjVL, RL(e) , which is nftV/, times the //-component of the radial derivative of TJ>RL (e) 

14 



at the afi'£/-sphere, form the elements of a matrix which is Hermitian. This matrix, we call 

the structure matrix. 

For the channels to be treated as strongly scattering with the set {if>a} , we take aRL (re) 

to be the hard-sphere phase shifts (3), and for those to be treated as weakly scattering and, 

thus to be downfolded into the SSWs, we take aRL (re) to be the real phase shifts, 77» (re). 

The non-scattering channels do not enter the screening calculation (15), since they neither 

scatter the bare, nor the screened set. The strongly- and weakly-scattering channels thus 

contribute to the size of the matrix to be inverted and the strongly-scattering channels are 

the only ones which will eventually enter the equations for solving Schrödinger's equation. 

Instead of expressing (14) and (15) in terms of the usual spherical Bessel and Neumann 

functions, one could of course have divided the factors re' and re-'-1 out on the right-hand 

side of (15), or used V>° (e, r) instead of n, (rer), etc.. The only difference between the last 

equation of (2) and equation (15), is that the Hermitian matrix aSa (e) is normalized in such 

a way as to make its energy dependence as small as possible, and in such a way as to give 

Sa (e) a geometrical interpretation, namely as the dimensionless slope matrix. Specifically, 

K~
X
 tan a [Ba (re) - re cot a (re)] re-1 tan a = -j (rea) a [Sa (e) - D {j (rea)}] j (rea), 

so that the screened structure matrices Ba (re) and aSa (e) differ because functions of energy 

have been subtracted from the diagonal elements, and because the rows and columns have 

been rescaled with such functions. If we form: 

SB-LVU (e) = -2 (w/aR,L,)V [SR,L,fiL (e) + (/ + 1) SR,L,<RL] (w/aRL)'+1 , (16) 

then Sa (0) is the conventional (re=0) LMTO structure matrix for the screening constants 

aRL(0) = [2(2l + l)}-l(aRL/w)2l+1, 

and Sa (0) is its first energy derivative for some a (0). For LMTO users who have developed 

a feeling for the sizes of the conventional structure constants and do not care about the 

new interpretation in terms of logarithmic derivatives, it is of course possible to use the new 

method in the conventional "gauge" (16). In that case, one must substitute the old poten- 

tial functions, PRL (e), by -2 {w/aRL)2,+1 [D {Vm (e, aRL)} + 1 + 1], with D {ipm (e, aRL)} 

evaluated as explained in the following section.3 

Whereas the slope matrix specifies the normal gradients on the hard spheres of all func- 

tions in the SSW set, its first energy derivative, SRLR,L, (e), specifies the normal gradi- 

ents of the first-energy derivative functions, ipRL (e), as illustrated at the bottom of Fig. 

2. Since the hard spheres are independent of energy, the energy-derivative functions will 

vanish at all hard spheres, including their own. The first energy derivative of the struc- 

ture matrix in addition gives the overlap matrix of the SSW set: {4>RL (e) \ipR,L, (e)) = 

USRL.R'L' (e) • Tms equation follows from the more general one: (if>RL (e) \ipRIL, (e')) = 

a.RL [SRLiRIL, (e) - SRLR,L, (e')j / (e - e'), which may be derived by use of Green's second 
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theorem.3 Here, the strongly scattering radial components have been truncated inside the 

corresponding hard spheres as illustrated in Fig.s 1 and 2, while the remaining, regular 

components extend to the centers of the spheres. 

Considered as functions of e, the eigenvalues of the structure matrix aSa (e) have poles 

when e coincides with an energy eigenvalue, e°, of the hard-sphere solid. For practical 

purposes, the a-radii can be chosen in such a way that the energies of interest to us are 

well below the bottom of the hard-sphere continuum, and below any localized state of the 

hard-sphere solid. For such energies, the eigenvalues of aS" (e) are analytical functions of e. 

This latter point is demonstrated in the left-hand side of Fig. 3, which also demonstrates 

that the energy dependence is weak over the ±10 eV region considered. The right-hand 

side shows that, for low energies or close sphere packings, the slope matrix decays by an 

order of magnitude per shell of neighbors. For a monotonically decaying SSW we expect, 

as illustrated in Fig. 2, a negative slope at its own hard sphere and positive slopes at the 

neighboring spheres. This is also the behavior found in Fig. 3, at least throughout the first 

three shells. 

In conclusion, the slope matrix generated by inversion of the non singular matrix (15) 

contains all the information we shall need about the SSW set. 
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Figure 3: The s.s<T-element, Sa
Rmwn (e), of the slope matrix for the fee structure and R in 

the O'th to 4'th or 5'th shell. Left: a,,rd=0.7w. Here w is the Wigner-Scitz radius, which 
in the fee structure is 10% larger than that of touching spheres. ei«2=6.05 corresponds 
to the lowest free-electron energy at the X point. Right: £=0 and aSTi=a. The 5-scale 
is logarithmic and the channels with / > 2 were taken as non-scattering. The number of 
atoms in the O'tli-5'tli shell are respectively 1, 12, 6, 24, 12, and 24. The calculation was 
performed by matrix inversion, Eq. (15), in real space for a 79-site cluster. For positive 
energies it was necessary to prevent resonances at the surface of this cluster by enclosing 
it in a concave sphere simulating the boundary condition V'=0 on the spheres outside the 
cluster and carrying max(/)=8. The artefact at ew2 «6.3 is a surviving resonance. The 
results are accurate only when the SSW is well localized within the cluster. For cases where 
the SSW's are not localized within a cluster of affordable size, we must assume crystalline 
boundary conditions and Bloch-snm B (K) with the Ewald technique before performing the 
screening inversion (15) for each k-point. With largely overlapping MT spheres, the energies 

of occupied states are always negative. 
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SOLVING SCHRODINGER'S EQUATION WITH KINKED PARTIAL WAVES 

We now come to consider Schrödinger's equation, [—A + V (r) — e,] \P; (r) = 0, for a MT 

potential and begin by showing that with our screened spherical waves it is a rather simple 

matter to formulate the matching problem for the solutions, $; (r), algebraically: 

First we integrate the radial Schrödinger equation for each strongly scattering channel 

outwards from the origin to the MT radius SR in the potential well VR {rp) , and then inwards 

in zero potential (the MT zero) from SR to the hard-sphere radius am,. The outwards 

integration yields the radial partial wave CJ>RI (E^R) , and the subsequent inwards integration 

yields the radial partial wave "as seen from free space" tpju (e, TH) , with radial logarithmic 

derivative D {fR\ (e, URL)} at the hard sphere. These two waves match continuously and 

differentiably at SR and they may be seen in the left-hand side of Fig. 4, after multiplication 

by YL, (TR) . Let us assume that (f>a
RL (S,)\R) and tpRL (e,rR) have been normalized in such a 

way that ipRL (e, aRi) s 1 at the hard sphere; this is what the superscript a here indicates. 

In the case where the hard spheres have been chosen to depend on m, radial functions 

of the same Rl may have different normalizations, hence the subscript L rather than I. 

With this normalization, the free partial wave matches continuously, but with the kink 
S

RL,RL(
6
) ~ D{<pRi{e,aRL)}, to the ÄL-projection, II>R'U,RL i£,rR'), of the corresponding 

SSW, ^RL(s,rR). Let us furthermore truncate 4>Ri,(e,rR) and ^RL(
£

,^"R) outside the MT 

sphere (0\SR) and, like the SSW, let us truncate <pRL (e, rp) also inside the OR£-sphere. The 

function \<J>RL (e, TR) — ipRL (e, rji)] YL (rR) thus equals the proper partial wave inside the hard 

sphere, where it jumps by —YL (?#), and it vanishes quadratically at the MT sphere with 

a prefactor proportional to the MT discontinuity VR (SR) . To this function we now add the 

corresponding SSW thus obtaining the kinked partial wave (KPW): 

®RL (e, rR) = [4>RL (e, rR) - VRL (e, rR)} YL (?*) + V>k (e, m), (17) 

which is also shown in Fig. 4. This function is everywhere continuous, but has kinks of size 

SR'L',RL (e) - D {vra (£> aRL)} 8WL',RL at the hard aß/r,/-spheres. 

At such a sphere, the kink of the linear combination of KPWs, Y^RL ®RL (
£

J 
rfi) C

RL (£) i 's 

therefore £AL [SR,L,iRL (e) - D {ipRl (e, aRL)} SR,L>,RL\ CRL (e). If we can now find an energy, 

£;, and coefficients, cRLi, such that 

£ [Shv,RL (e.0 - D WRI (£i^RL)} &R'V,RL] cRL,i = 0       for all R'V, (18) 
RL 

then the corresponding linear combination is smooth and therefore solves Schrödinger's equa- 

tion with e,- as an energy eigenvalue. 

The statement that the "kink-cancellation condition" (18) leads to a solution of 

Schrödinger's equation is exact only for a non-overlapping MT potential. Before continuing 

to the case of overlapping potentials, let us scrutinize our proof a little closer. Each KPW is 

constructed to be a solution of Schrödinger's equation at energy e, except in all shells between 

concentric MT- and hard spheres, and except for the kinks at the hard spheres. In the case 
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where wc choose all concentric hard spheres to coincide with the MT sphere (aR[=sR), 

all shells vanish so the statement is obviously true. That it holds also when the hard 

spheres are different from the concentric MT sphere, follows from the fact that for a linear 

combination with all kinks cancelled, each ifaR,L, (ei: TR:) ca,VL, { matches the /f'L'-projection, 

Efit i>KL\RL (£n rK) cRf/i, of the linear combination of SSWs, "£RL V'k (e., TR) cRLi, at aR,L, 

in value and in slope, and since both radial functions are solutions of the same second-order 

differential equation, namely the /"th radial wave equation, they must be identical. As a 

consequence, 

VwL' (£<> rR') cR'L',i - Yl ^R'L',RL (£i.rR') ca
IiLi = 0, for 0 < rn < sB, and R'L' £ strong scat. 

RL 
(19) 

Inside the s/?>-sphere then, only terms which satisfy Schrödinger's equation remain, 

namely YL>(rRi)'%2RL(t>R,L,Rrj(Ei,rRi)cRri and the weakly- and non-scattering channels of 

The KPW is defined in (17) as the SSW plus the central, pure angular-momentum con- 

tribution <j> — <p, which vanishes quadratically at the MT sphere. In analogy with Slater's 

augmented plane wave (APW), the KPW might have been named an augmented screened 

spherical wave. This analogy is only complete though when all hard spheres coincide with 

their concentric MT sphere. 

Next we consider the case of MT overlap. Suppose that we have solved the kink- 

cancellation equations (18) with logarithmic derivatives calculated for potential wells which 

overlap. To what extent is the resulting smooth function, ty, (r) = Y.RI, §RI. (£i!rfl) cRi,,i> 

a solution of Schrödinger's equation for the superposition of these overlapping wells? The 

situation is sketched in Fig. 5 and the answer is, that the smooth superposition of KPWs 

solves Schrödinger's equation to leading (first) order in the potential overlap. 

Si p kinked partial wave * Si p Imto 

*-a <-s a-* Si   *-a   a-*   Si   «-a 

Figure 4: Kinked partial wave (KPW), |$) = \<f>) - \<p) + |i/>) , and LMTO, |x> = |#) - 

$) K~lK, for Si Px+y+z plotted along the [11 Indirection towards a nearest neighbor in the 
diamond structure. Note the change of length scale between the left and right panels. 



Since we have only considered the strongly-scattering channels in this one-dimensional 

figure, let us now be a bit more careful. Using the definition (17) and the following defi- 

nitions: V,-(r) = J2RL^RL(si,rR)cRLii, 4%(ei,rR) = E^k^r*) CM,<> and similarly for 
(fR(ei,rR), we obtain: 

-A + ^uH(rÄ) -et 
R1 R^R' 

+ E [-A + VR (rR) ~ s.'] l<f>R (e.-. rR) - <p"R (e<, rR)] + -A + EMnO-e,- & (r) 

E VR' irR') E 0« (£» rfl) " VK (e.-, r/0] - E"«M IVH (*> r«) - & (*)] - [A + et] ^ (r) 
H' Ä^fi' R 

= E"«'(rÄ') E [^(e»r«)-Vß(e.-.rR)] (20) 
R' R£Ri 

" R^R' R 
pairs 1 pairs 

2 E "«' (rÄ') [(SÄ' - rR,f + (sR - rRf] VR (sR) #, (r) (22) 

■ A _^j 

UBUA-^V)
1 

JL.....B -+ 

Figure 5: Middle: Overlapping po- 
tential wells, vA (rA) and t>ß (rB), 
centered at sites A (far left) and 
B (far right). Top: The solu- 
tion 4>A = Y2L(t>AL(ei,rA)cAL,i joins 
smoothly onto the free solution ipA at 
sA. ipA runs backwards to a A, where 
the kink with the interstitial solu- 
tion, E</> = T,RL^RL{ei,rR)cRLth 

is    cancelled. Similarly   for    <f>B 

and tpg. Due to kink cancellation, 
the resulting wave function, <j>A — 
<PA+ <f>B - <PB + EVs equals ^+ 
4>B — H4> in this picture where the 
angular-momentum character has been 
suppressed.        Bottom:     The   error, 
[-A + VA + VB- £,-] \<t>A + <fe - E V>) 
= VB \4>A) + VA \4>B) - (VA + VA) IEV") 
=   vB\<f>A-T,i>) + VA\4>B-J:^) , 
consists of two terms each of which, 
e.g. the first, is the product of 
VB (re) and <j>A — E Vs which vanishes 
like vA(sA){sA- rAf <j>A{sA) at the 
sA boundary. Hence the error is of sec- 
ond order in the potential overlap. 
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Here, we have first of all made use of the fart that \&,- (r) is smooth so that we can apply 

the A-operator to its individual, kinked or discontinuous parts without keeping track of all 

the resulting diverging terms, because they will cancel in the end. In obtaining the 3rd line, 

we have used that d> solves Schro'dingcr's equation for its own well. Eq. (20) has then been 

obtained by use of Eq. (19) for the strongly-scattering partial waves, plus the fact that, 

the weakly- and non-scattering channels (A) of \j>, (r) solve Schrödinger's equation, i.e. that 

[A + e] i>RL (e.r«) = T,RI vjv {rR.) EA 4'R>A,RL (e, *R) ■ 
Returning to the strongly-scattering channels of £/? VR (r/i) VpR (£;> rfl) ~ 4'i (r)] > if the 

overlap is so large that the s/?-sphere overlaps a neighboring a/;<f/-sphere, then it is simplest 

to imagine that we have not truncated the SSWs inside their hard spheres, because otherwise 

the cancellation (19) would not take place inside the s;;-0/t'/,' overlap. For consistency then, 

we should not truncate the free partial waves ip inside their own hard sphere either. The 

resulting divergencies at the sites, of the SSWs and of the free partial waves, of course cancel 

for the smooth linear combinations. This undoing of the truncation inside the hard spheres 

is not necessary, but it simplifies the bookkeeping. 

The result (20) is then in agreement with what we found in Fig. 5, that the error is a 

function which vanishes outside the regions of overlap and that inside such a region, it is the 

product of a function, VR? (TRI) , which vanishes with a small discontinuity at one of the MT 

spheres and a function, 4>R~<PR> which vanishes quadratically at the surface of the other MT 

sphere, with a prcfactor proportional to the discontinuity ofthat MT potential. Remember 

that the radial part of ipn is supposed to continue to the origin. The result, which is given in 

(21), may be obtained from the radial Schrödinger and wave equations. Finally, in expression 

(22) we have kept only the term of leading order and have used that 4>"R (e,, r/}) ?B <!»,■ (r) in 

the region picked out by the other factors. Hence, the. error of the wave function is of second 

order in the potential overlap. 

The error of the, one-electron energy may be obtained by first order perturbation theory 

as: Ae,- = £,- — e'r'"1 ~ — (ty; |—A + Y,RVR (r/i) — e>\ ^i) arifl, to leading order, we find from 

Eq. (22) that the error of the band-structure energy is2 

7T   "^   ,„        ~/,5     4 ,       ^ ,        *.      /R+R 5>£l-    ~    -^ ff |R-R'|B
wÄn,«flM«fl. (««■)/, ^^^j, (23) 

where    uijm'    =    rr: rrrr — 1     is the radial overlap. (24) 
|R — R j 

In a last section we shall demonstrate how this works for the third-generation LMTO method. 

Finally, it may be noted that the appearance of the KPW in Fig. 4 is hardly influenced by 

the MT overlap. This figure in fact applies to an overlap of w=14%. 

Like the slope matrix, the kink matrix is not Hermitian, but the matrix 

K
R'L',RL (e) = aR'V \SWV,RL (e) - D Wni (e, aRL)} <W,/tt] (25) 

is.21 This matrix is the renormalizod screened KKR matrix. If we multiply each of the kink- 

cancellation equations (19) with the corresponding hard sphere radius, a^r/, these equations 
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take the form: J2 Kc = 0 and, hence, they are the screened KKR equations. Just as the 

first energy derivative of the structure matrix is the overlap matrix for the set of SSWs, so 

the first energy derivative of the KKR matrix is the overlap matrix for the set of KPWs.22 

In fact, one may show that the KKR matrix itself is the energy minus the MT Hamiltonian 

in the basis of the KPWs with the same energy, that is, 

KR,L,,RL (e) = (*%.„ (e) \e - (-A + V)\ $RL (c)). (26) 

For Green-function and CPA calculations it has been very important that the transfor- 

mation (7) of the resolvent, [P (z) — S]~ , from one representation to another is merely a 

scaling rather than a matrix operation. This turns out to hold also in the new formalism, 

and it means that such calculations may now be performed with more realistic potentials 

and including downfolding. The result is: 

Kh (z)'1 = a-'g" (*, b) v* (z, b) + v' (z, b) K* (z)"1 p« (z, b) (27) 

and has been obtained by use of the completeness relation (12), the one-centre expansion 

(13), and the following Wronskian relations:3 

a<f(a) = -b<f(b),    a/'(a) = &Y(6)\    «Y (a)' = bf (b),    a2/6 (a)' = -62/° (6)', 

where the common energy argument, z, has been dropped. 

LOW-ENERGY, FEW-ORBITAL, TB HAMILTONIANS; HTSCs 

If the energy dependence of the renormalized screened KKR matrix is linearized around 

some chosen energy e„, 

K" (e) ~ K" + (e - e„) Ka = - ($" |-A + V\ $") + £ ($" | $a), (28) 

then the KKR equations (18) have the form of an algebraic eigenvalue problem. In (28) 

and in the following, omission of an energy argument e means that the function is evalu- 

ated at e„. The basis set which, by use of the Raleigh-Ritz variational principle for the MT 

Hamiltonian, gives rise to this problem turns out to be the KPW-set at the fixed energy, 

e„. This follows from Eq. (26) and is expressed in the second part of Eq. (28). Since 

the off-diagonal elements of the overlap matrix, K, only influence the energy eigenvalues 

to order (e; — £„) , we may even neglect the non-orthogonality of the KPWs and, for a 

crystal, obtain the correct Fermi surface, e,- (k) =ep = e„, and the correct group veloci- 

ties, dei (k) /ök^   , by diagonalization of a first-order Hamiltonian whose matrix elements 

are simply: -KRLfi,L, = -KRhfi,L, / \JKRL)RLKR'L',R'L' ■ Tnis Hamiltonian is completely 

analogous to ha in the ASA, but — Ka implicitly contains the integrals over the interstitial 

region and the downfolded channels, and it works to leading order in the overlap of the 

potential wells. The range of —KRL^RIL' in ß-space, and the size of the energy window inside 

which the linear approximation holds, depends on the screening. Crudely speaking, the more 
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strongly-scattering channels included, and the larger their hard spheres chosen without being 

touching, the shorter is the range of the hopping, and the wider is the energy window. 

— Ka can be used as the low-energy, few-orbital, single-particle part of correlated 

Hubbard-type Hamiltonians, as we shall now demonstrate for a generic high-temperature 

superconductor (HTSC). We have in the past23 been able to derive such a Hamiltonian for 

YBa2Cu307 using the second-generation LMTO package.10 That procedure, however, re- 

quired a lot of hand-work and much insight, and has proved cumbersome to use in general. 

The new procedure is far more automatic and accurate,2'' and has already proved successful 

for the ladder compounds.25 

The basic structural element of all HTSCs is a Cu02 layer, which is a quadratic lattice 

with copper at the corners and oxygen halfway between all copper nearest neighbors. In the 

left-hand side of Fig. G, the copper sites are those which carry either a dJ.2_y2 or an ,s orbital, 

and the oxygen sites are those which carry a pT or a py orbital. Different HTSC materials 

have different stackings of the Cu02 layers with various "insulating" and/or "doping" layers 

between them. Nevertheless, the calculated LDA band structures near what is believed to be 

the Fermi level of optimally doped HTSCs are very similar, and similar to that calculated for 

the simplest possible such material; dimpled CaCu02. In this compound, the Cu02 layers 

are stacked in the ^-direction and are separated by calcium, which sits in the hollow between 

the eight coppers of the two neighboring layers. The oxygens in the Cu rows running in the 

x- (indirection are dimpled out of the plane by +(-) 7 degrees. The right-hand side of 

Fig. 6 shows a central Cu02 layer seen from the side, with a dT7_yi and an s orbital on the 

copper sites and a p. orbital on the oxygen site. On the Cu02 layer above is shown a Cu 

s orbital and on the Cu02 layer below, an 0 p. orbital. Dimpled CaCu02 is a calculated 

structure,2fi a theorists dream which hardly exists in this simple form in nature. Its LDA 

energy bands, which we shall now consider, are nevertheless very similar to those calculated23 

for YBa2Cu307, one of the only known sioirhiomclrir optimally doped HTSCs. 

At the Fermi level there is only one band per Cu02 layer, and this is the anti-bonding pdrr 

band formed from the 0 px - Cu dj:2_y2 - 0py orbitals. This band is at the top of the 10 eV 

broad Op - Curf complex consisting of 16 bands, the upper (anti- and non-bonding) part of 

which may be seen in Fig. 7 (a). According to the LDA and the so-called Van Hove scenario 

of HTSC, the Fermi level (zero in the figure) for the optimally doped compounds is very 

close to the saddle-point of the conduction band at (akr.aky) = (TT, 0). Hybridization with 

the Cu s band, which is 5 eV above, has pushed this saddle-point of the anti-bonding pdrr 

band down in energy, to a point where it just "straddles off" the top of the anti-bonding pdrr 

bands. This makes the structure susceptible to out-of-row movements of oxygen, because 

this will mix a and TT bands. In particular the stable structures of CaCu02 and YBa2Cu;l07 

have oxygen dimpled seven degrees out of the layer, and this mixes Opz character into the 

conduction band in such a way that its saddle-point at (~,0) becomes "extended" that is, 

the dispersion towards (0,0) becomes proportional to lA, i.e. flat, while in the perpendicular 

direction, towards (IT,IT), it remains fc2. The mixing pushes the corresponding pd~ band 
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down in energy by about half an eV and leaves the top of other pdir bands about an eV 

below the Fermi level. We thus see that the orbital character of the conduction band, which 

is the only one we wish to describe, is quite mixed. 

The converged LDA bands are showed in panel (a) of Fig. 7. For comparison, panels 

(b)-(d) show the bands calculated with various "minimal" LMTO sets, specifically, with 

only the six 0 p orbitals (b), with only the Cu dx2_y2 orbital (c), and with the six 0 p 

orbitals plus the Cu 3 and dx2_y2 orbitals (d). These four calculations all employ the full 

3rd-generation LMTO formalism, to be described in the following section, in which the 

Hamiltonian and overlap matrices, (31) and (30), are given in terms of Ka (SF) and its first 

three energy derivatives. Panel (b) and (c) demonstrate the power of downfolding in the 

3rd-generation LMTO scheme: One may for instance completely leave out the Cu dx2_y2 

LMTOs by attaching that partial-wave character to the tails of the neighboring 0 p LMTOs 

(b), or one may completely leave out the 0 p LMTOs, keeping per cell just the one Cu dx2_y2 

LMTO whose tail then incorporates the Op, Cu s, and other characters (c). As one can 

imagine, such massive downfolding leads to long range of the LMTOs. As an example, the 

Fourier transform of the conduction band shown in panel (c) is the two-centre Hamiltonian 

in the representation of orthogonalized Cu dx2_y2 LMTOs, where the cone-like feature of the 

band around (0,0), caused by near degeneracy of the CucL^^ and Opx orbital energies, 

gives rise to very long range. This long-ranged, single-band Hamiltonian, we have called (the 

single-particle part of) the "physical" low-energy Hamiltonian.23 

What we shall be interested in here is a "chemical" Hamiltonian, which has short range 

and whose TB parameters behave in a meaningful way when the structure is deformed and 

Figure 6: The eight orbitals [Ox px,y,z, Oy px,y,z,, Cu s, and Cu dx2_y2] and the values 
of their energies (with respect to £j,2_y2) and two-centre hopping integrals (eV). These 

values were obtained as the matrix elements of —Ka (EF) with all channels other than the 
eight downfolded. 
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when we proceed to similar materials. Which orbitals such a chemical Hamiltonian should 

contain is then dictated by the range of the corresponding A'° (e) matrix. If we imagine 

a Taylor series like (28), it is conceivable that the higher energy-derivative matrices have 

longer range. We therefore expect to obtain the shortest range when the energy region of 

interest is so small that we only need h'RLR,L, (er) as defined above. For dimpled CaCu02, 

the chemical basis set turns out to be the one used to generate the bands shown in panel (d). 

For the same eight orbitals, we show in panel (e) the bands calculated by diagonalization of 

the effective two-center Hamiltonian — A' (EF) . We see that this approximation conserves the 

shape of the conduction band in the relevant range of energy. All computations illustrated 
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Figure 7: LDA energy bands for dimpled Ca.Cu.O2 calculated with the 3rd-generation 
LMTO method using a, converged LMTO basis, (a), and five different simplifications, 
(b)-(f). Reciprocal-space distances are in units of the reciprocal of the Cu-Cu dis- 
tance. EF= 0 =£„. (a): All but the Cu s and rf, and the Op orbitals downfolded. 
acus=<1Cut(=0.87i, aop=0.75/, where the touching-sphere radius, t, is 1/4 the Cu-Cu 
distance, (b): All but the six oxygen p orbitals downfolded. aop=0.00/. (c): All but the 
single Cuf/x.2_!/2 orbital downfolded. ac„r2_!/2=0.62/. (d): All but the six oxygen orbitals, 
the Cu 5, and the Cu dx2_y2 orbitals downfolded. ac„,=0.87/, ocur2-y2=0.fi8/, ooP=0.9G/, 

(e): Like (d), but, with H-eF = -I< and O = 1. (f): Like (e), but witli Ä truncated after 
3rd-nearest-neighbor hoppings, that is, with the orbital energies and two-centre hopping 
integrals given in Fig. 6. 
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so far were converged in R-space. In fact, they were performed in k-space, which means 

that we started out using the Ewald method to compute B («,k). When we now Fourier 

transform kRLR,L, (e.p,k), we find that the only non-negligible matrix elements are those 

given by the orbital energies and two-center hopping integrals in Fig. 6. Panel (f) of Fig. 7 

shows the corresponding TB energy bands. This orthogonal, two-center TB Hamiltonian, is 

seen to reproduce the conduction band very well and to give a satisfactory description of the 

neighboring bands. This TB Hamiltonian, which we have generated almost automatically, 

could also have been calculated without the Ewald scheme, by inversion of Eq. (15) in R- 

space. A bit of trial and error is still needed in finding an optimal choice of the hard-sphere 

radii. The ones we used are listed in the figure caption. 

LINEAR MUFFIN-TIN ORBITALS 

The first-order Hamiltonian —K does not suffice to describe the energy spectrum over 

the 10-20 eV range spanned by the valence and lower conduction bands of strongly bonded 

materials. Nor does inclusion of terms beyond the linear in the Taylor series (28) help, 

because this does not lead to an algebraic eigenvalue problem. What is needed, is a set 

of energy independent Orbitals which, in contrast to the set of KPWs at a fixed energy, is 

complete to linear order in £ — £„. 

From a set of KPWs, we first define a set of energy dependent MTOs: 

\x(e))=\*(e))-\*)K-lK(e) (29) 

Here and in the following we often drop the common superscript a, and omission of an energy 

argument means that £=£„. Moreover, we have used the notation in which |x(s)} ls a row 

vector with elements \XRL (e)) = XRL (e, rR) and K is a matrix. <&RL (rR) is the first energy 

derivative at e„ of the KPW, $ßz,(£,rK), defined in (17). Since the hard spheres are kept 

independent of energy, the strongly-scattering channels of the energy-derivative functions $ 

vanish at all the hard spheres. The V>-part is sketched in the bottom half of Fig. 2 and the 

Si px+y+z MTO at energy e„, that is the LMTO, is shown together with the corresponding 

KPW in the right-hand side of Fig. 4. 

The superposition of $-functions added to the KPW in (29) is such as to make the 

MTO smooth. That this is so is seen immediately by forming the kink matrix for the MTO: 

K (e) - ki<-lK (e) = 0. Still, the set of MTOs remains complete with respect to the MT 

potential, because with £; being the energy and c; a corresponding solution of the KKR 

equations, K (E;) C, = 0, we find that the same linear combination of MTOs is: \x (£;)} c,- = 

|$ (£;)) Ci = |Wj). In contrast to the KPW, the MTO is independent of energy to linear order 

because by differentiation of (29) with respect to energy and subsequent setting £=£„ we get: 

\x) = 1$) - 1$} k~xK = 0. The energy-independent set of LMTOs, |x) = |$> - |*) K~XK, 

is therefore complete to linear order with respect to the MT Hamiltonian and therefore 

yields eigenvalues with errors proportional to (e; — e„) . For comparison the conventional 

single-« LMTO set is complete to zeroth order in the MT interstitial, albeit to first order in 
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J;Ä', and  (* | *)  =  £  Ä' • Tl. 

the spheres, and therefore yields eigenvalue errors of order (e, - e,,)2 which originate from 

the interstitial. This is illustrated in Fig. 8. A prire for carrying not only V', but also ij> 

functions, is that the new LMTO sets corresponding to different hard-sphere radii are no 

longer linear combinations of each other; the wave-function error, A" ■ (e, - £„)2 , has an 

a-dependent prefactor. 

We now derive the expressions for the Hamiltonian and overlap matrices in the new 

LMTO basis. For the integrals in all space of KPWs and their first energy derivative func- 

tions, one obtains: {<S> | $) = A', /<J> | $\ = /<j> | $\ 

LMTO overlap matrix is therefore: 

(X\x)   =   (* | *> - (* | $) K-'K - A A""1 (<i> | <J>) + A"A'"1 ($ | $) A"1 A' 

=   K - i (A'A'-'/V + A'A'-'A') + ^A'A'-1 k A"1 A'. (30) 

The matrix elements of the MT Hamiltonian used to generate the LMTO set may be found 

in a similar way. Since the LMTO is smooth there are no problems with Hermitic.ity like 

those occurring for the matrix elements between KPWs alone. What we mean is, that 

the result (26) cannot be obtained by naively taking matrix elements of an equation like: 

[// - e] |$ (e)) = 0, where H = -A + V, or of its energy derivative: [// - e„] |<j>|) = |$) . For 

matrix elements between smooth linear combinations of KPWs like: 

(x|-A + V - £„\x)   =   (* \H - e„\ *) - ($ \H - e„\ <i>) A'"1 A' - A'A"1 ($ \H - E„\§) 
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Figure 8: LMTO errors of the lowest free-electron energies (0, 0.75, and 1 Ry) at the 
fee T, L, and X points as functions of the energy-expansion parameter e„. The states 
at L and X are doubly degenerate and split when e„ ^ e. (a): Old LMTO method with 
sprf-basis and s-w. (b): New LMTO method, Eq.s (30) and (31), with s/jrf-basis and 
asp,i=0.7w=0.77l; the s-value is irrelevant. In (a) and (b) the bare structure matrix was 
Bloch-summed with the Ewald technique before it was screened by matrix inversion, Eq. 
(15), in k-spa.ee. (c): Like (b) except that the inversion (15) was performed in R-space 
using a 79-site cluster enclosed in a concave sphere. 
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=   - ($ \H - e„| $) /f-1/^ + tf/T1 ($ |ff - e„| $) /if"1^ 

= -($ i^ir'üf + Äjr1^ \i)k~1K 

=   -K+^KK-'KK-'K (31) 

such procedures are however correct when used consistently for all terms. Expression (31) 

thus gives the MT Hamiltonian matrix which, together with the overlap matrix (30), are 

given exclusively in terms of K, K, K, and k ■ These matrices are square and labelled by 

the channels of the strong scatterers. We stress, that in the 3rd-generation LMTO method, 

downfolding takes place at the screening stage (15), where it removes the weakly-scattering 

channels from the structure matrix S (e). The calculations for CaCu02 presented in Fig. 7 

(a)-(d) employed this formalism and convincingly demonstrated the new downfolding. 

An approximation, which goes beyond the ASA and is not based on dividing space into 

spheres and neglecting the remainder, consists of neglecting all off-diagonal elements in the 

reaZ-space representation of K, K, and K. With this new ASA, we have avoided the matrix 

inversion, A--1, and the formalism contains only one matrix, which we may take to be the 

first-order two-centre Hamiltonian —K defined in the previous section. This corresponds to 

renormalizing each KPW and each MTO according to:  \§RL{£)) =  |$RL (e)) /'\j'(§RL) = 

\®RL(S)) /yKRL,RL and \XRL (e)) =   \XRL{S)} I\JKRL,RL , and the rows and columns of 

the KKR matrix accordingly: KRL,R'L'{Z) = KRL,R'L'{S) /\jKRLtRLkKytRIU . With this 

renormalization, and taking £=£„, it is easy to see that expressions (30) and (31) reduce to 

the simple ASA form (8) and (9). 

We can develop an exact formalism by Löwdin orthonormalizing the KPWs, instead of 

merely normalizing them: The overlap matrix for the renormalized KPWs is: 

($RL | $B<L<) =kRLfi,L,= 6RL}RIL, + ARLiRILI, (32) 

where A is a Hermitian matrix with vanishing diagonal in ÄL-space. Its off-site elements 

(R T^ R') are usually considerably smaller than unity and if we now define a Hermitian 

matrix: k      = (1 + A)  2 =  1 — |A + |A2 — ..., which is the power-series expansion in 

l~      \       I-      \   -_1/2 

A, then the linear combinations  $(e)) =   $(e)> K        are seen to form an orthonormal 

set when £=e„. This is formally like in the conventional ASA. The partial waves truncated 

outside and normalized inside the atomic .s-spheres become in the formalism of the 3rd 

generation the Löwdin orthonormalized kinked partial waves. The transformed MTO set is: 

|X (e)> = \XRL (e)) k'1/2= |$ (e)> + |i) h (s), where 

■ _1/2 ■ _1/2 /        1 ^ \ /        1 3 \ 
h(e) = -K       k(e)K      =-(l-iA + ^A2-...j^(£)(l--A+-A2-...). 

(33) 
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Since this expression for the MTO set is also formally identical with an expression which, 

with the old definitions, was valid only in the ASA, everything else works out the same. E.g.. 

we find:   x) =   $) + <&Wi = 0, because h = -1. The Hamiltonian and overlap matrices 

arc thus given by (8) with /( = h (e,,), 

o = (if |$)   = (*| ^ = -A   and p + o2 = i (i> |$) = I (*\ ^ = ($\$} = _A. (34) 

In the 3rd-generation LMTO, h, o, and p are square matrices labelled by the strongly- 

scattering channels. What we have accomplished is therefore to transform the new Hamilto- 

nian and overlap matrices, (31) and (30), into the form (8), which was previously valid only 

in the ASA. 

In this language the new ASA corresponds to neglecting A as well as the off-diagonal, 

real-space parts of o and p. A better approximation is to keep A to first order in Eq. (33), 

and then to neglect the off-diagonal parts in the real-space representation of o and p. In 

this way we still need to specify only one matrix, namely the first-order, two-center TB 

Hamiltonian, h, at the expense of increasing its real-space range somewhat beyond that of 

— K. In the full formalism we have to specify 2 matrices, the Hamiltonian and the overlap 

matrix or worse, the 3 matrices: /;, !h = —1J , h, and h, or even worse, the 4 matrices: 

K, K, K, and K whose real-space range increases with the number of energy derivatives 

taken, that is, in order of decreasing importance for the bands near e„. 

Some of this is illustrated in Fig. 9 where we compare the LDA band structure obtained 

from a converged 3rd-gencration LMTO calculation (full line) with results (dashed lines) 

obtained using various minima! hank sets, sp3 in (a)-(c) and sp3dr' in (d), and various trun- 

cations. The empty-sphere spd- and, in (a)-(c), the Si (/-channels were downfolded. Here 

panel (a) demonstrates that it is possible with merely an sp3 set to obtain an accurate first- 

principles description of the valence and four lowest conduction bands, provided that we 

allow the set to be so long ranged that its Hamiltonian and overlap matrices, (31) and (30), 

extend to 12th-nearest neighbors. This basis is defined by: as=l.U, ap=\.0t, and £,,= — 2 

eV. As usual, t is half the nearest-neighbor distance. If an accurate ,s/)3 TB-description is 

needed of merely the valence band, then it is possible to limit the range of the orbitals to 

the extent that the Hamiltonian and overlap matrices can be truncated after the 6th-nearest 

neighbors. In (b) this is achieved mainly by shifting e„ down to the middle of the valence 

band. In (c) and (d) we have simplified the calculation of the Hamiltonian and overlap 

matrices by evaluating (33) to only first order in A, and by neglecting the off-diagonal ele- 

ments in fi-space of o and p. As mentioned above, this also makes it necessary to tabulate 

only one two-centre matrix, /(. (Note that the screened two-centre matrices cannot be com- 

pletely specified by Slater-Koster two-centre integrals like (5), because the screened KPWs 

and LMTOs do not have pure angular-momentum character). Comparison of the dashed 

lines in (b) and (c) shows that this simplification works for the valence-band structure, but 

that the quality of the conduction band, which was not aimed at here, has deteriorated. 
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So far we have not been able with our first-principles procedure to find parameters which 

will decrease the range of the sp3 first-order two-centre Hamiltonian, h, below 6th-nearest 

neighbors. However, with an sp3ds basis this is possible, because then also the d-channels 

can be used for screening. This is demonstrated in panel (d), where the sp3ds-set with the 

parameters as=ap=lM, ad=0M, and eu= - 6 eV, plus the above-mentioned simplification, 

yields an h which can be truncated after 3rd-nearest neighbors. The resulting valence band 

is good and the conduction band very reasonable. 

In the past there have been several attempts to model the energy bands of Si by a simple 

TB Hamiltonian and the need for TB total-energy representations to provide inter-atomic 

7k 
a, = 0.7tj    ap=0.8t 

Si sp>      |                ^ 
6NN      I   E,=-«eV 

L            r 5             K                  r 

Figure 9: LDA energy bands of diamond structured Si in full lines and various TB approx- 
imations thereto in dashed lines (a)-(d). The corresponding LMTO sets and the real-space 
truncation of the Hamiltonian and overlap matrices (31) and (30) in (a) and (b), and of h 

(33) in (c) and (d), are specified at the bottom of the panels. 
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forces for molecular-dynamics simulations has renewed this interest. These attempts range 

from simple nearest-neighbor, orthogonal parametrization of diamond structured Si with an 

sp3 basis in the 70's27 to recent work with long-ranged non-orthogonal sp3rfr> basis sets28 with 

a hope to provide transferable parameters. All these works relied on fittings of energy bands 

and total energies obtained from first-principles calculations. Our method is free from such 

fitting procedures and is purely deterministic. The recent work of McMahan and Klepeis20 

is more similar in spirit to ours, but being based on a full-potential multiple-kappa LMTO 

calculation with the need for subsequent contraction to a minimal sp3dr' basis set, it is more 

complicated and computationally far more demanding. In fact, our method is so fast, that 

for us, transferability is no issue. But in all fairness, our total-energy and force calculation 

is still pending. 

GETTING RID OF THE EMPTY SPHERES 

The full LDA potential for diamond-structured Si is shown in the top left of Fig. 10. What 

was used in the LMTO calculations of Fig. 9, however, was the conventional ASA potential 

shown in the top-right panel of Fig. 10, which is slightly overlapping [w=14%; sec Eq. (24)] 

and, in addition to the Si-wells, has repulsive wells at the E-sitcs to describe the hills of 

the potential. Despite its crude appearance, this ASA SiE-potential, gives nearly exact LDA 

full-pot ASA-pot 

30% ovp fit-pot 60% ovp fit-pot 

Figure 10: Full LDA potential (in Ry) and various MT approximations for diamond- 
structured Si in the (UO)-plane. The two pseudo potentials at the bottom arc least- 
squares fits to the ASA potential. 
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valence and conduction bands. But this is a special case. In general, the potential consists of 

spherically symmetric craters with hills in between, and the latter can be of any shape. Such 

a potential is naturally modelled by a superposition of atom-centered spherically-symmetric 

wells, and since we have proved in Eq. (20) that the KKR method can handle such a 

potential, unless the overlap is too large. The questions are whether this holds also for the 

new LMTO method, and whether the overlap allowed by these methods is sufficiently large 

that the MT zero moves up close to the hill tops and the wave functions tail properly off into 

the voids. Non-MT perturbations would then be local and simple to include. Therefore we 

first try to treat diamond-structured Si. Two appropriate potentials with respectively 30% 

and 60% radial overlap are shown in the bottom panels of Fig. 10. 

We thus want to fit the full potential, V (r), to a constant (the MT zero) plus a superpo- 

sition of spherical wells: V (r) ~ Vmtz + EuJt(rfi) = V (r). If we decide on a least-squares 

fit, that is, minimization of [V — Vf , then variation of the functions VR (T\R) leads to a set 

of coupled integral equations, one for each R saying that the spherical average around site 

R for radius TR should be the same for the sum of the MT wells as for the full potential 

minus Vmtz- Variation of Vmtz leads to one equation saying that the average of the MT and 

the full potential should be the same. These equations are fairly simple to solve numerically, 

but they do not quite express what we want, because a volume element in a region like a 

void, where the electron has little chance of being, enters with the same weight in the fitting 

as a volume element in say the bond region. What we really want is a pseudo potential 

which, for a certain band, say the valence band, minimizes the mean squared deviation of 

the one-electron energies, Trp [H — H]2 = Trp [V - V] , and this then brings in the electron 

density, p (r), as weighting function. This weighting presents little problem for the &Vmtz- 

equation, which is merely: / [V - V]p<Pr = 0, but it complicates the SVR (r/i)-equations so 

much, that we decided on keeping p in the 5K,(z-equation only. Our MT pseudo potential30 

thus pseudizes the hills rather than the core regions. 

Since at this stage, we merely want to see whether we can get rid of the empty spheres 

Figure 11: Radial behavior of the Si 
and E potential wells of the ASA po- 
tential (dashed), and of the Si well 
of the pseudo potential with 40% ra- 
dial overlap (full). The corresponding 
3-dimensional potentials are shown in 
the upper right and lower left of Fig. 
10. The dotted line is the MT zero of 
the pseudo potential. The vertical bar 
at the left-hand side indicates the po- 
sition and extent of the valence band. 
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in the diamond structure by comparing the valence-band structure calculated for the true 

potential with that calculated for its pseudo potential, we take the true potential to be one 

for which wc can solve Schrödingcr's equation with high accuracy, namely the ASA potential 

shown in the upper right of Fig. 10. Since this potential is discontinuous at the surfaces of 

the Si and E spheres, its pseudo potentials, shown at the bottom, are not only discontinuous 

at s, but also at the Si AS radius. The radial behaviors of the Si and E wells of the ASA 

potential, as well as that of the Si pseudo potential with 40% radial overlap, are shown in 

Fig. 11. By comparison of the pseudo potentials with 30% and 60% radial overlap shown 

at the bottom of Fig. 10, it is obvious that the latter resembles the true potential most 

closely. Whereas the MT zero of the 14% overlapping ASA potential is only slightly above 

the bottom of the valence band, that of the 40% overlapping pseudo potential lies 6 eV 

higher, and that of the 60% overlapping potential is at the top of the valence band. 

We have now used the new LMTO method [Eq.s (30) and (31) with a Si sp3d5 LMTO set 

and the Si /-channels downfolded] to calculate the energy bands for the valence-band pseudo 

potentials as a function of the radial overlap u>. The rms and mean errors of the calculated 

valence bands are shown in Fig. 12 by diamonds. Since for increasing w, the potential has 

increasing range and, hence, increasing freedom, the rms error initially falls, but it eventually 

rises again as the kinetic-energy errors given by Eq. (20) and proportional to u>4 take over. 

The minimum rms error of 80 meV per electron is reached at 30% overlap. The mean error 

we had expected to vanish for overlaps so small that the kinetic-energy errors are negligible, 

because the pseudo potential was constructed such that / [V — V]pd3r = 0. Nevertheless, 

the computation yields a "background" mean error of-50 meV per electron. This is most 

likely due to errors of second order in V — V caused by the unphysical discontinuities at the 

E-spheres of the ASA potential. We expect this background error to vanish and thereby the 
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Figure 12: Rms and mean errors of the valence-band energies arising by pseudizing of the 
ASA potential of diamond structured Si in order to get rid of the E wells. The abscissa is 
the radial overlap, w, as defined in Eq. (24). For spare-filling Si + E spheres, u>=\4%, and 
for Si spheres 43%. Overlap correction I modifies the pseudo potential, while II includes the 
proper kinetic energy in the LMTO Hamiltonian. 
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rms error to be reduced, when for V we use the full potential in the top left panel of Fig. 10. 

Since the kinetic-energy error is negative, it represents an attraction between overlap- 

ping atoms, and this might cause problems in molecular-dynamics calculations. However, 

although this attraction increases rapidly with overlap, it does decrease for decreasing inter- 

atomic distance and fixed s-radii [see Eq. (23)]. 

If radial overlaps in excess of ~30 % are needed, then the kinetic-energy error must be 

corrected. We have tried two schemes, the results of which are given in Fig. 12 by the stars 

and the triangles. In the first scheme (stars) we have merely modified the pseudo potentials 

by including in the (JV^-equation the kinetic-energy error to leading order as given by Eq. 

(23), whereby this equation becomes: / [V — V]pd3r = £; As,-. This leads to a reduction 

of the overlap error, mainly through reduction of the discontinuity v (s). This correction is 

very simple, but as seen from the figure, hardly sufficient because it only treats the error 

proportional to v(s) u>4. Our work on the second scheme (triangles) is still in progress.30 

Here, we evaluate the LMTO Hamiltonian matrix properly to all orders in the overlap, that 

is, we calculate the LMTO matrix elements following Eq. (20). Of course, this adds terms 

to expression (31) for the Hamiltonian and spoils the beauty of Eq.s (8), (33), and (34), but 

we wish to prove that we can control the overlap errors of the new LMTO method, and we 

want to investigate how large overlaps we can handle. The preliminary results shown in Fig. 

12 are encouraging. 
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ABSTRACT 

Generalized functionals are constructed from the exchange-correlation energy by a Legendre 
transformation which makes the new functionals stationary at the electronic charge density, 
potential, and wave functions for the ground-state. Using generalized functionals, the density, 
potential, and wave functions can be independently parameterized and varied to determine the 
ground-state energy-surface for a system of atoms. This eliminates the computationally awkward 
steps of constructing densities from wave functions or potentials from densities, and is 
particularly well suited to parameterizations using tight-binding orbitals together with atomic-like 
densities and potentials. For each choice of parameters, the only quantities which must be 
computed are the electron-electron energy for the density, the integral of the potential over the 
density, and the band structure energy for the wave functions. To second order in the density, 
potential, and wave functions, the energy for a configuration of atoms is given by the generalized 
functional evaluated at a superposition of atomic densities, a potential made by stitching together 
the atomic potentials where they are equal, and atomic wave functions. For more accurate 
stationary energies the densities, potentials, and wave functions can be improved by one or more 
conjugate gradient steps. 

BIG SYSTEMS, TIGHT-BINDING, AND THE HOHENBERG-KOHN FUNCTIONAL 

Electronic structure theory is on the verge of being able to address macroscopic phenomena 
such as the mechanical properties of metals, using energies obtained from the quantum mechanics 
of electronic motion. In order to achieve this goal, the calculation of electronic energies for 
systems with large numbers of inequivalent atoms must be made even more efficient. Some of 
the steps toward achieving this efficiency are the use of localized basis sets and the development 
of new electronic energy functionals. 

The purpose of this paper is to explain how electronic energy functionals other than the 
Hohenberg-Kohn (H-K) functional can be constructed and applied to localized bases, here 
loosely called tight-binding. This Sec. outlines the difficulties of using plane wave basis sets and 
of the self-consistent minimization of the H-K functional. There follow Sees, describing the 
construction of generalized functionals with convenient variational parameters, the calculation of 
energy differences and forces from the generalized functionals, the construction of approximate 
electron densities and potentials together with their optimization, and a brief discussion of the 
advantages of atomic exchange and correlation over the Local Density Approximation (LDA). 

The reason it is necessary to use localized electronic bases for big systems is to keep small the 
number of non-zero matrix elements in each row and column of the electronic Hamiltonian. 
Atomic-like orbitals for the electrons only extend over a few shells of neighbors, so the 
calculation of Hamiltonian matrix elements between localized orbitals involves only a few atoms, 
and there are at most a few hundred non-zero elements in each row or column of the Hamiltonian 
matrix. With localized bases the effects of distant parts of the system arise from the way the 
localized orbitals combine to form extended states. Unlike localized orbitals, each plane wave 
overlaps every atom in the system, so calculation of the Hamiltonian requires the Fourier 
transform of the potential, a process whose length increases faster than the number of inequivalent 
atoms. Worse, the number of non-zero matrix elements in each row or column of the Hamiltonian 
grows as the number of inequivalent atoms making any attempt to diagonalize the Hamiltonian 
grow as the cube of the number of non-zero elements. 

The use of localized bases is further justified by a remarkable property of wave equations such 
as the electronic Schroedinger equation, that the density of states, weighted by its intensity on 
some localized function, is exponentially insensitive to distant parts of the system [1]. For the 
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present discussion, this property tells us that the energy it takes to displace an atom or the force on 
an atom, is insensitive to distant parts of the system. This means that plane wave bases with their 
equal weighting of all parts of the system are ill suited to the calculation of quantities such as 
energy differences and forces due to local disturbances, which depend only on nearby parts of the 
system. 

The energy differences and forces are just the quantities which should be calculated, not total 
energies as is often done. The simplest way to see this is that as the number of inequivalent atoms 
grows, so does the total energy, while the energy differences and forces do not. Consequently, the 
total energies have to be calculated ever more accurately in order to keep constant the accuracy of 
the energy differences. Furthermore, even the energy difference between two structures can be 
calculated as a sum of localized changes in the structure. Insensitivity of the local electronic 
structure to distant parts of the system also justifies abandoning the total energy approach. 

For the last thirty years, electronic energies have largely been calculated by self consistent 
solution of the Kohn-Sham (K-S) equations, which arise from minimizing the H-K electronic 
energy functional. The H-K theorem [2] states that the energy of the electronic ground state is a 
unique functional of the electron density n(r). The usefulness of this theorem comes from the K-S 
minimization [3] of the electronic energy functional E[n(r)] which is, 

ELrtr)] = 1\n(r)] + < V/(r) n{r)> + Uee[n(r)l (1) 

where T[n(r)] is the minimal kinetic energy for electron density n(r), <V/(r) n(r)> is the ionic 
potential energy of n(r), and Uee[n{r)\ is the minimal electron-electron interaction energy for the 
electron density, including both the Hartree energy and the exchange and correlation energy 
which must be approximated in practice. Note that as used here Uee[n(r)] is not local because of 
its Hartree contribution, although the exchange and correlation energy in Uec["(r)] is local in 
LDA. 

The H-K functional cannot be minimized directly by variation of the electron density because 
the kinetic energy functional T[n(r)] cannot be evaluated directly; it is itself the minimum 
expectation value of the kinetic energy operator T over all the wave functions which have the 
given density. Instead, this functional must be minimized by setting its gradient to zero, subject 
to the constraint that the integral of the electron density remain constant. This produces the K-S 
equations for a set of functions { frfM) and energies {Ea )> 

(T+ Vt(r) + V«(r)) Ydr) = Ea f dr\ (2) 

where Vee(r) is the functional derivative of the electron-electron interaction energy with respect to 
the electron density, which is just the sum of the Hartree and exchange-correlation potentials of 
the electrons. The ground state electron density n{r) is then the sum over electrons of the squares 
of the Yclr) which are each occupied by a pair of electrons in order of increasing Ea, and the 
kinetic energy is the sum over electrons of the expectation values of T for the occupied functions. 
Approached this way, minimizing the H-K functional is equivalent to solving Eq. 2 which is non- 
linear because Vee(r) depends on the functions which satisfy the equation. Equation 2 is so 
complicated, it is really only practical to solve it by iteration to self consistency. 

The first of the three problems with the self consistent solution of Eq. 2 is that within one self 
consistent cycle, a charge density must be constructed from the { Y(£r)} which satisfy Eq. 2. 
Since this charge density is a combination of products of functions, it has many more degrees of 
freedom than the functions themselves, forcing further approximations. The second problem is 
that in order to construct the electron-electron potential Vee{r) from n{r), the functional derivative 
of Use[n(r)] must be evaluated This requires at least the solution of Poisson's equation for the 
Hartree part of Vee(r) and can requires a third basis in which to expand Vee(r), different from the 
other two bases and usually truncated. On top of the problems of different bases, solutions of Eq. 
2 are sensitive to Ve<.(r) and so the truncation errors in the two additional bases compound in the 
solution of Eq. 2. 

What is needed is an electronic energy functional which can be evaluated directly without 
intermediate minimizations of complexity comparable to the original problem, and without the 
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need to solve enormously complicated non-linear equations. This is just what the use of 
generalized functionals accomplishes. The idea for generalizing the H-K functional is to decouple 
the natural variables from one another to produce functionals which can be optimized without the 
construction of charge densities from wave functions or the solution of Poisson's equation, and 
without resort to self consistency. 

GENERALIZED FUNCTIONALS 

This derivation of generalizations of the H-K functional begins with the more intuitive 
expression for the electronic energy as the band structure energy from which the electronic 
interaction energy must be subtracted because it is included twice in the band structure energy. 
The band structure energy is the sum over electrons of the energies {Ea }, obtained by solving 
Eq. 2, of the occupied functions, and the interaction energy includes the Hartree energy of the 
electrons as well as their exchange and correlation energies. While it is natural to think of the 
interaction energy as depending on the electron density C/«.[n(r)], the band structure energy is 
more naturally related to the electronic potential B[Vee(r)l However, in the spirit of H-K, take 
the interaction potential at each point to be a functional of the electron density Vee(r)[n(r)l 
namely the functional derivative of the interaction energy with respect to the electron density. 
But for the fact that the band structure energy minus the interaction energy is not stationary at the 
ground state density, the electron energy would be B[ Va(r)[n(r)]]- Uee [«('")]. where the band 
structure energy is a functional of the interaction potential which is in turn a functional of the 
electron density. 

The problem with the stationary point of the above functional can be understood by examining 
the changes in band structure and interaction energies produced by small changes in the electron 
density. The change in band structure energy SB for a small change in electron density Sn(r) is 

<\W{SVee/Sn)&i(r)> where (8Vee/Sn)8n(r) is the change in the interaction potential due to the 
change in electron density and I fl2 is the sum over electrons of the squared magnitudes of the 

occupied functions. The change in interaction energy is <Vee(r)[n(r)] Sn(r)>, and is independent 

of the change in the band structure energy because it does not depend on I fl2, so stationary points 
of this functional do not coincide with those of the H-K functional. 

The fault can be corrected by a Legendre transformation which changes variation in V^r) to 
variation in n{r), namely the subtraction of <Vee(r)n(r)> from the band structure energy. This 
subtraction reduces the band structure energy to the sum of the kinetic and ionic energies, to 
which the interaction energy must be added to get the correct electronic energy. The generalized 
functional is now, 

F[Kr)] = B[Vee(r)[n(r)]] - <(5t/a/&i)[n(r)] n{r)> + f/^[n(r)], (3) 

which consists of a band structure energy minus the double-counting term, the latter consisting of 
<{8UeelSn)[n{r)'[n{r)>-Uee[n(r)'\ because of the Legendre transformation. This functional is often 
called the Harris-Foulkes functional [4, 5] although is has been used by others including [6, 7]. In 
Eq. 3 the coefficient of ön vanishes when I "fl2 is equal to n(r) which is just the self consistency 
condition for the K-S equations. It is important to note that the cancellation of variations with 
respect to the density is implicit so that Ifl2 need never be constructed. 

The generalized functional is stationary rather than extremal at the ground state energy and 
density, see Ref. [5], so that energies obtained from it are neither upper nor lower bounds on the 
exact energy. Although the H-K functional is minimal at the ground state, the usual 
approximations for the exchange and correlation energies are not variational, so the K-S approach 
also lacks bounding properties. 

This generalized functional still has the fault that the interaction potential Vee(r) has to be 
constructed from the electron density by solving Poisson's equation. As discussed in the context 
of the H-K functional, this requires a basis which is independent of the basis used to calculated 
the band structure energy, and the band structure energy is particularly sensitive to errors in the 
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construction. The advantage of this functional over the H-K functional is that the electron density 
does not have to be constructed from the solutions to Eq. 2. 

Pursuing the approach of tailoring the functional to the needs of the computation, the above 
functional can be further generalized and improved by decoupling the electronic potential from 
the electron density. As stated above, the band structure energy is naturally a functional of the 
electronic potential, and expressing it that way generates a generalized functional of two 
variables, the potential and the density, 

G[n(r), Vee(r)] = B[Vee(r)] - <V«7(r) n(r)> + UecMOI (4) 

The stationarity condition for G[«(r), V^Cr)] is that both its linear variation with respect to the 
electron density and with respect to the interaction potential be zero. In this case the change in 
the band structure energy is just <\Tl2SVee(r)> which cancels the variation of <Vee(r) n(r)> with 

respect to V«;(r) only when I "PI2 is equal to n(r), and the variation of <Vee(r) n(r)> and Uec[n(r)] 
with respect to n{r) only cancel when V«.(r) is the functional derivative of the interaction energy. 
These two stationarity conditions arc just the relations between IW and n(r), and between Vec(r) 
and n(r) in the K-S equations. 

The functional G[n(r),Vee{r)] avoids the difficulties of the K-S equations and of F[n(r)] 
because I fl2 need never be constructed, and Vee(r) is not constructed from n(r). The potential and 
the density are independent, so there are no errors introduced by incompatibility in their 
representations, although there are still the truncation errors due to finite representations of each 
quantity. Furthermore the independence of the density and potential prevents errors in the density 
from affecting the band structure energy. 

It is possible to add further arguments to the generalized functionals, for example the electronic 
functions { f^r)) [8]. Determination of the band structure energy for G[n(r), Vec(r)] still 
requires the solution of Eq. 2 for the given interaction potential. In terms of a basis, this is a 
matrix diagonalization which can be approached as a minimization of the band structure energy 
with respect to the electronic functions to produce a functional whose arguments are { Ydr)}, 
n(r), and Vee{r) to give, 

t{{ fair)}, n(r), Vee(r)} = IocC < fo(r)*(r+ V/(r) + V«.(r)) ¥&> 

-<Vee(r)n(r)>+Uec[n(.r)]. (5) 

Variation of * with respect to { foCr)) vanishes for the { fdr)} which satisfy Eq. 2, and the 
other variations vanish as for the functional G[n(r), Vee(r)]. 

The functional <£[{ VoLr)}, n(r), and V«,^)] has the advantage that its evaluation docs not 
require solution of any equations, just the evaluation of matrix elements and integrals. It is also 
well adapted to optimization procedures because its variation about its stationary point is the most 
nearly quadratic of all the functional discussed so far. Its variation in { 'F0i'')} is strictly quadratic 
and its variation in Vee(r) is strictly linear. The only non-quadratic variation is in n(r) and arises 
from the dependence of the interaction energy on n(r). 

The difficulty with the functional <P[( •Pd(r)}/i(r), Vee(r)] is that the number of degrees of 

freedom for the functions { f0('')) scales with the system size(number of inequivalent atoms). 
There is a function for each pair of electrons, so the number of functions scales linearly with the 
system size, and if the functions arc delocalized, then the number of components of each function 
also scales linearly with the system size making the total number of components of all the 
occupied functions quadratic in the system size. Since there is a parameter for each component of 
the electronic functions, the computational effort required to evaluate the functional increases 
quadratically with system size when the electronic functions are delocalized. The functional 
<P[{ YckrWrtrXVeeir)]is most useful when the electronic functions can be localized, for example 
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when bands are either empty or full. 
The electron density n(r) and the interaction potential Vee(r)] each have a number of 

components which grows linearly with system size because there is only one of each function in 
the cell containing each atom. The only question about the linear scaling of G[n(r),Vee(r)] is 
whether the band structure energy can be evaluated with a computation scaling linearly with 
system size. Density matrix methods attempt to do this, but the recursion method discussed 
below takes advantage of the fact that changes in local energies are insensitive to distant parts of 
the system, to make possible calculations of energy differences which are independent of the 
system size. 

PARAMETERIZATION 

Although the generalized functionals avoid the problems of solving non-linear equations and of 
constructing electron densities as well as potentials, there remain a large number of integrals 
which must still be evaluated. The most obvious of these integrals is the expectation value of the 
interaction potential for the charge density <Vee(r) n(r)> but similar integrals occur in the 
evaluation of the interaction energy i7^[n(r)], and in the evaluation of matrix elements of the 
kinetic energy T, ionic potential Vi(r), and interaction potential Vee{r) needed to calculate the 
band structure energy. The accuracy of the electronic energy increases with the number of 
degrees of freedom included in variations of the electron density and interaction potential, but so 
does the number of integrals, so it is well worth expanding the electron density and interaction 
potential and electronic functions in a way which makes the integrations efficient. 

In applications of the generalized functional to the calculation of defect energies in MgO[9], 
the electronic functions were expanded in Slater orbitals for atoms and in Gaussians for 
vacancies, the electron density was expanded in the squares of these orbitals, and the potentials 
were expanded in Laguerre polynomials for the screened Coulomb potential. These choices were 
convenient although the calculation of three-center integrals, integrals of two orbitals with 
different centers over a potential with a third center, dominated the computational effort because 
there were so many of them and because each was a long computation. 

The importance of three-center integrals in many systems of interest and the computational 
effort they require, encourage a search for more efficient representations of the orbitals and 
potentials. One group of candidates are localized orbitals which tridiagonalize the kinetic energy 
operator [10]. In this approach the potentials are expanded as operators in outer products of the 
orbitals, thereby converting the three-center integrals in expectation values to linear combinations 
of overlap integrals between basis orbitals. These overlaps are two-center integrals whose angular 
dependence can be expressed using Slater-Koster [11] parameters, and whose distance 
dependence is easily parameterized. 

It may be possible to make large parts or even the whole of electronic energy calculations 
analytic by inspired choices of parameterization for which the integrals have analytic expressions. 

ENERGY DIFFERENCES AND FORCES 

As is mentioned above, the greater the system size, the larger the magnitude of the total energy, 
and the greater the accuracy to which the total energy must be calculated to maintain a fixed 
accuracy in differences in total energies. If the structure changes only locally such as when a 
vacancy or interstitial forms, there are cancellations between the total energies before and after 
the change which leave their difference relatively small. It is crucial to carry out these 
cancellations implicitly for systems with many inequivalent atoms because the total energies get 
arbitrarily large compared to the energy differences. 

One approach to making implicit the cancellations in the total energies is to calculate forces, 
which reduce to calculating the expectation value of the derivative of the ionic potential with 
respect to the change in atomic positions, because first derivatives of other contributions cancel 
when the functional is stationary. If only a few atoms move, then the derivative of the ionic 
potential is localized near the atoms, and electronic functions are only needed in a small region of 
space. The problem with forces is that energy differences are integrals over the forces, so they 
have to be calculated at many intermediate steps as an atom is moved, for example, to make a 
vacancy. Each time the force is to be calculated, the functional has to be optimized for the new 
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structure and the calculation grows with the number of steps. 
Another approach! 12] to calculating energy differences uses the recursion method to make the 

cancellations implicit. Instead of forces, the element of these calculations is the change in band 
structure energy when a particular orbital is removed from all the occupied electronic functions. 
If uo(r) is the orbital to be removed, successive orbitals u\(r\ ui(r),..., «N(r),are constructed by 
recursion [13] to tridiagonalize Eq. 2. The difference between the sum of occupied eigenvalues of 
this tridiagonal matrix, with and without the row and column corresponding to uo(r), is the 
difference in band structure energy. 

Because Eq. 2 is a wave equation, its local densities of states have the black body property of 
being independent of distant parts of the system. As a result, the differences in band structure 
energy calculated this way converge for small tridiagonal approximations of dimension 10 to 20, 
independent of the size of the system. In other words, by this method, differences in band 
structure energies can be computed with an effort which is independent of the number of 
inequivalent atoms. 

An energy difference such as a vacancy energy is made up of the change in the band structure 
energy, taking into account the changes in the ionic and interaction potentials, and the change in 
the double counting terms which depend on the change in the electron density and the interaction 
potentials. The first step is to calculate the initial and final densities and potentials by optimizing 
the energy functional. As long as the change in the electron density does not affect distant parts 
of the system significantly, the changes in the electron density and potentials need be considered 
only in a region containing KN(T) which contributes to the change in the band structure energy. 

The difference in band structure energies between removing one orbital with one energy and 
removing another orbital with a different energy is the same as replacing the first orbital with the 
first energy by the second orbital with the second energy. To calculate the band structure energy 
of the vacancy, add up the energy differences for removing each orbital of the vacancy atom and 
its matrix elements for the initial potentials, and subtract the energy differences for removing each 
orbital of the vacancy and its matrix elements for the final potentials. The rest of the vacancy 
energy is due to the change in the double counting term <V«.(r) n{r)>- Ueel"(r)] which can be 
calculated from just the initial and final densities and potentials. 

Even energy difference between two phases can be calculated from local structural changes 
similar to the formation of a vacancy. The two phases are arranged with an interface between 
them, and the interface contains a typical site for the growth of one phase from the other, see 
further Gibson and Haydock [12]. The energy to transform one chemical unit from the first to the 
second phase is the sum of energy differences as successive atoms at the growth site move from 
their positions in the first phase to their positions in the second phase. At no time during this does 
a total energy have to be calculated, and the accuracy of the total energy difference is only slightly 
reduced from the accuracy of the energy differences for moving each atom. Because the growth 
site is typical, its change in energy is typical, and the total change in energy as one phase grows 
into the other along the interface is just the energy difference of the typical unit times the number 
of units. 

The important conclusion of this Sec. is that calculations of differences in total energy can 
always be formulated as a local change in the structure, and that the computation required scales 
linearly with the number of atoms displaced, but is independent of system size rather than linear 
in the system size as one might think. This conclusion holds ever if there are long-ranged 
changes in the potential due to a local change in the electron density, because sufficiently far from 
where the electron density changes, the effects of the change in potential can be calculated using 
the dielectric constants of the material. 

While energy differences are adequate for most purposes including the relaxation of structures, 
forces can also be calculated in the above approach. When the functional is stationary, the only 
non-zero contribution to the derivative of the total energy with respect to atomic displacement is 
the derivative of the band structure energy with respect to the ionic potential, so instead of the 
differences in the energies of the occupied eigenvalues of the tridiagonal matrix, we need the 
derivatives of the energies of the occupied eigenvalues with respect to the ionic potential. The 
force comes out to be the sum over electrons of the derivatives of the occupied eigenvalues of the 
tridiagonal matrix with respect to the ionic potential, which is better computed from these 
eigenvalues rather than by integrals over densities of states. 
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DENSITIES, POTENTIALS, AND OPTIMIZATION 

The main purpose of the generalized functionals is to get electronic energies directly from 
structures, with the absolute minimum of computation. The generalized functionals are good for 
this because they give electronic energies which are accurate to second order in the errors of their 
arguments, the electron density, interaction potential, or even the wave functions. The stationarity 
property also means that any effort applied to improving the inputs is repaid by a squared 
improvement in the energies, so there is a big incentive to construct good inputs. 

The construction of an electron density for a solid starts with atomic electron densities because 
binding energies in solids are small compared to the energy it takes to change the electron density 
inside an atom. The best approach is to take the atomic electron density which would lie outside 
the atomic cell and redistribute it in the bonding regions near the surface of the atomic cell, but it 
is often adequate simply to overlap the atomic electron densities, even though this slightly 
changes the density deep in the atom where the density should not change. 

Interaction potentials constructed from overlapped atomic electron densities as in [4] usually 
contain serious errors because the overlapping of atomic densities alters the densities deep inside 
the atoms. This happens because the change in the interaction potential due to a small change in 
the electron density is large where the electron density is large, namely deep inside atoms. A big 
change in the potential produces big changes in the electron functions which lead to big changes 
in both the kinetic and ionic contributions to the band structure energy, contributions which are 
not canceled by the subtraction of the integral of the electron density over the interaction 
potential. 

It is much better [14] to construct interaction potentials for the solid directly from interaction 
potentials for the atoms by stitching them together on the surfaces, between atoms, where they are 
equal - make the interaction potential at each point in the solid equal to the atomic interaction 
potential which has the greatest magnitude at that point. The advantages of this construction are 
that atomic interaction potentials are known to great accuracy from fits to atomic levels, the 
construction is simple to carry out, and errors introduced by overlapping atomic electron densities 
are much reduced. 

The generalized functional <£[{ fa('')},n(r), Vee(r)] is particularly useful if approximate 
localized electronic functions are available. Just as for the construction of approximate electron 
densities and interaction potentials, a good guess for the electronic functions is the valence 
Orbitals of the atoms. Even if the electron functions are delocalized, local energies depend only 
nearby atoms, so approximate electronic functions need only be good in the vicinity of the 
disturbance whose energy is to be computed. 

If construction of the electron density and interaction potential from atoms does not give 
sufficient accuracy, then the stationary property of the generalized functionals can be used to 
improve the result. The simplest approach is conjugate gradients [15] which determines the 
stationary point in a finite number of steps if the variation around the point is quadratic, but works 
well near any non-singular stationary point. Electronic energy functionals can be singular where 
levels cross in the band structure energy, and where the exchange and correlation energies are 
singular in the electron density, but these singularities can be removed by partial occupations of 
levels and smoothing of the exchange and correlation energies. 

A conjugate gradient optimization begins by choosing a promising search direction; for 
calculation of an energy difference due to a local structural distortion, the search direction should 
be a component of the electron density or interaction potential which is expected to couple 
strongly to the distortion. The coefficient of the component is varied to find its stationary value 
(zero derivative), holding other parameters constant. The next search direction is the linear 
combination of the current search direction and the gradient of the functional at the stationary 
point of the current search, such that the derivative of the functional along the new search 
direction is conjugate (orthogonal) to the current search direction. This conjugacy of search 
direction means that as the density or potential is varied along the new search direction, the 
functional remains stationary with respect to variation along the current search direction. 

The general step of the conjugate gradient optimization begins with a search direction which is 
conjugate to all previous search directions. The functional is varied to find the stationary point; 
its gradient is evaluated at the stationary point; and a new conjugate search direction is 
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constructed as a linear combination of the gradient, the current search direction, and the previous 
search direction so that the gradient of the functional along the new search direction is orthogonal 
to the current and previous search directions. The property of conjugate gradients which makes 
them efficient is that by making the new search direction conjugate to the current and previous 
directions, it is also made conjugate to all previous search directions near a quadratic stationary 
point. 

In addition to the functional itself, conjugate gradient optimization uses the gradient of the 
functional which is the vector whose components are derivatives of the functional with respect to 
each of its parameters, the parameters for the electron density, interaction potential, or even the 
electron functions. The derivative of the generalized functional G[n(r), Vee(r)] with respect to the 
coefficient of one component of the interaction potential is the difference between the expectation 
value of that component for the occupied electronic functions, and the integral of that component 
over the electron density. The derivative of the generalized functional with respect to the 
coefficient of one component of the electron density is the integral of the that component over the 
difference between the interaction potential obtained from the functional derivative of the 
interaction energy, and the interaction potential which is the argument of the functional. The 
gradient of the generalized functional is made up of the energy expectation values of the 
inconsistencies in the components of electron density and interaction potential. The gradient of 
<£[{ ¥o(r)},n(r), Vee(r)] with respect to the electronic functions can be calculated using the same 
ideas. 

Since calculations of energy differences and forces require accurate electron densities and 
interaction potentials only near where the structure is changing, only the needed components of 
these quantities need be optimized. Again, the computation required is independent of the size of 
the system. 

THE WIGNER-SEITZ EXCHANGE AND CORRELATION 

LDA approximates exchange and correlation energies in solids with those of the homogeneous 
electron gas, and this approximation begins to break down when charge densities in the solid vary 
significantly over the Fermi wavelength of the homogeneous gas. Electron densities near atoms 
can vary enormously, so it is not surprising that LDA fails to get band gaps accurately. Logic 
suggests that approximations for exchange and correlation based on atoms should do much better. 

An example of an atomic approximation for exchange and correlation is the Wigner-Seitz trick 
[16, 17, 18] for alkali metals in which the electronic potential at each point in space is that of the 
nearest atom, not a superposition of the potentials of nearby atoms. The idea behind this is that 
the electronic and ionic potentials of neighboring atoms cancel. This trick can be viewed as an 
atomic approximation for exchange and correlation [14] in which exchange and correlation 
energies cancel the ionic and Hartree potentials outside the atomic cell. 

The Wigner-Seitz trick can be extended to a more general approximation for exchange and 
correlation, which is based on atomic exchange and correlation rather than that of the 
homogeneous electron gas. The construction starts with the best atomic potential available which 
can be obtained either from first principles or from observed atomic levels. The electronic 
potential at each point in the solid is just the atomic potential of greatest magnitude, usually the 
potential of the nearest atom. Just as for the Wigner-Seitz trick, the approximation for exchange 
and correlation implied by this trick is that the exchange and correlation potential of each atom 
cancels its ionic and Hartree potentials outside its atomic cell. 

The main difference between Wigner-Seitz exchange and correlation (WSA) and the LDA is 
that the former is non-local and the latter is local. The WSA exchange and correlation energy at 
each point in the solid does not depend only on the electron density at that point, but rather on the 
dominant nearby atom. Applications of WSA to MgO [14] suggest that it gets much better band 
gaps than LDA, and its close relation to the Mattheiss prescription [19] supports this. 

It is possible to go beyond WAS by taking into account the polarizability of atoms as was done 
by Annett and Haydock [20] in calculations of interactions between helium atoms and metal 
surfaces. As electrons move inside one atom, they polarize the surrounding solid and thereby 
lower their energies; this effect leads to Van der Waals forces when the atoms are far apart. It is 
not included in the WAS exchange and correlation energy, but the effect in the homogeneous 
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electron gas is included in LDA. 
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ABSTRACT 

We present a selfconsistent LCAO approach for describing the electronic properties of 
materials. This method introduces many-body effects by means of a new approach, whereby a 
local orbital potential is defined by calculating the exchange-correlation energy as a function of 
the different orbital occupancies. A LCAO-pseudopotential is also introduced, keeping all the 
calculations within the context of the local orbital basis. We have applied the method to the 
calculation of simple molecules and crystals, in both cases we find results that confirm the 
validity of our approach. 

INTRODUCTION 

Plane waves based electronic structure methods are well-established worldwide [1] and 
are regularly used by a variety of people, many of whom are not experts in electronic structure 
methods. These methods can be efficiently applied only to systems if up to a few hundred 
atoms, using the latest parallel computers, and there is a need to implement accurate methods to 
very large systems with complex physical conditions. We believe this goal can be best 
accomplished by means of an appropriate combination of density-functional methods and a 
local-orbital basis set [2-4]. The use of a local-orbital basis set is conceptually straightforward 
and computationally very efficient since it allows one to take full advantage of algorithms that 
scale linearly with system size and get optimal speed up of computer implementation [5]. These 
are attributes which have been shown to be highly desirable when solving molecular dynamics 
problems where computational speed is an important factor, such as calculations involving 
complex structures [6]. 

In this paper we present a selfconsistent LCAO (Lineal Combination of Atomic Orbitals) 
method, where the electronic properties of materials are described using a localized basis set 
associated with the atoms forming the system. This method introduces many-body effects by 
means of a new approach whereby a local orbital potential is defined by calculating the 
exchange-correlation energy as a function of the different orbital occupancies. 

Although some of the techniques used in this approach have been described in previous 
papers [7-9], this is the first time we present a complete description of the LCAO-00 (Orbital 
Occupancy) method that allows us to calculate the electronic properties using a fully local basis 
approach. 

The following sections cover the following steps: 
a) Firstly,   we  present  our  basis   set  and  discuss   a  LCAO-pseudopotential   that 

incorporates all the effects that the core electrons have on the valence bands. 
b) In a second step, we present the approximate hamiltonian that will allow us to get an 

accurate electronic description of the materials. 
c) Then, we analyze the many-body properties of the valence electrons and discuss our 

Orbital   Occupancy   approach   by   introducing   the   orbital   occupancies   as   the 
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independent variables of the many-body problem. We shall show how to reduce the 
many-body effects to an effective one-electron hamiltonian, and discuss how to obtain 
the total energy, 

d) Finally, we present some results we have obtained for simple molecules and the Si 
bulk crystal. For Si, the band-structure, tight-binding parameters, and the total energy 
as a function of the crystal lattice parameter are presented and discussed. 

GENERAL HAMILTONIAN AND A LCAO-PSEUDOPOTENTIAL. 

In our LCAO approach the starting point is defined by the wavefunction basis, 

\)fa (F -/?,), where a refers to the atomic orbital of the i-site. We write (i, a) = v and introduce 
the Lowdin's orthogonal basis: 

0„=Z(S~"2)„vVv (1) 
V 

where S^ =<YI1 \yv >, is the overlap between orbitals ji and v. 

The initial basis, y/a (/), might be defined by the atomic wavefunction of the atom i but, 

in general, we use contracted atomic wavefunctions that we calculate for the isolated atom by 
introducing an external potential of the form a(rI R^)". Typically we take, following other 
authors [6,10], a = 1 Hartree n = 6 and change R0 in order to improve the basis. The role of the 
external potential, a(r/R0)", is to simulate the effect of the environment of the constituents of 

the material on the wavefunctions. In these calculations, the atomic wavefunctions are a lineal 
combination of Slater-type functions, which define the initial basis set, y/tt (/), of our problem. 

The electronic properties of our system are defined by the general many-body 
hamiltonian: 

^-I^-SiAr+ilirTi (2) 
K-^t     2' ■]*> 

\r. 

that can be rewritten in a second quantization language as follows: 

H = XeA„ + Xv^Cvs + X0^cJ.Cv« (3) 
V.ff /i*V,(T /ivAw 

aa' 

where we have used the Lowdin's basis set, 0^ . In equation (3): 

e„ = k(':X~V2-£r^n)Mr)</3'-. 
2 i   ?-ÄJ 

^ = k(?)(-iv2-Xü^)</v(^3'-. (4) 
2 *   r-/Jt 

O^=J^(?)l(':,)|r^7^(':,)0„(F)rf3rrf3r' 

We stress that eqns. (3) and (4) include both the valence and core electrons. Our first 
task is to simplify hamiltonian (3) by introducing an effective pseudopotencial that allows us to 
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eliminate the core electrons. We can calculate that pseudopotencial by taking advantage of the 
small overlap, Svc, between the wavefunctions of the valence (v) and core (c). In this limit, we 
can calculate the different parameters of hamiltonian (3), eqns. (4), up to second order in Svc and 
obtain the effect of the core on the valence electrons [7]. Here, for the sake of brevity, we 
present a simplified argument by considering only the interaction of a single v-valence orbital of 
atom 1 with another individual c-level of atom 2 (see fig.l), and neglect all the many-body 
interactions. Then, hamiltonian (3) is reduced to: 

H = X PAT + Zfica + Tvc (c*aCca + C*aCva )] (5a) 

where 

--V2+V,(F) + V2(r) 

-^V2 +Vx{r) + V1{?) 

|v2+V,(r) + V2(?) 

t(r)d3r, 

t(7)d3r, 

<t>c(r)d'r 

(5b) 

Here, potentials V,(r) and V2(r) simulate, in this simplified discussion, the total atomic 
potentials of the atoms 1 and 2. Notice also that the Lowdin's wavefunctions, <j>v and 0C, are 
related to the atomic ones, y/v and yc, by eqn. (1). By using this eqn, and expanding Sm up to 

second order in the overlap Svc, we get the following eqns.: 

:Er+^c(E^-E^)-SvcTvc 

e =E{0)--S2(Em-Em)-S T C C A " VC^     V c     J       ^vc    vc 

(6a) 

(6b) 

where Ev
<0> and Ec

<0> are the energy levels for the isolated atoms. 
In a further step, we can show that for a localized core level, Tvc can be accurately 

approximated by [7]: 

TK   -~TSVc(EV 
.£<<») (7) 

Fig. 1: Valence level EJ' and core level Et 
Jo) 
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From eqns. (6) and (7) we can obtain the effect of the valence-core interactions on the 
atomic levels. Considering that the effect of Tvc is to shift both levels by the quantity 
±T^J{Ef) -E'0)), we can write for the valence and core level shifts: 

Se,=ev- El0) = I Si (E[0) - E<°>) - S„T„ + -     T" 
4-—-.• c     -       -vc    >,        (£<0)_£(0,) 

= 5vt(£r-^0)) (8) 

5ec=ec-Er=-~Sl(Ef^Er)-S^r-7iJ^r)=0 

This is our main result for the level shifts as a function of the one-electron interaction 
between the valence and core electrons. Eqns. (8) shows that the valence level is shifted by 
S^(ZrJ0) - Ü1'0'), while the core level remains unmodified. This result can be easily generalized 
to several core levels; then the valence level shift is given by: 

&,=5X(£1!0,-E<0)) (9) 
c 

A similar argument applied to the valence-valence hopping integral, say Tlv-, also yields 
a hopping shift, <5TlT,, due to the valence-core overlap that can be written as follows: 

fr„.=2Xs„rv ,    -£'0)) (10) 
c ^ 

Eqns. (9) and (10) provide the pseudopotential matrix elements, in the LCAO basis. 
Although v and v' have been assumed to be atomic orbitals, eqns. (9) and (10) are valid 
whatever the basis set we use. (Notice that with very good accuracy we can replace £,'"' and 
Ej0) by the energy, E, of the valence wavefunctions we are interested in). 

Many-body contributions to the pseudopotencial can also be calculated by starting from 
the general hamiltonian (3). Without giving any details, let us only mention that the general 
results we obtain for SEV and STn. are the following: 

c c c 

(ID; 

J \r - r'\ 

JT = Wv(r)wAr)T^-=7WAnvAnd'rd'r' } Y-n 

\r ~r\ 

Kw = W^)WS7)^-r^c(7')wAr')d'rdyr' 
'    J V-n 

(12) 
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In eqn. (11), nc = nca + ncS, nca is the occupation number of the (co)-orbital. Notice that 

Jfcnc and K°wnc definetne coulomb corrections of the bare core-levels, while the last terms in 

each eqn. yield an exchange correction to the potential. In the following we shall define the 
LCAO-pseudopotential by the eqns.: 

Vs =8E m v (13) 
vps. =sr. T vv vv 

APPROXIMATE VALENCE HAMILTONIAN 

Having introduced the pseudopotencial, V£, we can write down the following 

hamiltonian for the valence electrons: 

H = £(ev +VJ?)n„ + 5>„v +vpc;„cva + Xo^c^^,, (14) 
V,CT p*v,a pvfao 

GO' 

Now, we simplify this eqn. by reducing it to the following hamiltonian: 

+ 5X"vT"vi + T  1L(J'«VÄM"V --^V VVJ 

(15); 

2 

(16) 

U, = k2(?)jT^vV)<*3"'V 

^=J^(r)0v(r)|^i^(r,^v(r
,)J3n/3r' 

where Lowdin's wavefunctions, 0M, have been used (compare with eqns. (12) which use atomic 

rather than Löwdin's wavefunctions). 
In ref. [11], Bolcatto et al have shown that eqn. (15) provides a very accurate solution for 

the bonding energy of diatomic molecules. 
It is convenient to analyze the physical meaning of hamiltonian (15) by introducing the 

following hartree-like approximation: 

v." f f (17) 

49 



where n^ = n^ +n0, n^ = (n„a) is the mean value of the operator h^. Eqn. (17) is the 

second quantization representation of the following one-electron hamiltonian: 

«■-i''-^tr'mtWfi'''-&-fcTl!T]l- 2 * \r-RA v       \r~r\ ™ V-H 
\        w , (18) 

-"0,1, -Zjnva p—q  
va \r~r\ 

Eqn. (18) shows that in our approximation, the hartree-terms are defined by the potential 

created by the atomic charges, nvc$(7), and the attractive potential of the nuclei, -zl\r -R\. 

This is similar to the atomic-like hartree potential usually introduced in more conventional 
LDA-methods based on the Harris' functional [2]. A non-local potential, associated with the 
term nV(J|0v (7)){<1>V (?')| and describing an exchange interaction, also appears in eqn. (18). 

In the next section we shall discuss how to include other exchange and correlation 
effects in eqn. (17). 

MANY-BODY TERMS 

We start our discussion of the many-body terms of hamiltonian (15) by writing down the 
following contribution: 

As discussed in ref. [9], we can introduce the orbital occupation number, n , as the 

independent variable that plays the same role n(r) does in conventional LD approaches. This 

means that we can define the following function, Emh[nla,n2a,...] associated with hamiltonian 

(19), playing the same role that the many-body potential, £""' [n(r)], does in LDA. In particular, 

knowing J?™'*' [M^CT J allows us to introduce the following local potential: 

„     dEmh[n] 
C=     a 

(20) 

Then, hamiltonian (19) can be replaced by the following term: 

ZCv (2') 
that plays the role of a local many-body potential in our OO-approach. 

Still, we have to calculate Emh [n^ J. We proceed in the usual way, writing: 

E-%a}=E"[nlia}+E^[nJ (22) 

where the hartree energy associated with eqn. (19) is given by: 
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£"[>V]=2X7W +ö X^v'W --CvO (23) 

and 

C = f,V + Z^"» - ■/^"v.) (24) 

In ref. [9], we have shown that the exchange energy can be written as follows: 

E" k,]=~ 2^ -J;viclac„){c;acßa) = ~ I^n^d-n^) (25) 

where the mean electron charge, n^ , filling the ;ii<7-level, interacts with its hole (1 - n^) via 

the Coulomb interaction, Jß . Typically, Jß is the Coulomb interaction between electrons located 
in nearest neighbor sites; this means that in most cases, the electron hole is practically localized 
in nearest neighbor atoms. 

Correlation effects are mainly associated with transferring part of the exchange hole to 
the same atom of the |i<r-orbital. If a fraction, say fß (fß <1), of this hole is located in this atom, 
the correlation energy should be given by [9]: 

where Uß is an average of the intrasite Coulomb interactions between different orbitals. At the 
same time, the exchange energy should be reduced by the factor (1- fß ) due to having only a 
fraction of the hole (1 -/ )(1 -n^), outside the atom. Then, the total exchange-correlation 

energy is given by: 

=-T Xwtf-'vJ-ö YJf»(Uß-Jß>^l-n^ 
(27) 

and the corresponding potential by: 

v™ = -J„ (\ - >v) - /, <v» - h >4 - v} (28) 

Then the many-body potential is defined by eqns. (24) and (28). 
We should comment that in our approximation the selfinteraction correction is 

automatically included (the interaction between electrons of the same spin occupying the same 
orbital is taken zero). We also note that the Hartree-Fock approximation for the total energy of 
hamiltonian (19) is equivalent to considering only in our case the exchange energy given by eqn. 
(25). Moreover, going beyond the LD approximation can be achieved by substituting the 
correlation energy, eqn. (26), for a selfenergy [15] that describes the intraatomic correlation 
fluctuations. This is similar to the GW approximation introduced in more conventional LD 
calculations. 
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METHOD OF CALCULATION 

In this section we present a summary of the method used to calculate the electronic 
properties of materials. 

Firstly, hamiltonian (15) is further approximated by: 

v.o |i«,<t A A 

where ^„„w^and h"Xllvhk have been replaced by AA]/,v.nA and AA%vnA, respectively. We have 

checked this is a reasonable approximation to hamiltonian (15), because the exchange 
contributions of both terms tend to cancel each other (notice that h^^, = h'^). In any case, it is 

straightforward to obtain perturbatively the contribution coming from the exchange terms 
associated with the interactions hk4lv and h"Xllv, by calculating: 

- i^-^vK^Xc^) (3°) 
X.pv.o 

where (cA(Tc,,a}  is the expectation value of (c^c^) in the ground state of the effective 

hamiltonian (see eqn. (31) below). 
Eqn. (29) is analyzed by using our OO-approach. This amounts to introducing the 

following effective hamiltonian: 

v,a /m'.er A A 

This one-electron hamiltonian is solved and the ground state, |*0), and occupation 

numbers, n „, are obtained selfconsistently. Then, the total energy is calculated, as in 

conventional LD-methods, by adding the one-electron and the many-body energies: 

Eror =^en-EDC+ £,„„,„„ + E* -£v,f ,,„ (32) 

The first term of eqn. (32) is the sum of occupied eigenvalues of the effective hamiltonian, 
H'ff , EDc is the double-counting correction for the hartree-like contributions (eqn. (18)), and 
£,„„.,„„ is the repulsive energy between nuclear charges, Zk. 

Finally, a few words should be said about the numerical methods used to calculate the 

different quantities of hamiltonian (15) and (19). The hartree terms,Hoh, defined by one- 

electron hamiltonian (18) are calculated in the atomic basis, y/; , and transformed to the Löwdin 

basis by the eqn.: 

{t\"o^) = l^)m.(V,]HM\w,)(S-h, (33) 

We have found practical to replace the Löwdin wavefunctions by the atomic ones in the 
calculation of the hartree potential [4]: 
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(34) 

This is an accurate procedure, once EDC is appropriately calculated taking into account 
eqn. (34) (details will be published elsewhere). 

We still have to calculate Up /^v, J/iv, h\jßv and hxxillv in order to obtain the exchange- 
correlation corrections to the hartree potential. We have calculated those parameters (see eqns. 
(15)), by obtaining, in a first step, the Lowdin's wavefunction, 0 , which, in the cases presented 

below, extend practically to the fourth nearest neighbors. By using a small cluster around sites fi 
and /or v, we have calculated the integrals of eqns. (17) for Up f^v, J^, h\iV.v and ffxjiv UP t0 

the nearest neighbors that yield relevant contributions to the exchange correlation energy. 

RESULTS AND DISCUSSION 

As an application of the LCAO-OO approach, we present calculations of a simple 
molecule, CH, and Si bulk crystal. 

In fig. 2, we show the bond energy of CH as a function of inter-atomic distance. In this 
calculation we have used the following basis: 
forH: Is orbital, 
for C: Is, 2s and 2p orbitals. 

In this calculation we have used the double-zeta functions given in tables compiled by 
Clementi and Roetti [12]. 

In fig. 2, we also show the complete many-body solution of eqn. (3). This solution has 
been obtained calculating all the different parameters of hamiltonian (3) by means of eqn. (4). 
Then, the ground state wavefunction of this hamiltonian is calculated within the configuration 
space associated with all the valence electron redistributed among the 2s and 2p orbitals of C 
and the ls-orbital of H. 

1,4 1,6 

Distance (angstroms) 

Fig. 2: Bond energy of CH as function of inter-atomic distance. (■) 
Many-body solution of eqn. (3). (•) Our calculation. 

The comparison between the "exact" solution and the one given by our method is 
excellent. Both binding energies are very similar and the equilibrium distances are almost 
identical. Notice that the binding energy of the initial hamiltonian is - 1.8 eV, lower than the 
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experimental value of 3.6 eV. The difference is obviously related to the minimal basis that we 
are using to analyze the molecule. 

Bulk Si has been analyzed using the following minimal basis: 
Si: Is, 2s, 2p, 3s and 3p orbitals. 

In this calculation we have used the Slater-like single-zeta functions. In this crystal, we 
have found that the effect of the orbital relaxation is small, and the results presented below were 
calculated with a slightly contracted single-zeta function w.r.t. the Clementi and Roctti's 
wavefunctions [12]. 

Fig. 3 shows our calculation of the cohesive energy of Si per atom as a function of the 
crystal lattice parameter. This curve yields a cohesive energy of - 2.3 eV, a crystal lattice 
parameter of ~ 5.5 Ä, and a bulk modulus, -Vd1E/dV1, of - 72 GPa . The crystal lattice 
parameter and the bulk modulus are in reasonable agreement with the experimental evidence, 
although the cohesive energy is too small by ~ 2 eV. This difference can be attributed to the 
minimal basis we have used for Si; other calculations [13] only obtain a good convergence for 
the cohesive energy when 3d orbitals are included in the Si-basis. From independent H-F 
calculations [14], we deduce that the correlation energy per atom is around 1.5 eV. Since, in our 
calculation this correlation energy per atom is only - 0.8 eV, we conclude that we still need - 
0.7 eV of correlation energy (due to a larger configurational space), and - 1.3 eV associated 
with the use of a minimal basis. 
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Fig. 3: Cohesive energy per atom of Si bulk crystal as a function of 
the crystal parameter distance. 

Fig. 4 shows our result for the electronic band structure of Si. The valence band shows a 
general agreement with other calculations [13,14], although the conduction band does not seem 
to be completely converged. This is probably also due to not having included the Si 3d orbitals. 
We would expect them to substantially modify the conduction band. 

CONCLUSIONS 

In conclusion, the results discussed for molecule (CH) and crystal (Si) show good 
agreement with the general solution of these systems and allow us to assess the validity and 
accuracy of the method presented in this paper. We stress that this method is the first fully 
selfconsistent approach that describes all the properties of the system within the limits of a strict 
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LCAO method. We believe that this could represent an advantage for the preparation of fast and 
efficient computational codes. Work in this direction is currently under investigation in our labs. 
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Fig. 4: Electronic band structure of Si bulk crystal. 
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ABSTRACT 

Tight binding is often seen as a middle ground method, lying between accurate ab initio methods, 
and fast empirical potential methods. The challenge is to make tight binding both as fast and as accu- 
rate as possible. One way to achieve this is to take established ab iniiio methods, and apply systematic 
approximations and efficient numerical techniques to obtain the greatest possible speed. A recently devel- 
oped method, employing this approach, is described results presented for silicon, and recent developments 
(including fully self-consistent extensions) are reported. 

INTRODUCTION 

With the rapid rise in interest in computer modelling at the atomic scale in many disciplines (such as 
Biology, Chemistry and Materials Science), there is a corresponding need for improved methods. Improve- 
ments are required in two directions: accuracy and computational efficiency. Traditionally, if computational 
efficiency was the top priority, then empirical potentials were used, whereas if accuracy was paramount, 
ah initio quantum mechanical methods were used. 

Tight binding offers a successful inbetween way. It is quantum mechanical but also sufficiently simple 
that it can be applied to complex problems. Of course, tight binding has been used as an electronic 
structure method for several decades, and has been used to provide qualitative insight into cohesion[l]. 
Recently, however, its potential as a quantitative total energy method has been realised (see, for example, 

Godwin et al [2]). 
Because of its place as a middle ground method, it is judged by practitioners of ab initio methods in 

terms of its accuracy, and by practitioners of empirical potential methods in terms of its efficiency. The 
challenge is to satisfy the requirements of both camps, especially as ab initio methods become faster and 
empirical potentials become more sophisticated. 

Empirical tight binding can be as accurate as ab initio methods (notably hydrocarbonsß]), and can 
compete on efficiency grounds with empirical potentials when used with appropriate linear scaling methods. 
However, its results are sometimes unpredictable, and thus there is a strong incentive to improve on 

available models. 
To create an improved scheme we have chosen to begin from an ab iniiio formalism, as this allows 

systematic approximations to an accurate theory to be made. The objective is to obtain as much efficiency 
as possible without compromising unduly on accuracy. An added benefit is the elimination of the fitting 
of parameters to accurate data. Not only is fitting very time consuming, but it also makes it very difficult 
to unravel the limitations of the underlying model. The failure of a simulation is always ambiguous: could 
more accurate results have been obtained by fitting to more data, or is a more sophisticated model called 

for? 

QUICK REVIEW OF AB INITIO TIGHT BINDING METHODS 

There have been a number of first principles tight binding methods presented in the literature. Two 
starting points have been used: linearized muffin tin Orbitals (LMTO) and linear combination of atomic 

orbitals (LCAO). 
Andersen and Jepsen[4] presented a way of deriving a two center tight binding Hamiltonian from 

LMTO. The essential step is to reduce the range of the MTOs, which decay according to a power law, by 
introducing screening charges which causes the new orbitals to decay exponentially. A linear approximation 
is then made for the energy dependence of the potential functions, which leads to the tight binding form. 

Sankey and Niklewski[5] begin with an LCAO method. The key elements are: the Harris-Foulkes 
functional[6, 7] is used with the input charge density being a sum of spherical atom-centered charge distri- 
butions; the orbitals are compressed and of finite range; the kinetic energy, electrostatic, pseudopotential 
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and overlap integrals are tabulated; the exchange-correlation integrals are evaluated by means of a nearly- 
uniform-density approximation. Three center and crystal field terms are included. It is this method which 
is used as a starting point for the method we present below. 

Lin and Harris[8] again use the Harris-Foulkcs functional and atomic orbitals. In the original approach 
analytic functions were used for the orbitals and charge density, so that many integrals could be evaluated 
analytically, and hence no tables are needed. A quadratic approximation was used for the exchange- 
correlation integrals. This method has been substantially revised recently in the FastStructure program 
distributed by MSI. 

Stokbro, Chctly, Jacobsen and Norskovß] developed an approach using effective medium theory with 
tight binding corrections given by LMTO expressions. 

Porezag, Frauenheim, Köhler, Seifert and Kaschner[10] have developed a non-orthogonal tight binding 
method. While not strictly ab inUio (it uses non-systematic assumptions) it does use tabulated integrals, 
and has proven to be very successful for hydrocarbons and semiconductors. 

THE NEW SCHEME 

The method of Sankcy and Niklewski[5] was chosen as the starting point for developing the new 
method. It was chosen because: the formalism is transparent (all the approximations are clear); it is a 
flexible approach (there is considerable scope for optimizing basis sets and input charge densities); it is a 
variational approach (both with respect to input charge density and basis set) thereby minimizing errors; 
it uses tables for integrals allowing for great computational efficiency; it has been applied successfully to 
a number of problems. 

In order to study sytems containing atoms from the first row of the periodic table some modifications 
to the original scheme are necessary. The relevant atomic pseudopotentials are deep, so the pseudo 
charge density has large variations (that is, it is nol nearly uniform). Thus an alternative scheme to 
the nearly-uniform-density approximation^] is needed for the exchange-correlation integrals. Because 
the pseudopotentials are deep, the pseudo-charge is strongly localised about each nucleus. This suggests 
using a many-center expansion for the exchange-correlation integrals, which assumes the charge density- 
overlap occurs only between near neighbours. For example, for the exchange-correlation energy the relevant 
expression would be (including one and two center terms): 

£«E>] = £ EIC[Pi] +
l-Y, {E"lf' + Pi] - EAP,] - Err[pj]} + .. (1) 

where pi is the charge density centered on site i. The first term is a sum of numbers that can be evaluated 
prior to a simulation. The second term is a sum of pair potentials that can be tabulated prior to a 
simulation, and then values needed during a simulation can be obtained by interpolation. The same 
approach applies to the matrix elements of the Hamiltonian, though three center terms must be included 
in that case. 

For molecular dynamics with molecules many different configurations are sampled, so a flexible basis 
set is called for that can represent the wavefunction accurately for each of these configurations. The virial 
theorem for particles that interact by means of the Coulomb potential allows us to define some general 
properties of the basis set. The theorem can be written as [/ = -|T, where U is the total energy and T 
is the kinetic energy, provided there are no net forces present. The more strongly bound the system is, 
the higher the kinetic energy. The kinetic energy is given by the curvature of the wavefunctions. Thus 
a flexible basis set is one that can adjust its curvature. A basis set that uses two sets of atomic orbitals 
(so-called double numeric basis set) turns out to be sufficient. Having two sets of orbitals defines two 
length scales. A linear combination allows a range of length scales to be sampled. Curvature depends on 
the inverse of the square of the length scale, thus varying the length scale allows us to vary the curvature. 
We have tried constructing basis sets in two ways. 

In the first way, which has worked very well for molecules, the self-consistent atom problem is solved 
twice: once for the neutral atom, and once for a positively charged ion (the charge is set at +2e for 
carbon). The two sets of orbitals generated form the double numeric basis. The single numeric basis is 
generated from the neutral atom only. From Figure 1 we see that the valence orbitals vary approximately 
linearly with the net charge on the atom. Thus a linear combination of orbitals taken from the neutral 
and charged atoms should be able to describe the charge transfer as well as the change in length scale of 
the orbital with changing environment. The atomic calculations arc carried out in a confining potential of 
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Carbon 

r(a.u.) 

Figure 1: The Orbitals for a neutral carbon atom, and for the singly positively and negatively charged ions. 

the form 2Ry(r/r0)
6 to reduce the range of the orbitals. This is done to reduce the number of neighbors 

with overlapping orbitals in a simulation. This is very important for calculations involving solids for which 
there can be very many neighbors. 

The second way is the same as the first, except that the second set of orbitals is also obtained from 
the neutral atom, but using the next higher set of principal quantum numbers, which introduces an extra 
node into the orbitals[15]. We have not found this to be useful. 

As compared with a single numeric basis set, this expanded basis set increases the number of three 
center integrals by a factor of four. These need to be stored prior to a simulation, and evaluated during a 
simulation. It is straightforward to condense all the original tables into one set once separable pseudopo- 
tentials and the many center expansion for the exchange-correlation terms are used[ll], but this leaves the 
question of how best to carry out the interpolation. Two possible solutions are proposed: one using an 
expansion in terms of Chebychev polynomials, the other is to use trilinear interpolation. The details of 
the Chebychev polynomial scheme are given elsewhere[ll]. The trilinear interpolation is now explained. 

Consider any function of three variables f(p, q,r). Suppose we know the values of this function on a 
uniform three dimensional grid of points fat = f(pi,qj,n), but wish to know the value of this function 
at a point (p,q,r) where: p; < p < pi+i, qj < q < ?J+i, rk < r < ri+1. The cube that contains 
the point (p,q,r) thus has corners: (pi,qj,rt), (p;+i,gj, rk), (pi,qj+i,rk), (pi,qj,rk+i), (Pi+i^j+i,»-*), 
(p.-+i,«j,r*+i), (p,,8j+i,rjb+i), (p,+i,9j+i,rjt+1). Knowing the values at the corners (/00o = /(Pi.Jj.n,), 
/ioo = /(Pi+i)9jirit) e'c)> '' 's straightforward to carry out a trilinear interpolation to find the value at 
(p, q,r). Define cvp, ßp, aq, /?,, ar and ßr by: 

_    r-Pi 
Pi+i-Pi 

_    1-ii 
li-H-li 

ßp = l-ap 

ß, = l-aq 

ßr = l-ar (2) 

We then obtain: 

f(p,q,r)      W     ßpßqßrhott + ßpßgOtrfoOl + ßpCtgßrfoiO + CXpßqßrfm 

+   ßpagarfoii + apßqarf10i + apOcqßrfno + otpaqarfii (3) 
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This schema ensures that the interpolated function is continuous everywhere, though the first derivative 
in general will not be. However, this expression is extremely fast to evaluate on a computer. Its principle 
deficiency is that a fine mesh of points is needed for this scheme to give accurate values. 

Another bottlekncck for the table lookup schemes is the production of the tables in the first place. 
One approach that we have tried and found to work well is to expand the numerical orbit als as a sum 
of gaussians. Provided pseudopotentials arc used only a few gaussians are needed (typically between 
2 and four per orbital). The overlap, kinetic energy and pseudopotential integrals can be evaluated 
analytically[12]. We use the gaussian pseudopotentials of Goederker el a/ [13]. To evaluate the Hartree 
integrals the density is also expanded in terms of gaussians. The exchange/correlation integrals must be 
performed numerically. 

There arc two advantages to this approach: once the gaussians have been fitted there is no further error 
in the integral tables (at least in the absence of exchange and correlation integrals), thus all the integrals 
arc internally consistent with one another; the analytical integrals can be evaluated in minutes rather than 
hours, making building tables much more convenient (the exchange and correlation integrals are still slow, 
however). 

There is one important point that needs to be taken care of, however. Gaussians do not go to zero 
at some finite cutoff, so care has to be taken to ensure that the gaussian fits have a very small value at 
the cutoff radius used to generate the numerical Orbitals. One way to achieve this is to use a harmonic 
potential (V(r) = Vor7) to confine the the atom in, and then adjust the prefactor (V'o) to make the orbitals 
decay at the appropriate rate. This form is chosen because the wavefunctions for a harmonic oscillator are 
gaussian in form, so the fit becomes more natural, especially in the tail region. This is found to remove 
most of the tendency for the fitted orbitals to project beyond the numerical ones. 

The following analysis allows us to estimate what value Va should take. Note that all lengths are 
in Bohr radii, and all energies are in Rydbergs. The ground state of the harmonic oscillator has the 
wavefunction exp(-cvr2), where a = ^\/%. If rc„, is the cutoff radius, and we wish exp(-or^„,) < e, then 
a > ln(l/£)/r2,u. Therefore 

„ .   [21n(l/e)12 

(4) 

In practice we have found that e = 10~3 works well. This may seem a large value, but the atomic core 
tends to pull the wavefunction in, so the actual wavefunctions tend to be well below e at rcul. 

The effect on the geometries and energies of hydrocarbons of introducing the second set of orbitals 
into the basis set has already been demonstra1ed[ll]. It. was found that a double numeric basis set 
gave significantly improved geometries compared with single numeric basis sets, whereas the influence of 
polarization orbitals (typically d-orbitals) is small. 

The effect on the band structure of silicon of introducing the second set of basis functions can be seen 
in Figure 2. The valence band is essentially unaffected by the second set of orbitals. However, the location 
and size of the band gap is greatly improved. Thus we see that a double numeric basis set is important for 
a reliable description of the electronic structure and thus for the description of defects tic. However, this 
basis set gives a lattice constant that is too large (about 5.55Ä, compared with the experimental value of 
5.43Ä, and the planewavc value of 5.39Ä[16]), and a bulk modulus that is too small (0.83Mbars, compared 
with the experimental value of 0.99Mbars and the planewavc value of 0.94Mbars[16]). We believe that 
d-orbitals are necessary to obtain improved results. 

SELF-CONSISTENT EXTENSIONS 

It is not without, irony that the project of turning fully self-consistent ab inilio methods into approximate 
methods has moved on and become a project to produce very efficient self-consistent methods. This 
development has been pioneered by Ordejon, Artacho and Soler[14], 

The central idea is to take the Harris-Foulkes Hamiltonian from the tables and then add in corrections 
due to the charge redistribution that occurs when self-consistency is imposed. Because no shape is assumed 
for the self-consistent charge density it must be evaluated on a numerical grid. A uniform grid is used as 
this allows Fast Fourier Transforms to be used to evaluate the correction to the Hartree potential. Because 
the changes in the charge density are quite small, a coarse mesh can be used. This coupled with the fact 
that we only need to transform this once (rather than for each k-point) makes the method more efficient 
than plane wave methods. A second important ingredient is that the energy and forces can be found using 
a linear scaling algorithm - which is impossible with current plane wave methods. 
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Figure 2: The band structure for silicon evaluated using single and double numeric basis sets. Note that 
the single numeric basis set give the correct valence band, but introduces errors into the conduction band. 
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Figure 3: The error in the total energy of bulk silicon evaluated using the two methods for avoiding three 
center integral tables. Note that the x axis is the number of grid points on one side of the cell. Thus the 
total number of points on the grid is the cube of this. 
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Figure 4:  The bulk modulus curve for aluminum, the solid line is the result of a calculation using the 
method described above the dashed line a plane wave pseudopotential calculation. 

Three center integrals tables can be large and slow to construct. Thus it is desirable to eliminate 
them. Two methods have been proposed to achieve this. To understand them we need to note that for 
self-consistent calculations the tables contain integrals of the form: 

J ciP.k = / <t>i«(r- Ri)\TA(r~ Rt)^jp(P- Rj)df (5) 

where VJ^A{r — Rk) is the so-called neutral atom potential. It consists of the sum of the local part of 
the pseudopotential and the Hartree potential of the spherical charge density at that site. The approach 
of Sanchez-Portal et a/[15] is to perform these integrals on a uniform mesh along with the exchange- 
correlation and correction to the Hartree potential. The one we have developed uses gaussian expansions 
for the orbitals and the potential. We can then use analytic results for the integrals that can be evaluated 
very efficiently. Results obtained for the total energy of bulk silicon as a function of the number of mesh 
points using both methods are shown in Figure 3. The errors in both cases are small. However, the 
convergence of the numerical integral method is sufficiently slow to make the evaluation of quantities that 
depend on small energy differences (such as elastic constants) very expensive. 

We have used this method to perform some calculations for aluminum. The results for the bulk modulus 
curve are extremely good. The predicted lattice parameter is 4.10Ä and the bulk modulus 0.72Mbar which 
is in excellent agreement with the experimental values of 4.05Ä and O.TGMbar. The calculated bulk modulus 
curve is given in Figure 4. The solid line is the result found using the method detailed above and the dashed 
line is the result of plane wave pseudopotential calculations (for which the lattice parameter is 4.14Ä and 
the bulk modulus is 0.68Mbar). It should be noted that the plane wave calculation used 50 times as much 
memory, and took 10 times as long to complete, compared with the localised orbital calculation. 

CONCLUSION 

A recently developed ab irtiiio tight binding scheme has been described in outline. The benefits of 
using a double numeric basis set arc described, and seen to span total energies, geometries, and elec- 
tronic structure. A highly efficient trilinear interpolation scheme has been described, as have some recent 
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developments to make the method fully self-consistent. 
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ABSTRACT 

The energetics of metallic alloys, their surfaces or interfaces, and magnetic multilayers 
is studied in terms of effective interatomic (or interlayer) interactions that are determined 
from ab initio electronic structure calculations using the TB-LMTO method combined with 
the coherent potential approximation and the method of surface Green functions. First 
the theoretical background (force theorem, Lloyd formula, generalized perturbation method 
for bulk and surfaces, vertex cancellation theorem, method of infinitesimal rotations) is 
discussed, and then the applications to the phase stability of bulk alloys, surface segregation 
in disordered alloys, magnetism-induced ordering in two- and three-dimensional systems, 
phase diagram of two-dimensional alloys, interlayer exchange coupling in metallic multilayers, 
and the construction of Heisenberg-like Hamiltonians for magnetic systems are presented. 

INTRODUCTION 

The thermodynamical properties of various systems such as alloys, their surfaces, mag- 
netic multilayers, and ferromagnets can be predicted on an ab initio level. First, the internal 
energy and its dependence on the configuration of the system is expressed in terms of an 
effective Hamiltonian. The parameters of this Hamiltonian (which are often called effective 
cluster interactions (ECIs)) are determined from first principles electronic structure calcula- 
tions. In the second step, the thermodynamical properties of the system are studied by the 
methods of statistical mechanics. 

By using an effective Ising-type Hamiltonian the configurational dependence of the total 
energy of a disordered binary alloy AxBi^x can be expressed as 

HI = E0 + J£lDRr)R + -YlVRR>rtRriR, + ... . (1) 
R Z RR' 

The parameters entering (1) are the configurationally independent part of the total energy 
E0, the on-site energies £>R, the interatomic pair nteractions VRR/, and generally, the inter- 
atomic interactions of higher order. A particular configuration of the alloy is determined by 
a set of occupation indices ?TR, where ??R = 1 if the site R is occupied by an atom of the 
type A, and ??R = 0 otherwise. 

By using an effective (classical) Heisenberg-type Hamiltonian the total energy of a ferro- 
magnet can be expressed as 

HH = E0- £ JRR>eR-eB/ + ... , (2) 
RR' 
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where eR = mR./|mR.| is the unit vector in the direction of a magnetic dipole mR at site R. 

THEORY 

The tight-binding linear muffin-tin orbital method 

Our approach [1, 2, 3] is based on the local spin density approximation to the density 
functional formalism. The electronic structure is calculated using the first-principles all- 
electron linear muffin-tin orbital (LMTO) method [4, 5] in its tight-binding version [6, 7] 
(TB-LMTO) and assuming the atomic sphere approximation (ASA). 

Substitutional chemical disorder is included within the coherent potential approximation 
(CPA) [8] which describes reliably concentration dependent trends of the electronic structure 
in bulk alloys and at their surfaces or interfaces. 

The effect of layered geometry of surfaces or multilayers is treated via the surface Green 
function formalism [9], The charge and spin density self-consistency is achieved within the 
ASA, but non-spherical terms of the charge densities are used in the construction of the 
interatomic Coulomb interactions in the surface or interface layers. It was shown [10, 11, 12] 
that a correct description requires the inclusion of net charges and dipole moments in the 
surface/interface region. The electrostatic potential barrier across the solid-vacuum or solid- 
solid interface (and the closely related work function) as well as the surface/interface energy 
sensitively depend on the details of the charge distribution as given by the layer dependence 
of the atomic net charges and the non-spherical character of the charge distribution inside 
the atomic spheres. The method substitutes to some extent the full-potential techniques 
and reliably describes surfaces and interfaces with charge densities that strongly deviate from 
spherical symmetry. An important advantage of this approach is the treatment of the surface 
and bulk atomic layers on an equal footing which is important for an accurate determination 
of small energy differences needed in the construction of effective Hamiltonians. 

The method is well suited to study spin-polarized systems and to include relativistic 
effects relevant for the energetics of systems containing heavy noble and transition metals 
[1, 13, 14]. 

Effective Hamiltonians 

The parameters of the effective Hamiltonians are determined by mapping the total energy 
of various configurations of the system onto the effective Hamiltonian. A direct approach 
is represented by the Connolly-Williams inversion scheme [15] that extracts the interatomic 
interactions in alloys from total energies of several ordered structures. A similar approach 
can be used also for construction of an effective Heisenberg-type Hamiltonian. Here we 
follow a different approach based on the knowledge of the ab initio electronic structure 
of a reference configuration T0 of the system. The energies of other configurations are 
calculated perturbatively using the force theorem [16] without repeating the self-consistent 
calculation. The total energy Etol\r,p(T)] of a system in the ground state that corresponds 
to the configuration T is a functional of the charge (and spin) density p(T) and attains its 
minimum in the ground state. Consequently, it is stationary with respect to small changes 
in p(T). The charge (and spin) density p(T0) corresponding to the reference configuration 
To can be used to construct the approximate charge (and spin) density p(T) for the other 
configuration Y. The approximate p(T) differs from the exact p(F) by Sp. Due to the 
stationary property of Etot[F, p(T)], the error in energy is of order ||<5p||2. 

In the alloy case the approximate p(T) is constructed by using the charge densities p^ 
corresponding to the atomic species Q occupying site R. The quantities pj^ are in turn used 
to construct the potentials in each atomic sphere, then the potential parameters, and finally 
the one-electron Hamiltonian. The charge densities, atomic potentials and potential para- 
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meters are identical for all equivalent atoms, while the fluctuations induced by individually 
different environments of atoms are neglected. 

In the case of magnetic systems the configuration T is usually generated from the reference 
configuration T0 by changing one, or several local spin quantization axes. The new p(r) is 
then constructed by applying corresponding operations of rotation to PR^. 

The change of configuration always leads (via changes in the one-electron LMTO Hamilto- 
nian) to changes in the band term of the total energy, and, depending on the system studied, 
it could require also corrections to core, double-counting, electrostatic, and magnetostatic 
terms. 

A suitable tool to calculate the change in the band term is the Lloyd formula [17] 

1        r°° i - 
Anband = nband[T] - n6and[r0] = - Im /     /(*) Trln [1 - VG^(z)} dE, (3) 

TV J—oo 

where z = E + iO, f(z) is the Fermi-Dirac function, G(0)(z) is the Green function of the ref- 
erence configuration, and V is the operator of perturbation that transforms configuration T0 

into T. As usual, a grand canonical ensemble is assumed in (3) which leads to a replacement 
of the energy by the grand canonical potential. The main advantage of the Lloyd formula 
(3) comes from the partitioning of Tr In. Let P and Q be two complementary projection 
operators, P + Q = 1, then 

Q 
Tr In A = TrP In [APP + APQ -^- AQP] + TrQ In ^QQ . (4) 

AQQ 

If the perturbation V acts on the subspace P, the equation (3) simplifies to the form 

A06and = - Im f° f(z) TrP In [P - VPPGP%)] dE, (5) 
TV J -txi 

i.e., it can be evaluated only in the subspace P. This formulation is much more efficient than 
that based on the local densities of states (LDOS) as the changes in LDOSs induced by the 
local perturbation extend over the whole space. For example, for the calculation of the pair 
interaction between two atoms in the alloy, the subspace P is spanned just by the orbitals 
on these two sites. 

The band term is represented by the Lloyd formula and the mapping onto an effective 
Hamiltonian is given by expanding the Lloyd formula in terms of relevant variables (occu- 
pation indices TJR. in the alloy case, spin variables for magnetic systems). 

APPLICATIONS 

Alloy phase stability 

The parameters of the alloy Ising-type Hamiltonian (1) are determined by the generalized 
perturbation method (GPM) [18, 19, 20] (for its implementation within the LMTO method 
see [1, 21, 22]). The GPM is based on the Lloyd formula (3) (at T = 0 K) and it is 
an expansion around the CPA effective medium that represents the reference state. The 
importance of the CPA for the GPM is due to the variational properties of the band energy 
term [23]. The integrated density of states, and consequently, the grand canonical potential 
and also the band energy term evaluated within the CPA are stationary with respect to 
variations of the effective medium. The condition of a vanishing first variation is equivalent 
to the CPA equation for the effective medium. 

The parameters DR. and VRR/ of the alloy Hamiltonian (1) are given as 

R =    UR -J-'R . (6) 
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where 

jjQfrni    =     _i jm yEJ tlLa ,n [j + (pQ(2) _ VR{Z)^ §RR(2)]  rf£ (7) 

Here, PR(Z) is the potential function, VR{Z) is the coherent potential function, CJRR(Z) is the 
on-site element of the auxiliary Green function, and tri(T denotes the trace over the orbital 
momentum L = (Cm) and spin a. The (unrenormalized) pair interactions are then 

1        fEp 

= - Im /      trL„ rR(z) gRR*(z) TR,(Z) gR>R{z) dE, (8) 
IT J-oo 

V-band 
RR' 

where TR is the difference of t-matrices for A and B atoms. For case studies see [1, 24]. 
We note that this formalism can be generalized also to multicomponent alloys [25]. The 
contributions from other terms of the total energy (double counting, core and electrostatic 
terms) are important at alloy surfaces [26]. 

Once the ECIs are known, the methods of statistical mechanics can be used to determine 
the thermodynamical potential of the alloy. In this way, it is possible to search for the most 
stable structure of the system at a given temperature T and thus to derive its phase dia- 
gram from the first principles. Various methods are used. The most simple is the single-site 
effective medium approximation (Bragg-Williams approximation) which might be satisfac- 
tory at high temperatures, but which often overestimates the transition temperatures. A 
substantial improvement was achieved by introducing the cluster variation method (CVM) 
that properly includes the multisite correlations [19]. Highly reliable results are obtained 
by Monte Carlo simulations (see e.g. [27]). The Monte Carlo method was applied to bulk 
alloys, alloy surfaces [22, 26], and to studies of magnetism-induced ordering [28]. In the case 
of concentrated alloys, the pair interactions VRR> decay exponentially with increasing dis- 
tance |R-R'| due to the imaginary part of the CPA self-energy entering <?RR'(Z). This fact 
facilitates the application of the Monte Carlo technique as its numerical efficiency strongly 
decreases with the number of nonzero pair interactions. 

Surface segregation 

The segregation of one species at alloy surfaces has been the subject of extensive exper- 
imental and theoretical studies (see [29] for a review). It plays an important role in such 
diverse phenomena as catalysis, chemisorption, and crystal growth since all of them depend 
sensitively on surface properties. 

The surface energetics can be treated on two levels of sophistication: 
(i) Truncated bulk approximation [21, 22, 30, 31]. The single-site charge density is that of the 
homogeneous bulk alloy and the redistribution of the electronic charge in the surface region 
is not considered. The atomic potentials are identical to those of the homogeneous bulk 
alloy, and the CPA effective medium of the homogeneous bulk alloy is used as a reference 
medium in the GPM. The ECIs are determined by mapping only the band term onto the 
Ising Hamiltonian. The core, double-counting, Madelung and non-spherical terms do not 
contribute. 
(ii) Selfconsistent theory [26, 32, 33]. The single-site charge density, atomic potentials, and 
the CPA effective medium are determined in a fully self-consistent calculation of the surface 
electronic structure including the charge redistribution in the surface region. Besides the 
band term, also the core, double-counting, Madelung and non-spherical terms contribute 
to the ECIs. In contrast to the previous simplified formulation, the Ising Hamiltonian 
parameters can be determined for any concentration profile of the surface region. 

This allows to determine in a fully self-consistent manner the surface concentration profile. 
Two steps, namely, the calculation of the ECIs for a given concentration profile, and the 
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determination of the new concentration profile using the methods of statistical mechanics 
for a given set of ECIs, are repeated until a full consistency between the electronic structure 
and concentration profile is achieved. 

The equilibrium composition of the surface layers is simulated using the Monte Carlo 
technique [22, 26]. 

Using the fully self-consistent procedure, we have studied the surface segregation in 
Cu-Ni, Ag-Pd, and Pt-Rh alloy systems. As an illustration we show here the results for 
the (001) face of the fee Cu25Ni75 (Fig. 1) and Pt55Rh45 (Table I) alloys. The calculated 
concentration profiles for Cu-Ni alloys are in a good agreement with accessible experimental 
data which show a quite pronounced tendency to segregation of Cu and damped concentra- 
tion oscillations in subsurface layers [26]. 

1.00 

2     3     4 
atomic layer 

bulk 

Figure 1: Evolution of the segregation profile in the first 5 iteration steps for the (001) face 
of the fee Cu25Ni75 alloy. 

Table I: Selfconsistent determination of the segregation profile at the (001) surface of the fee 
Pt55Rh45 alloy. Concentrations cp(Pt) of Pt atoms in the first 4 layers as obtained in the 
first 4 iteration steps are compared to experimental data. 

iteration      ci(Pt)    c2(Pt)    c3(Pt)    c4(Pt) 

1 0.80 0.35 0.65 0.45 
2 0.76 0.35 0.62 0.48 
3 0.78 0.39 0.64 0.48 
4 0.77 0.37 0.64 0.47 

experiment" 0.78 0.42 0.64 0.47 
°Ref. [34] 

The surface segregation for Pt-Rh was studied both experimentally [34] and theoretically 
[35]. It is now agreed that Pt segregates to the surface upon annealing at temperatures above 
900 K and the concentration profile has oscillatory character. The Monte Carlo simulations 
were done at 973 K, i.e., at the same temperature at which the experimental study was 



performed [34]. The self-consistent calculations of the segregation profile were started from 
an oscillatory profile close to the experimental one. Usually 3 or 4 iterations were needed 
to achieve self-consistency with an accuracy of order 1 % between the previous and new 
concentration profile. Also the changes in the Ising Hamiltonian parameters between two 
consecutive iterations rapidly converged to zero. The agreement between the calculated and 
experimental profile is remarkably good (see Table I), except for the second layer, where 
the calculated value (0.37) differs from the experimental one (0.42), but still lies inside the 
experimental error bar. 

Two-dimensional alloys 

The phase diagram of a two-dimensional alloy system formed by a random overlayer on 
a perfect nonrandom substrate can be studied using similar methods as for bulk alloys or 
surfaces. Such system is truly two-dimensional from the point of view of statistical mechanics, 
while its electronic structure is that of a semi-infinite three-dimensional system. 

Table II: Pair interactions Vn(x) (in mRy) up to 6-th neighbors for a two-dimensional 
CusPdi-x random alloy on a perfect fcc(OOl) Cu substrate for 3 concentrations x = 0.25, 
0.5, and 0.75, and for the hypothetical random alloy Pd5o(vac)5o. All the other pair and 
triplet interactions are less than 0.15 mRy. 

yn(Cu25Pd75) 
yn(Cu6oPd5o) 
K(Cu75Pd25) 
V;(Pd5o(vac)5o) 

1 

5.59 -1.10 -0.22 
6.51 -0.59 -0.36 
7.70 0.04 -0.07 

-19.79 1.38 -0.39 

-0.20 -0.02 0.22 
-0.18 -0.13 -0.01 
0.12 0.00 -0.06 

-0.03 -0.04 0.23 

0.0     0.2     0.4     0.6     0.8     1.0 

concentration of Pd 

Figure 2: Phase diagram of the Cu-Pd surface alloy on a Cu (001) substrate. 

As an example we show here the results for a Cu-Pd random overlayer on the fcc(OOl) Cu 
substrate. The pair interactions on a two-dimensional square lattice are reported in Table 
II. The calculations for a hypothetical random two-dimensional alloy Pd5o(vac)5o rule out 
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the possibility that the overlayer is formed by some ordered structure of Pd atoms only. 
Large negative values of pair interactions between the Pd atoms and empty spheres denoted 
here as (vac) indicate a strong tendency for clustering of Pd atoms on the Cu surface. On 
the other hand, the positive pair interactions found for Cu^Pd^j. random overlayer suggest 
an ordering tendency [36]. This was confirmed by extensive Monte Carlo simulations for 
chemical composition and temperature varying in a broad range [37] (Fig. 2). The ordered 
phase c(2 x 2) is stable for 0.35 < x < 0.65 at elevated temperatures, the critical temperature 
of the second-order phase transition at x = 0.5 is above 600 K. The stability range of the 
ordered phase is relatively large at room temperature. On the Pd-rich side a first-order 
transition occurs below 200 K corresponding to a mixture of the c(2 x 2) ordered phase and 
pure Pd. It should be emphasized that the phase diagram is asymmetric with respect to 
x = 0.5, which is a consequence of the concentration dependence of pair interactions. These 
theoretical results are in a good agreement with experimental data. 

Magnetism-induced ordering 

The magnetic order can substantially influence atomic ordering in alloys. We show that 
the ordering in the bulk bcc Fe5oCo50 alloy arises from the presence of ferromagnetism in this 
system. According to the experimental data [38, 39], the Curie temperature of the Fe5oCo5o 
alloy Tc = 1255 K lies above the ordering temperature Tord = 1003 K. Below Tmd the alloy 
has the ordered CsCl (B2) structure, while for intermediate temperatures, Tmd < T < Tc 

it forms a bcc solid solution, and at Tc it undergoes a martensitic transformation into the 
(non-magnetic) fee structure which is stable up to the melting point (Tc < T < Tm). In 
order to elucidate the mutual interplay of magnetism and ordering in this alloy, we have 
calculated [28] the pair interactions Vn up to 11th neighbors both for the paramagnetic and 
the ferromagnetic state of the alloy (Table III). The pair interactions in the paramagnetic 
state would give a weak tendency to phase separation. In the magnetic state, the majority 
band (a =t) is almost fully occupied and its contribution is negligibly small (closed shells 
do not contribute to chemical bonding). The minority band (a =1) moves to higher energy 
and contributes substantially to the pair interactions which now favor attraction of different 
atomic species in the first coordination sphere leading thus to ordering. 

Table III: Pair interactions (in mRy) up to 6-th neighbors for the bcc based Fe50Co50 alloy 
in the paramagnetic {V^aTa) and in the ferromagnetic state (Vjerro = Vj + V£). 

6 
ypava _Q gg _Q Qy _Q1Q _Q Qg Qu Q Qg 

V2 0.01 0.03 0.01 0.00 0.00 0.00 
V% 1.96 -0.66 0.21 0.08 -0.31 0.05 
yferro X 97 _Q gg Q 33 Q QQ _Q gj Q Qg 

The stability of a random phase with respect to the formation of an ordered structure 
is, within a simple mean-field theory, related to the Fourier transform V(k) of the pair 
interactions VRR- [40]. An absolute minimum of V(k) at k0 = 0 indicates the tendency to 
phase separation, while absolute minima at k0 7^ 0 indicate an ordering tendency to form 
a superstructure compatible with the vector k0. A mean-field estimate for the ordering 
temperature depends on V(k0) 

T„d = -x(l - x)V(k0)/kB , (9) 
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where fcß is the Boltzmann constant. Including 11 pair interactions, we find Tord = 917 K 
for Fe50Co5o alloy. The Monte Carlo simulation yields a Tord lower approximately by 20 %, 
but from technical reasons, it is limited to a smaller number of pair interactions. 

A similar analysis can be done also for Fe50Co5o overlayer on a Cu (001) substrate [28]. 
The pair interactions calculated in the paramagnetic state show a tendency to phase separa- 
tion, while those computed in the ferromagnetic state correspond to ordering into a c(2 x 2) 
structure. In comparison with Monte Carlo results, the mean-field theory overestimates the 
ordering temperature T0Td by about 40 %, which is not surprising in view of the well-known 
fact that the accuracy of a mean-field theory for two-dimensional systems is rather limited. 
For example, if the first 5 pair interactions are included, the mean-field estimate is TBrd « 560 
K, while the Monte Carlo method yields Tord a; 380 K. Unfortunately, experimental data are 
not available for comparison. 

In this section, we have presented a very simple theory of the mutual interplay between 
the chemical order and magnetism in magnetic alloys. These two phenomena should be 
treated on the same footing as proposed earlier by Bieber and Gautier [41]. 

Interlaver exchange coupling 

Interlayer exchange coupling occurs in many multilayer systems composed of magnetic 
and non-magnetic layers, and it is in some cases accompanied by an oscillatory magnetore- 
sistance. 

Recently, ab initio formulations of the interlayer exchange coupling have appeared [42, 
43, 44], based on an application of a layer version of the Lloyd formula in order to evaluate 
the difference between the grand canonical potentials of the ferromagnetic (F, 6 = 0) and 
antiferromagnetic (AF, 9 = ■K) alignment using the so-called frozen potential approximation 
[42]- 

The system considered consists of a central finite non-magnetic spacer slab (C) of varying 
thickness N and two semi-infinite systems, denoted C (left) and H (right), each containing 
M magnetic layers on top of a semi-infinite non-magnetic spacer. We assume that the spin 
orientation in the right magnetic slab H is rotated by an angle 9 with respect to that of the 
left magnetic slab C. 

The quantity of physical interest is the difference of the grand canonical potentials be- 
tween the ferromagnetic (9 = 0) and a rotated {9 ± 0) alignment of the two magnetic slabs, 
namely the exchange energy Ex{9) = Q{9) - H(0). The exchange energies Sjfl) are very 
small quantities and their direct evaluation is rather cumbersome [45]. The clue is to use 
the Lloyd formula in the framework of the frozen potential approximation as applied to a 
rotated alignment which differs from the ferromagnetic alignment by a localized perturbation 
[42, 43, 44, 46]. Technically there are a few possibilities for how to partition the system into 
an unperturbed part and a localized perturbation. A common approach [42, 44, 46] is to 
consider the rotated magnetic slab as a perturbation. Clearly, with increasing thickness M 
of the magnetic slabs the numerical effort increases as the third power of M. This limita- 
tion can be relaxed [43] by considering three decoupled non-interacting regions £, C , and 
11 as an unperturbed system. The localized perturbation is the interlayer coupling at the 
C/C and the C/Tl interfaces, which is independent of the thickness of the magnetic slabs. 
The concept of principal layers (PL) [9] as used within the TB-LMTO method leads to a 
block tridiagonal form of the structure constants and of the inverse of the Green function. 
Employing partitioning technique to the trace of the logarithm of the Green function (4), it 
is possible to extract directly the term describing the coupling of interfaces, S1t\nQ(z), 

5Trln£(z) = -TT£ trL„ln [l - 7i(k||, 2)puv(k]1, z) rN{kh z)ffjvi(k||, z)] , 
^11 k,. 

(10) 
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where the auxiliary Green function Q(z) = [P(z) — S] x is defined in terms of the potential 
function P(z) and structure constant matrix S, and the t-matrices r; (i = 1, N) 

Ti(k,|,«) = ri(k||,«) [l - su(lc,|, ä) r*(k||, ä)]
-1 (11) 

are defined in terms of the embedding potentials at the interfaces, 

ri(k,|, z) = 510(k||) e(k||,z) 50i(k||),  rN(k||,z) = 5oi(kn) e(k||,*) s10(kN).      (12) 

The quantities gu{z), gwiz), gNi{z), and QNN{Z) are blocks of the spacer slab Green function 
consisting of N layers, Soi(k||) and 5io(k||) are the interlayer structure constants which 
couple neighboring PLs, and Q(k\\,z) and Q(k\\,z) are the surface Green functions [9, 11] of 
the magnetic subsystems C and 7£, respectively. The coupling between the two magnetic 
subsystems is due to the layer off-diagonal projections puv(k||, z) and <7jvi(k||, z) of the Green 
function of the spacer. The oscillatory behavior of interlayer coupling is due to the oscillatory 
behavior of these quasi one-dimensional spacer Green functions. 

The structure constant matrix 5R,R/ and the site-diagonal matrix associated with the 
potential function PR{Z) can be written in spin space as the following 2x2 supermatrices 

!>(.)-.( P£(*),   P£(*)\ Sw,-(SW      °     ^ S"    -S" (13) R( ] _ I PiHz), Pil(z))'    5R
-
R

' " {  o   4V)'    s™ ~ s*»' ■ (13) 

Two remarks might be now useful: (i) in the absence of spin-orbit coupling only the 
relative angle between the spin orientations in two different magnetic layers is important; (ii) 
the dipole-dipole magnetostatic interaction energy is often neglected as it becomes negligibly 
small for spacers containing three or more atomic layers. 

The energy difference between the rotated and the ferromagnetic alignment is propor- 
tional to the quantity 

trlnZ = trln(l-A0 B)-trln(l-A0 B0), (14) 

where the matrices A0 and B0 are related to the ferromagnetic alignment and thus are 
diagonal in spin space 

3   - ( B°    M Ao=     ?    ,1     •    B„="°   Di     • (15) 
Aj    0 
0    A-0 

The particular form of the subblocks AQ and BjJ (<r =f, 4-) is given by 

A* = gm(kn, z) 7f (k||, z) g1N(kn, z),      B^ = r^(k,|, z). (16) 

The matrix B refers to an alignment in which the orientations of the spin in the two magnetic 
slabs are rotated relatively by an angle 9, 

B = U(0)BoUt(0),    U(0)=(_C
s       *), (17) 

where U(6) is the rotation matrix for spin 1/2, c = cos(ö/2), and s = sin(0/2). The final 
result is 

*-W = ^ £ Im Jc f(
z) ^ln (i " 1~™m M(k„, *)) dz, (18) 
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where 
M = 1 - (1 - Aj Bj)"1 (1 - Al Bj) (1 - Ai Bir1 (1 - A* Bj) 

By expanding the logarithm in (18) in powers of [1 - cos(0)], we find 

oo 

SM = £ An [1 - COs(fl)]" , 
n=l 

where An are the exchange coupling coefficients 

An   =   --^^{/Wtr,^,«)]-*. 

(19) 

(20) 

(21) 

The expansion of £x{9) for a small 6, i.e., when 1 — cos(ö) is a small parameter becomes 
particularly important when the spacer is a magnetic metal or for complicated geometries 
such as periodic multilayers. This approach is appropriate for infinitesimal rotations and 
is based on the local force theorem for magnetic systems, as originally developed for bulk 
magnetic crystals and alloys [47] (see also next subsection). In the case of Cu/Co/Cu/Co/Cu 
trilayers we have verified that the dependence of £x(6) on the angle 6 is approximated with 
a high accuracy by the first term £x(6, N) « Ai(N) (1 - cos(ö)) of the expansion (20) not 
only for small angles 6 but for any 6 < -IT. 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 

N (monolayer) 

Figure 3: Exchange coupling N2£X(N) as a function of the Cu spacer thickness N separating 
two semiinfinite fee (001) Co slabs at T = 0 K. 

In numerical calculations self-consistent potentials of bulk Cu and of a single Co(001) 
monolayer in bulk Cu are used also for interacting slabs (the so-called frozen potential 
approximation [42, 43, 44]). The energy and the Brillouin zone integrations need special 
care (see Refs. [42, 43, 44]). 

As an illustration we present in Fig. 3 the dependence of the interlayer exchange coupling 
on the spacer thickness. Well-pronounced oscillations with the period 2.5 monolayers are 
found which decay with spacer thickness N as N~2. 

This theory can be generalized also to the case of disordered spacer, and/or disordered 
magnetic layers. The vertex-cancellation theorem [48] allows one to significantly simplify 
the study of various alloying effects in multilayers. 
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Heisenberg-tvpe Hamiltonians 

The parameters of the Heisenberg-type Hamiltonian (2) describing the elementary excita- 
tions in ferromagnets can be found using the method of infinitesimal rotations [47, 49] which 
is based on the force theorem and the Lloyd formula. The parameter JRR/ is proportional 
to the second variation of the band energy term Eband with respect to infinitesimal changes 
of the unit vectors 5eR and <5eR/ that are represented by (infinitesimal) rotation matrices for 
spin 1/2. In the case of a ferromagnetic reference state the first variations vanish and one 
finds 

JRR, = i- Im |_~ /(*) trL [AaW sga,(z) AR,(*) g$R(z)} dE, (22) 

where AR(z) = PR(z) — P^_(z) is the difference between the potential functions for spin up 
and spin down electrons, and tr& denotes the trace over the orbital momentum L = {im). 
Note that the expression (22) is formally similar to that for unrenormalized pair interactions 
in the alloy case. This approach can be generalized to the case of disordered alloys as well 
as of surfaces. As an illustration we present in Table IV the values of JRR/ for Fe85Vi5 alloy. 

Table IV: The parameters JRR< (in mRy) of the Heisenberg-type Hamiltonian for Fe-Fe, 
Fe-V, and V-V pairs up to 9-th neighbors for Fe85Vi5 alloy as calculated by the method of 
infinitesimal rotations. 

n 1 2 3 4 5 6 7 8 9 
-Fe 

-V 

V 

1.942 
0.608 

-0.209 

0.336 
-0.035 
-0.043 

0.034 
0.023 

-0.003 

-0.013 
0.044 

-0.001 

-0.017 
-0.063 

0.016 

0.026 
0.013 
0.001 

-0.003 
-0.002 

0.000 

0.005 
-0.001 

0.000 

-0.015 
-0.011 

0.003 

Table V: Comparison of theoretical (mean-field) and experimental Curie temperatures Tc 
for ferromagnetic 3d metals and alloys. Also given are average magnetic moments ß. 

mean -field experiment [39] 

ß(ßß) Tc(K) M(/4B) Tc(K) 
bcc Fe 
fee Co 
fee Ni 

2.26 
1.61 
0.60 

1429 
1646 
392 

2.22 
1.75 
0.62 

1043 
1388 
627 

bcc Fe75Co25 
bcc Fe5oCo5o 
bcc Fe25Co75 

2.34 
2.16 
1.94 

2138 
2020 
1774 

2.45 
2.36 
2.14 

1220 
1255 
1170 

bcc Fe85Vi5 
bcc Fe75V25 

1.70 
1.37 

1601 
1271 

1.72 
1.41 

1070 
1050 

bcc Fe9oCrio 
bcc Fe85Cr15 

bcc Fe5oCr5o 

1.94 
1.81 
1.02 

1589 
1432 

545 

1.97 
1.84 
1.00 

1020 
970 
600 

The parameters JRR/ can be used in statistical mechanical studies of the ferromagnetic 
system, e.g. to determine the Curie temperature Tc or the spin stiffness [47, 49]. According 
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to a simple mean-field theory 

Tc = 7^—,    Jo =    zl   ^RR' > (23) 
6KB R'(^R) 

where the quantity Jo can also be calculated directly without necessity to sum JRR/ over all 
coordination spheres [47, 49], A few examples are given in Table V. As noted earlier, the 
mean-field theory overestimates the values of TC- It was shown [50] that a more accurate 
treatment, based on Monte Carlo simulations, leads to a substantial reduction of TC- 

CONCLUSIONS 

We have shown that the energetics of a wide spectrum of systems can be studied within 
the ab initio framework by using a unified and highly efficient formalism based on the 
force theorem and the Lloyd formula. Within this formalism the total energies of various 
configurations of the system are mapped onto simple effective Hamiltonians from which the 
physical properties can be extracted by employing methods of statistical mechanics. We have 
shown that ab initio tight-binding techniques that can be formulated in the Green function 
language, such as the screened linear muffin-tin orbital method, are particularly suitable for 
this purpose. We have presented here several applications of this approach to systems as 
diverse as bulk metallic alloys, their surfaces and interfaces, two-dimensional alloys, magnetic 
multilayers, and ferromagnets. 
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ABSTRACT 

We present two tight-binding linear muffin-tin orbitals (TB-LMTO) techniques for electronic 
structure calculations of extended defects (such as grain boundaries, interphase interfaces, surface 
layers etc.) in metals. The first is based on the first-principles self-consistent surface Green's func- 
tion approach within the atomic-sphere approximation (ASA) utilizing two-dimensional periodicity 
in the layers parallel to the interface. In the second approach the Hamiltonian is constructed within 
the TB-LMTO-ASA as well, but semiempirical terms are employed to characterize the repulsive 
part of the interaction and the effect of electrons in interstitial space. While the adjustable pa- 
rameters have only been fitted to the properties of ideal ground state structure, the semiempirical 
approach describes correctly the structural energy differences, phonon frequencies etc. Two exam- 
ples are presented: the electronic structure of the £ = 5(210)/[001] tilt grain boundary in tungsten 
is determined and the sensitivity of 4d magnetic moments in thin films to local environment is dis- 
cussed. A comparison of the semiempirical TB-LMTO-ASA with the first-principles full-potential 
LMTO results is performed along the trigonal deformation path connecting the bcc, simple cu- 
bic and fee structures and the applicability of the semiempirical approach for simulating atomic 
structure of extended defects is assessed. 

1.   INTRODUCTION 

In the tight-binding (TB) approach, the basis functions used for the expansion of one- 
electron states are atomic-like orbitals, displaying the same angular momentum as orbitals 
associated with a free atom (i.e. s, p, d etc. corresponding to angular momentum £ = 0, 1, 
2 etc.), but with radial dependencies that can differ significantly from free atomic orbitals. 
Once regarded as suitable only for a very restricted class of materials (i.e. for those where the 
overlap between atomic basis functions on neighbouring atoms is small), the TB procedure 
has been shown to give very satisfactory results even e.g. for nearly free electron systems 
such as alkali metals [1]. The advantage over the methods based on plane waves is that a 
relatively small basis set may be employed; a disadvantage is that extensive computation of 
complicated integrals may be needed for quantitative results in first-principles applications. 

However, if some information is known from experiment or accurate computations about 
the electronic structure (ES) of a solid, then one can often fit these integrals and interpolate, 
for example, the energy bands. In this case the matrix elements in the secular equation 
are directly fitted and the orbitals need not be (and usually are not) constructed. However, 
the charge density distribution is then not calculated and electronic structure in the TB 
calculations cannot be determined self-consistently in the sense of the density functional 
theory. 

In this semiempirical representation, the TB method is not a rigorous, first-principles 
theory any more. However, it is very attractive from the point of view of the conceptual 
transparency and computational simplicity. Very often an insight into the bonding processes 
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and a deeper understanding of the trends in properties from one system to another may be 
gained from some empirical or model Hamiltonian which is usually much simpler than that 
employed in ab initio approaches. Thus the TB method is a very effective tool to determine 
trends when some parameters (e.g. electronic concentration in alloys) are varied, particularly 
when dealing with complex systems far from ideal simple crystals (e.g. surfaces, defects, 
incoherent interfaces, amorphous structures). The large-scale first-principles ES calculations 
are then essential for both giving the credibility to the results obtained from semiempirical 
model Hamiltonians and to supply necessary input parameters. 

The description of the TB method may be found e.g. in [2-5], a discussion of the 
perspectives and generalized functional for the TB method is performed in [6, 7], and 
various linear-scaling TB approaches arc compared in [8]. 

The TB method has also been reformulated within the screened LMTO [9 12] and KKR 
13] formalism. At present, the third generation of the LMTO method is being developed 
14, 15]. 

In this contribution, we will show how to treat atomic configuration and electronic 
structure of extended defects such as grain boundaries, interphase interfaces, surface layers 
etc., both within a fully first-principles and semiempirical TB-LMTO scheme. 

2. FIRST-PRINCIPLES TB-LMTO THEORY 

The tight-binding linear muffin-tin orbital (TB-LMTO) method was originally formulated 
by transforming the basis of the conventional linear muffin-tin orbitals into a new basis 
of the tight-binding linear muffin-tin orbitals [9-12]. The physical motivation for this 
transformation came from the idea of screened electrostatic multipole fields. In the screened 
LMTO theory, real constants ORX are introduced, defined for each R/.-indcx, traditionally 
called screening constants. The screening matrix Q'R/„R'L' = OKr^RR'^LL' characterizes the 
corresponding LMTO representation. 

Most of the calculations using the LMTO method have been performed within so-called 
atomic-sphere approximation (ASA) [16-19]. This approximation is as follows: (i) spherically 
symmetric potentials inside slightly overlapping, space-filling atomic (Wigner-Seitz) spheres 
centered at the individual nuclei arc used, and (ii) the electronic kinetic energy outside 
the Wigner-Seitz spheres is neglected. Therefore, ASA removes the inconvenient interstitial 
region and replaces integrals over the whole space by a sum over Wigner-Seitz spheres which 
may be considered as approximations to the true Wigner-Seitz cells. The overlap of the 
atomic spheres is neglected. The impact of these approximations is discussed in more details 
in Sec. 5. 

The LMTO-ASA calculations use typically 9 (spd) or 16 (spdf) muffin-tin orbitals per 
non-equivalent atomic site. They have been very successful in calculations of electronic, co- 
hesive and magnetic properties for a large number of materials with close-packed structures, 
where the error due to overlapping atomic spheres is not very large. The LMTO method 
has also been used for very large supercells as well as for Green's function calculations for 
disordered alloys, surfaces and interfaces and localized and extended defects (for a recent 
review see [20] and references therein). 

The LMTO-ASA overlap and Hamiltonian matrix elements in the o-rcprcsentation are 

0°    =    {l + haoa){oah° + \) + haph°, 

Ha   =   ha{l+oahn) + {]+hno°)El,{oah° + \) + haEi,ph", (1) 

where 

''Rx,R'//   =   tilt ( CR( - E„,Rf) <5RL.R'// 

+ £h V AR' SRI„R>V (n.'i' V AR'<" • (2) 
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The quantities o^ and ^ are explicitly given by 

«Ri - 7Ri 
°Re   = 

^AR, 

to     =i_|-  ( "R< ~ TR<) ( gR< ~ •g",R<) (3\ 
^ AR£ 

Further, C, A, 7 and p are the diagonal matrices of LMTO potential parameters character- 
izing scattering properties of atoms in the solid and Eu are the energies chosen usually at 
the center of interest in the neighbourhood of which one performs linearization [10, 12, 19]. 
They are dependent only on. the orbital quantum number I, not on the magnetic quantum 
number m. The parameters Cm determine essentially the positions of the Ri band, whereas 
AR^ determines the width and hybridization strength of the Ri band. For example, it was 
shown that the width of a transition metal d band is approximately 25 A^ [10]. 

The matrix S^LR,Li is so-called structure constant matrix. It is determined solely by the 
positions of atoms, i.e. by the geometry. Therefore, the Hamiltonian (1) can be factorized 
into the crystal potential part, given by potential parameters, and the structure part, 
determined by the structure constant matrix. When seeking the optimal screening [10, 12], 
it has been assumed that there is one value of the screening parameter QRX for all angular 
momentum indices L = (Im) with the same orbital quantum number £, independently of 
the site R, i.e. 

aRL,K'L' = a^RR'^LL'- (4) 

One has then, therefore, one as for all s-orbitals, one ap for all p-orbitals etc. The values of 
these optimal screening parameters for various types of screening are as follows: 

Table 1: Screening constants a for best overall screening in a number of structures. 

screening type    £max ref. o^ Op aj. Q/ 
s Ö [12]      Ö2143 

sp 1 [12]      0.2872    0.02582 
spd 2 [9, 10]    0.3485    0.05303    0.01071 
spdf 3 [21]      0.3851    0.07321    0.02248    0.00607 

Owing to the short-range of the screened structure constants and the LMTO's, the 
screened LMTO representation with a's given by Table 1 is called tight-binding (TB) LMTO 
representation and the corresponding matrix Sa is the TB structure constant matrix. The 
hopping integrals in the LMTO-ASA method are then given by 

ßTLL,R'L'   =   £vu \/ARi   SRL,TL'L'   twi' y^R'C ■ (5) 

To find the electron energies and the corresponding wavefunctions, one should solve the 
eigenvalue problem for the matrix Ha — EOa with a non-unity overlap matrix. However, 
it is possible to transform the whole secular matrix to a nearly orthogonal representation. 
Assuming that the matrix (1 + oaha) may be inverted, it follows from the structure of the 
Hamiltonian and overlap matrices (1) that if we transform to a new basis defined as 

IX^EEIX^XI + O^T
1 (6) 

the Hamiltonian and the overlap matrix (1) are given in this basis by 

#7 = Ev + K1 + h-'E.ph'1, O1 = 1 + h-iptf (7) 
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with 
h~< = ha{\ +oah°)-\ (8) 

Thus, the set of orbitals Ix7) is orthogonal to the first order in h1. 
In many LMTO-ASA calculations the parameter p has often been neglected and the 

orthogonal Hamiltonian H"< contains in this case only two-center terms (o7 = 0 in the or- 
thogonal representation). On the other hand, the range of the corresponding structure con- 
stant matrix SR^R// is much bigger (up to 7th neighbours [10]), so that this representation 
cannot be considered any more as tight-binding. 

3. GREEN'S FUNCTION WITHIN THE TB-LMTO-ASA 

Conventional band-structure methods arc of limited use in studies of more complex 
systems like disordered alloys, imperfect surfaces, interfaces, multilayered structures etc. 
because they require an excessive number of atoms per repeat cell. In addition, they are 
not able to account fully for substitutional disorder and the true semi-infinite geometry of 
surfaces. Such problems can be solved more appropriately by Green's function techniques 
and multiple scattering formalism. 

The TB-LMTO-ASA technique is highly convenient for Green's function calculations on 
perturbed crystals. As shown in [11, 20], the physical Green's function G(z) within the TB- 
LMTO-ASA formalism is identical to the resolvent of the orthogonal LMTO Hamiltonian 
H~>: 

GR,J,Ra'(*) = [(2-.r/7r,]RL,R<L< (9) 

It may be expressed as 

GJLLWW = Xk,,(z) °RR' 6LL. + ft<kL(*)9RL.iVL-(z) I'hrA*), (10) 

where the auxiliary Green's function g°(z) is defined by 

gfa.,vL-{z) = l(PaM-sar1fow. (ii) 
Here Pa(z) is the potential function characterizing the scattering properties of atoms in the 
LMTO representation a; the site-diagonal matrices \"(z) and fia(z) are expressed by means 
of this potential function and their derivatives, i.e. in terms of potential parameters [20]. 

The most important advantage of the Green's function formulation is that the physical 
Green's function G(z) is invariant with respect to screening constants a. It is therefore 
possible to choose such LMTO representation that is most suitable for a particular physical 
problem. For example, when treating the ES of disordered alloys, the configurational 
averaging of the Green's function is performed in a non-random LMTO representation so that 
the Green's function does not exhibit off-diagonal randomness. Here the TB representation 
which is also non-random is usually employed [20]. 

Once the Green's function is found, electronic charge density, local density of states etc. 
may easily be calculated. For example, the projected local density of states for an atom at 
R is given by 

njuAE)   =   - - Im GR,,.R,,(£ + 10) . (12) 

4. GREEN'S FUNCTION METHOD FOR PLANAR DEFECTS 

A system with a planar extended defect may be considered as composed of two un- 
perturbed semi-infinite bulk systems sandwiching the perturbed (intermediate) region.  (In 
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the case of surfaces, one of these bulks is vacuum.) The perturbation may extend over 
several atomic layers. When studying the ES of the system, we take advantage of the two- 
dimensional periodicity in the layers parallel to the interface and the short range of the 
hopping integrals (structure constants) in the TB-LMTO method [10, 12, 20]. The former 
enables us to use the Bloch theorem in two dimensions and to introduce the Bloch wave 
vector k||, the latter leads to a notion of the principal layers [20, 22]. Each principal layer 
contains such (finite) number of neighboring atomic layers that only the nearest principal 
layers interact. The whole system may then be considered as a sequence of principal layers, 
both in the semi-infinite bulks and in the intermediate region. 

The TB-LMTO-ASA Green's function of the whole system may be expressed as 

GpBL,P<B<Z,<(k||,2)   =   ^BL(
Z
)
S

PBLIP'B'L'  +  ßpBL(Z) 9pBL,p'B'L'(k\b Z) ßp'B'L'(z), (!3) 

where p and p' label the principal layers, B and B' denote non-equivalent sites in the principal 
layers, L and V are usual angular momentum indices, \a and n" are site-diagonal matrices 
and z is the complex energy. The auxiliary Green's function is given by 

(öa)pBZ,,p'B'L'(klhz) =  PPBL(
Z
) SpBL,v'B'V  - SpBL,v'B'L'{k\\), (14) 

where Pa(z) is the site-diagonal potential function matrix and S^ky) is the matrix of TB- 
LMTO structure constants [10, 12, 20]. 

The main problem now is to invert the infinite matrix (</a)-1 in eq. (14), which is block- 
tridiagonal in the principal layer indices p, p' (Fig. 1; in this particular example, principal 
layers labelled by p = 1-4 belong to the intermediate region). 

g-X(k,p) 

■ -1 0 1 2 3 4 5 6 

-1 P-l-S-!-! —S-ifl 

0 —So-i Po — Soo -Sot 

X —S10 Pi-Su -Sl2 

2 —S2j Pa — S22 -S23 

3 —S32 P3 — S33 —S34 

4 -S43 P4-S« -S« 

S -sM PS-S55 -S56 

6 —S85 Ps — Ses 

bull 1 intermedi ate region bul < II 

Fig. 1. The structure of the infinite matrix (ffa)_1(k||, z). This matrix is block-tridiagonal in the principal 
layer indices p, p'. The intermediate region is represented by principal layers 1-4. The superscript a denoting 
the LMTO representation has been dropped. 

For this purpose we use the TB-LMTO surface Green's function technique [23, 24, 25, 20]. 
The surface Green's functions ghI and gbu for the bulk I and bulk II (see Fig.   1) may be 
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found from the removal invariance (i.e. from the fact that removing a finite number of layers 
at the end of a homogeneous semi-infinite stacking of layers recovers the original semi-infinite 
system [5, 22, 23]). Using the relations (with the superscript a omitted) 

P0    =   P_, = P_2 = P" 

we obts 

9 

9 
ill 

=    [Pb'-S0< 

=    [Ph ■ssl 

So-iff 6/< 

5SBffM,56S]- 

(15) 

(16) 

The quantities r" = Swgb'' S0\ and Th" = S4:-,g
b'Sm are "embedding potentials" describing 

the influence of two semi-infinite systems adjacent to the intermediate region. If we are 
interested only in the blocks of g within the intermediate region, we may then invert the 
matrix (the superscript a is also omitted here) 

9~Hh>z)  = 

p, p' 1 2 3 4 
1 Px - Su 
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— Si2 

2 -S'JI -"2 — '^22 — •''23 

3 -Ä32 ^3 "  S;„ -s-M 
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— 04S.9       £>5.| 

This is a matrix of finite dimensions. After performing the inversion, the physical Green's 
function may be calculated according to eq. (13). It yields the charge densities, densities of 
states (12) and other information about the ES of the system [5, 20]. 

It is important to note that the potential functions for the bulk systems sandwiching the 
perturbed region arc usually obtained from separate standard selfconsistent calculations for 
the bulk. In the defect calculation, only intermediate region has to be treated selfconsistentlv. 

As an example, we present the results for the E = 5(210)/[001] tilt grain boundary (C!B) 
in tungsten. To obtain the atomic structure of this GB, the relaxations were performed 
using the potentials of the Finnis-Sinclair type [26]. The electronic structure was calculated 
using an intermediate region consisting of 5 principal layers. Each principal layer contained 
4 atomic layers (we included interactions till the second nearest neighbors). 

The atomic configuration of the GB obtained using the Finnis-Sinclair type potentials is 
shown in Fig. 2. Here atoms numbered 9-14 lie in the most perturbed region. 

It follows from the analysis of the local densities of states (LDOS) on individual atoms 
that away from the "core" of the grain boundary (atoms 1-7, 17-20) the LDOS is very similar 
to that of the bulk. However, in the most perturbed GB region we may observe smoothing 
of the DOS and filling of the pseudogap between bonding and antibonding d-states (Fig. 3). 
This is the consequence of a lower symmetry of the local neighborhood of atoms in the GB. 
Similar situation arises in amorphous materials. 

Let us note that we have not detected any narrowing of the occupied portion of the 
d-band due to the reduced coordination, as found e.g. in [27]. Namely, in our relaxed GB 
structure, the coordination is reduced only slightly or not at all.   Due to the filling of the 
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pseudogap at the Fermi energy, the bonding d-like peak in the LDOS is broadened for many 
atoms. On some sites, the whole peak is shifted by the local Madelung potential. 
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Fig. 2. Atomic   configuration   of   the 
E=5(210)/[001] tilt grain boundary in tung- 
sten. Open circles represent atoms displaced by 
±a[0, 0, 1/2] with respect to the atoms denoted by 
full circles (a is the lattice constant). 

Fig. 3. Local densities of states at atoms 9 and 
11 in the £ = 5(210)/[001] tilt grain boundary in 
tungsten (see Fig. 2) compared with the density of 
states for the ideal bcc tungsten. 

As another example we present the results of our study of sensitivity of 4d-magnetic 
moments to local environment, in particular to structural imperfections. 

1.0 1.3 1.6 
coverage  (ML) 

0.0 
1.0 1.3 1.6 

coverage   (ML) 

Fig. 4. Local magnetic moments in Ru (left panel) and Rh (right panel) overlayers on a Ag(OOl) 
substrate as a function of coverage. Squares and triangles refer to moments in the complete (S) and 
incomplete (S+l) transition-metal layers, respectively. 
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Epitaxial transition-metal ovcrlaycrs of monolayer thickness on non-magnetic substrates 
like Cu, Ag, Au, Pd, Pt can be considered as realizations of two-dimensional itinerant 
magnetic systems. Recent systematic FLAPW calculations [28, 29] predicted spontaneous 
magnetic order for Ad and 5rf transition-metal monolaycrs like Ru, Rh, Ir on Ag(OOl) and 
Au(OOl) substrates. However, despite the unambiguous theoretical results predicting the 
magnetism of these monolaycrs, experiments using the surface magneto-optic Kerr effect 
failed to confirm this phenomenon [30, 31]. The most probable reason for this discrepancy 
seems to be structural imperfections in the samples which are far off from perfect monolaycrs 
considered in the calculations. Ample experimental evidence demonstrates that islanding, 
surface roughness or interdiffusion cannot be neglected in these systems. 

Combining the surface Green's function approach described above with the coherent 
potential approximation [20], we have studied the influence of two types of structural 
imperfections on the ferromagnctism of Ru and Rh monolaycrs on a Ag(001) substrate using 
a model of two-dimensional random alloys formed in several surface layers [32]. The first case 
corresponds to a non-integer coverage of the substrate with Ru or Rh varying between 1 and 
2 monolaycrs, which was simulated by surface layers of composition RxVac]_T/R/Ag(001), 
0 < x < 1, where R stands for Ru or Rh and Vac denotes a surface vacancy. This model 
describes a continuous formation of the second R layer on top of the first perfect R. layer 
on the Ag(001) face. The dependence of the local moments of R atoms with respect to the 
coverage is shown in Fig. 4. 

Fig. 5. Influence of interdiffusion on the local magnetic moments in Ru (left panel) and Rh (right panel) 
ovcrlaycrs on a Ag(001) substrate. Triangles refer to the moments in the top surface (S) layer, squares refer 
to the first subsurface (S-l) layer. For details, sec text. 

In the second case, the importance of interdiffusion of Ru and Rh films of 1 mono- 
layer coverage with the Ag(001) substrate was studied by simulating a layer sequence 
Ri_,TAg3./R.IAg]_3./Ag(001), 0 < .T < 1, with all atoms occupying the positions of the 
ideal bulk Ag lattice. This model describes a continuous transition of the R layer from the 
surface (x = 0) to the first subsurface (x = 1) position. The corresponding concentration 
dependence of the local moments is presented in Fig. 5. 

As can be seen from Figs. 4 and 5, despite the relatively large local moments in the perfect 
monolayer (MR„ = 1.8/(73, A/n.h = 0.9//ß), the local moments of Ru and Rh atoms are highly 
sensitive to both types of structural imperfections. In the first model, two-dimensional 
ferromagnctism does not survive for coverages higher than  1.5 monolayer (Fig. 4) which 
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is in reasonably good agreement with FLAPW calculations for perfect double layers [33] 
yielding nearly negligible local moments for 4d and 5d transition-metal double layers on a 
Ag(OOl) substrate. An even more complicated behavior evolves from the second model of 
structural imperfections where a perfect R monolayer in the surface (x = 0) as well as in the 
first subsurface (x = 1) layer carries a sizable local moment while ferromagnetic behavior of 
monolayers strongly perturbed by interdiffusion (for intermediate values of x) is substantially 
reduced (Fig. 5). This leads to a magnetic gap for 0.5 < x < 0.6 in the Ru case and to a 
deep minimum in both local moments near x = 0.6 in the Rh case. 

The rapid decrease of the local moments with increasing coverage (Fig. 4) and interdif- 
fusion (Fig. 5) can be understood from the shape of the local DOSs of R atoms; a more 
detailed discussion may be found in [32]. 

5. LIMITATIONS OF THE FIRST-PRINCIPLES LMTO-ASA THEORY 

Due to presence of overlapping spheres in the LMTO-ASA formalism, it is not possible 
to calculate reliably structural energy differences associated with symmetry-lowering dis- 
placements of atoms. For example. ASA is sufficient for calculating bulk moduli (where 
the symmetry of the structure considered does not change during deformation) but it fails 
when calculating shear elastic constants or phonon frequencies. The reason is an inaccurate 
evaluation of the Coulomb and exchange-correlation energies with the spheroidized charge 
density within the ASA [21, 34]. As concluded by Tank et al. [35], this part of the total 
energy has the correct dependence on bond lengths, but not on bond angles. However, the 
non-spheroidized (full) charge density coming out of a conventional self-consistent LMTO- 
ASA calculations is quite accurate. Therefore the schemes calculating the Coulomb and 
exchange-correlation energy using full charge density [34, 36] are very successful in total en- 
ergy evaluations. The third generation of the TB-LMTO method is being developed [15, 35] 
which should improve the calculations of total energy considerably. 

The band structure energy, densities of states etc. obtained from the present LMTO-ASA 
calculations are also very similar to those obtained by full-potential calculations, even for 
low-symmetry configurations [21]. This suggests that the band-structure energy can reliably 
be calculated using the LMTO-ASA, which is relatively easy and fast, and the Coulomb and 
exchange-correlation energy may be represented by some semiempirical terms. As shown by 
Foulkes and Haydock [37], these semiempirical terms can be described, at least in principle, 
by pair potentials. This approach constitutes a basis for our semiempirical TB-LMTO-ASA 
approach. 

6. SEMIEMPIRICAL TB-LMTO-ASA CALCULATIONS 

For computer simulation of atomic configuration of extended defects in metals, semiem- 
pirical interatomic potentials have frequently been used (for a recent review, see e.g. [38]). 
These potentials usually do not include angular forces and directional bonds. Nowadays, 
bond-order potentials are being developed which include angular forces as well [39]. 

However, according to Sec. 5, we can use the TB-LMTO-ASA Hamiltonian as a basis for 
a semiempirical quantum-mechanical method of the TB type that includes angular forces. 
The total energy of the system may be written as [40]: 

Ei      _   JTILMTO-ASA   ,    TPEMT   ,    j? /-i7\ 
ÜJtot - Üband + &AS       + Urep- U'J 

Here E^J°~ASA is the band-structure energy evaluated within the ASA, E™T represents 
a correction to the ASA taken from the effective medium theory [41] and ETep is a repulsive 
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term simulated by short-ranged pair potential. 
If there arc no adjustable parameters in the band term, the pair potential term may not 

be sufficient to describe variations of the total energy satisfactorily (e.g., we could not obtain 
the correct Cauchy pressures for elastic constants [42]). The presence of the E^,T makes it 
possible to remove this discrepancy. 

The quantities E™T and ETcp contain adjustable parameters that are fitted to reproduce 
the equilibrium lattice constant, bulk modulus and shear moduli C" = (Cu — Ci2)/2 and 
CM for the most stable structure of the unperturbed material. Angularly-dependent forces 
are included automatically. 

Although the adjustable parameters in the terms E%$,T and Ercp arc fitted to properties 
of the ground-state structure only (lattice constants, elastic moduli), the formula (17) yields 
correct description of the structural energy differences, energetics of large homogeneous 
deformations (~ 100 % and higher), phonon frequencies etc. [40, 43], 
distant and non-equilibrium regions of the configurational space. 

i.e.   also in more 
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Fig. 6. The energy of trigonally deformed tungsten as a function of c/a ratio at constant volume. 

Fig. 6 shows the total energy of trigonally deformed tungsten vs. c/a ratio calculated 
both by full-potential LMTO method and by the present scmiempirical scheme. The c/a 
ratio is defined to be equal to 1 for bcc structure and 4 for fee structure (at c/o=2, we 
obtain the simple cubic structure so that this deformation path connects continuously the 
bcc, simple cubic and fee structures [44]). It may be seen from Fig. 6 that the full-potential 
LMTO curve is well reproduced by the present scmiempirical approach including the features 
in the neighbourhood of the fee structure. Comparisons of this type give us some confidence 
when using the present scheme for simulation of the structure of extended defects. 
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7.   CONCLUSIONS 

It was shown that the first-principles TB-LMTO-ASA method employing surface Green's 
function technique and/or coherent potential approximation is very useful for electronic 
structure calculations of complex systems and materials with defects. Provided the atomic 
configuration of the defective region is known, the method gives reliable electronic structure 
characteristics as for example local densities of states, charge densities etc. The LMTO- 
ASA total energy exhibits a correct dependence on bond lengths, but not on bond angles. 
Therefore, the first-principles TB-LMTO-ASA method cannot be used to calculate reliably 
structural energy differences associated with symmetry-lowering displacements of atoms and 
for relaxing defect configurations. 

However, the TB-LMTO-ASA band structure energy can be combined with a semiem- 
pirical term describing the effect of electrons in the interstitial region and the repulsive 
term described by a pair potential. This approach reproduces very well the full-potential 
LMTO results for high-symmetry structures and their large deformation and, therefore, is 
very promising for atomistic simulations of extended defects. 
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ABSTRACT 

We describe the ab initio construction of two-center tight-binding (TB) hamiltonians, which 
at a properly chosen input density upon non-selfconsistent solution of the related Kohn-Sham 
equations transform the energy within density-functional theory (DFT) into a tight-binding- 
like expression. In cases, where the electron density of the interacting many-atom structure in 
good approximation may be represented as a sum of atomic-like densities, the method has been 
shown to operate highly transferable, being particularly successful in determining the properties 
of low-energy silicon clusters, in predicting the structure and vibrational signatures of fullerene 
oligomers, amorphous carbons and carbon nitrides and in simulating elementary growth reactions 
on diamond surfaces. The uncertainties within the standard non-SCF DF-TB-variant, however, 
increase if the chemical bonding is controlled by a delicate charge balance between different atomic 
constituents, as e.g. in organic molecules and in polar semiconductors. Therefore, we extend the 
standard TB-approach to the operation in a selfconsistent-charge mode (SCC-DFTB) in order 
to improve total energies, forces, and transferability in the presence of considerable long-range 
Coulomb interactions. By using a variational technique, we derive a transparent and readily 
calculable expression for the iterative modification of Hamiltonian matrix elements and show, 
that the final energy is a second order approximation to the total energy in density-functional 
theory, see M. Elstner et al, this Symposium. First successful applications to surface studies of 
GaAs and dislocation modeling in GaN will be presented. 

I. INTRODUCTION 

It has been shown that the TB-approach in general may be understood as a stationary ap- 
proximation to density-functional theory (DFT) [1, 2, 3, 4, 5]. Central features of the common 
methodology, namely, non-selfconsistent treatment of the Kohn-Sham equations and the exploita- 
tion of pairwise repulsive interactions are strongly related to an appropriate "educated guess" 
for the inital charge density of the system. This makes the total energy readily computable and 
second-order effects arising from a charge redistribution negligibly small. Further simplifications 
that frequently enter calculations are related to the introduction of semi-empirical parameters or 
functionals into the total energy expression [6, 7]. The definition of the Hamiltonian matrix ele- 
ments based on adjustable values has been applied very successfully to many problems. However, 
such methods often fail in bonding situations that are not covered by the parametrization space. 
These are exactly the cases of real interest. 

In order to completely avoid the difficult parametrization within a multiconfigurational space, 
more sophisticated, yet efficient, TB-schemes have recently been developed. These methods 
include the TB-LMTO (linear-muffin-tin-orbitals) method [8], the Hartree-Fock-based TB [9], a 
successful DFT-parametrization of TB [10], the ab initio multicenter TB [5], and our DF-based 
(two-center) TB approach [11]. Here, the Hamiltonian matrix elements are explicitly calculated 
within a non-orthogonal basis of atomic orbitals. These schemes yield accurate results for a 
broad range of bonding situations, for which the superposition of overlapping atom-like densities 
serves as a good approximation for the many-atom structure. Nevertheless, problems naturally 
arise if a delicate charge balance is required for establishing chemical bonding between different 
types of atoms. In such cases, an adjustment of the charge distribution via a selfconsistent (SCF) 
procedure may take place. Hence, there is a need to extend the TB formalism in order to improve 
its transferability without discarding the simplicity, speed and efficiency which make it so useful. 
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Within the framework of standard empirical TB theory, several proposals have been made 
co generalize the TB-energies by explicitly considering interatomic electron interactions within a 
standard Hubbard approach [12, 13, 14, 15]. Skriver and Rosengaard use an efficient selfconsistent 
Green's-function technique based on the LMTO-method within the tight-binding and atomic- 
sphere approximation [16]. Tsai et a!. [17] improved the ab initio multicenter TB scheme [5] in 
order to account for charge transfer. By using the Ewald technique, they added and subtracted 
to each atom a Gaussian charge distribution and solved the Schrödinger equation iterative]}', 
to determine the selfconsistent atomic charges. Demkov et al. [18] used a different approach 
to modify this TB scheme by including long ranged Hartrcc contributions, which leads to a 
selfconsistent adjustment of site-dependent occupation numbers. 

Here, we focus on a systematic extension of the tight-binding formalism and of our DF-TB 
scheme [3, 11] in order to derive a generalized selfconsistent charge (SCC) methodology. This 
differs from previous approaches since wc base the modification of the TB total energy expression 
on a second-order expansion of the Kohn-Sham energy functional [19] with respect to density 
fluctuations. The new methodology ensures a proper distribution of the charge and overcomes the 
requirement of local charge neutrality [4], especially in multi-component systems. In maintaining 
the simple two-center picture, the new scheme can be easily incorporated into any standard TB- 
method. We demonstrate the improvements considering properties of molecular systems, where 
the non-SCC scheme failed, and point out recent successful applications to polar semiconductors. 

II. DENSITY-FUNCTIONAL BASED TIGHT-BINDING, DF-TB 

The total energy of a system of M electrons in the field of N nuclei at positions R may be 
written within DFT as a functional of a charge density n(r): 

-x:«-!—i/^,,>™+i|Ä, (i) 

where the first sum is over occupied Kohn-Sham eigenstates <P;, the second term is the exchange- 
correlation (XC) contribution, and the last term covers the ion-ion core repulsion, £,,. Wc now 
rewrite the total energy in order to transform the leading matrix elements. We first substitute 
the charge density in (1) by a superposition of a reference or input density n'0 = n0(r') and a 
small fluctuation Sn' = Sn(f'), Jdf' is expressed by /': 

' "o("o + Sn) 

- / Vxc[n0](n0 + Sn) + \ jf fa'(I'° + f") + ETC[n0 + Sn] + E„ . (2) 

The second term in this equation corrects for the double-counting of the new Harircr, the third 
term for the new XC contribution in the leading matrix element and the fourth term comes from 
dividing the full Hartrcc energy in (1) into a part related to n0 and to 8n. 

Finally, we expand Exc at the reference density and obtain the total energy correct to second 
order in the density fluctuations. Note that the terms linear in Sn cancel each other at any 
arbitrary input density n0: 

occ 1     /* /*'      ' r 

£ = J>.-|/7o|*.-)    -    \\\ ^~ + Exc[n0}-Jvxc[n0]n0 + Eu 
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III. ZERO-th ORDER NON-SCC APPROACH 

The traditional non-SCC TB-approach is to preserve the first 5 terms in this final equation, 
with Ho as the Hamiltonian operator resulting from an input density no. As usual, a frozen-core 
approximation is applied to reduce the computational efforts by only considering the valence 
orbitals. The Kohn-Sham equations are then solved non-selfconsistently and the second-order 
correction is neglected. The contributions in (3) that depend on the input density UQ only and 
the core-core repulsion are taken to be a sum of one- and two-body potentials [2]. The latter, 
denoted by Erep, are strictly pairwise, repulsive and short-ranged. The total energy then reads 

occ 

ESB = 52(9i\H0\Vi) + Erep. (4) 
i 

To solve the Kohn-Sham equations, the single-particle wave functions <P; within an LCAO- 
ansatz are expanded into a suitable set of localized atomic orbitals tp„, 

Vi(r) = Y1cvi<pv{r-Rk), (5) 

As described earlier [11], we employ confined Slater-type atomic orbitals. These are determined 
by solving a modified Schrödinger equation for a free atom within SCF-LDA calculations. As 
an approximation, we write the one-electron potential of the many-atom structure as a sum of 
spherical atomic contributions: 

VdrW = Vext + /'p^sj + y-M = £ Vo (I*"- &I) - (6) 

where Vo is the Kohn-Sham potential of a neutral pseudoatom due to its confined electron density. 
By applying the variational principle to the zero-th order energy functional (4), we obtain the 
Kohn-Sham equations which, finally, within the pseudoatomic basis, transform into a set of 
algebraic equations. 

M 

£Ct,;(ff;L-£,V) = 0,    fy,«, (7) 
V 

H°v = {<Pß\Ho\<P„);    V = M<P») I    V^ea, vtß. (8) 

Consistent with (6) we neglect several contributions to the Hamiltonian matrix elements HßV [3] 
yielding: 

1efreeatom if JJ = 1/ 

(rf\f + V0
A + V0

B\tf)   HA^B     . (9) 
0 otherwise 

Since indices A and B indicate the atoms on which the wavefunctions and potentials are centered, 
only two-center Hamiltonian matrix elements are treated and explicitely evaluated in combination 
with the two-center overlap matrix elements. As follows from (9), the eigenvalues of the free atom 
serve as diagonal elements of the Hamiltonian, thus guaranteeing the correct limit for isolated 
atoms. 

By solving the general eigenvalue problem (7), the first term in (4) becomes a simple summa- 
tion over all occupied Kohn-Sham orbitals e,- (occupation number «,), while Erep can easily be 
determined as a function of distance by taking the difference of the SCF-LDA cohesive and the 
corresponding TB band structure energy for a suitable reference system: 

occ 

Erep(R) = ES
L
C

D
F

A(R) - ]T niei(R) . (10) 
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Interatomic quantum forces for molecular-dynamics applications can easily be derived from 
an explicit calculation of the gradients of the total energy at the considered atom sites: 

- t)FTB °cc 
dn, d£i 
-^-£i + ri{—— 
dRk dRk 

where the electronic part of the forces reads 

dH%, 

dR, 

k'+k 

dErcp(\Rk - Rk, 

dWk 

dS„u 

' dR, 

(11) 

(12) 

IV. RESULTS AND TRANSFERABILITY 

The just dicussed standard DF-TB-approach has been successfully applied to various problems 
in different systems and materials, covering carbon, silicon & germanium modifications, boron 
and carbon nitrides, silicon carbide and oxide and even III-V semiconductors. Provided a clever 
guess of the initial or input charge density of the system is found, the energies and forces are 
correct in second order of occuring charge density fluctuations. Furthermore, the once determined 
short-range two-particle repulsion (using a proper reference system) can be shown to operate 
transferable in very different bonding situations considering various scale systems. In the following 
we will demonstrate this with a few examples, finally approaching the limits of non-selfconsistency. 

Prediction of low-energy silicon clusters /18/ 

We have used the non-SCC DF-TB-method to determine new lowest-energy structures for 
silicon clusters with 9 to 14 atoms. The confined Slater-type atomic orbitals were obtained by 
solving the Kohn-Sham equation for a single silicon atom with an additional potential V(r) = 
(r/ro)2, with ro = 3.8ag. We restrict ourself to a minimum s,p-basis set to allow fast molecular- 
dynamic simulations. 

The tetrahedral Sis cluster was choosen to determine the shortrange repulsive potential in 
the tight-binding total energy expression. Although this structure is not the ground-state of Si5 

it represents a locally stable energy minimum. We set the repulsive potential equal to zero for 
r > rc = 5.2aB. 

For small silicon clusters with up to 8 atoms several highly accurate ab initio calculations 
has been performed, which, together with experimental IR and Raman spectra, have established 
the geometries and electronic states for clusters in this size range [21]. For Si2 to Sis we obtain 
within the DF-TB-mcthod the same equilibrium structures as Fornier et al. [22] and Pederson 
et al. [23]. Overall, there is good agreement between the SCF-LDA and DF-TB methodologies 
for geometrical parameters and binding energies for these small clusters. The deviations in bond 
lengths and angles are smaller than 10%. The deviations in cohesive energies are smaller than 
4% for all clusters larger than Si2- 

Considering larger clusters with 9 to 14 atoms, we have started our search for the equilibrium 
structures with different seed clusters obtained by edge or face capping of smaller stable clusters 
or with clusters taken from the literature. We have optimized these structures with our DF- 
TB method by applying either a stochastic molecular-dynamic quenching or conjugate gradient 
relaxation until the maximum force on every atom dropped below lO-4 Hartree/Bohr. At least 
the two most stable DF-TB structures were then relaxed with the SCF-LDA code of Pederson et 
al. [24] using a 6s5p3d basis set. 

Since the DF-TB method does not take spin into account, we have shifted the DF-TB energies 
by the spin-polarization energy of 0.656 eV. The cohesive energies and highest occupied to lowest 
unoccupied molecular orbital (HOMO-LUMO) gaps for the lowest energy clusters are summarized 
in Table I. Si7, Sim and Sin are more stable than their neighbors. The order of the DF-TB 
determined cohesive energies of the lowest energy structures for one cluster size agrees with the 
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Cluster (sym.) ETB Esc/ GapTs Gapscy 
Si2 (Coo/,) -1.936 -1.780 0.000 0.000 
Si3 (Civ) -2.983 -2.965 1.874 1.008 
Si4 (D2h) 

A/.) 
-3.488 -3.541 1.453 1.075 

Si5 -3.766 -3.825 1.702 1.976 
Si6 (Civ) -3.925 -4.041 1.337 2.106 
Si7 ASA) -4.063 -4.187 1.511 2.097 
Si8a r2h\ -4.071 -4.122 1.155 1.419 
Si8b (Civ) -4.087 -4.072 0.843 1.086 
Si9a ys2v) -4.176 -4.234 1.904 1.988 
Si9b (C^v) -4.126 -4.183 1.846 1.551 
Si9c Aft) -4.031 -4.097 0.173 0.397 
SilOa (Czv) -4.242 -4.357 1.706 2.125 
SilOb (Td) -4.129 -4.286 3.405 2.136 
Silla \c.) -4.203 -4.274 1.214 1.041 
Sillb (E) -4.210 -4.262 1.009 0.922 
Sillc (Cs) -4.205 -4.259 1.330 1.073 
Sil2a <?. -4.228 -4.274 0.925 0.593 
Sil2b (E) -4.250 -4.267 0.862 0.940 
Sil3a (C3v) 

(C2v) 

-4.204 -4.305 1.451 1.606 
Sil3b -4.277 -4.291 1.332 0.787 
Sil4a (Cs) 

\c.) 
-4.328 -4.372 1.531 1.774 

Sil4b -4.300 -4.332 1.029 1.323 
Sil4c A/.) -4.283 -4.253 1.095 0.896 
Sil4d (C3v) -4.179   0.000 — 

Table I: Binding energies with respect to spin polarized atoms in eV/atom and HOMO/LUMO 
gap in eV for silicon clusters as calculated within DF-TB and scf-LDA. 

SCF-LDA results for all smaller clusters and Sig, Siio and Sij.4 but is reversed for Sig, Sin, Sii2 
and S113. Please note that for the three latter clusters the differences in the SCF cohesive energies 
are smaller than 0.02 eV/atom, which certainly is below the accuracy of the DF-TB approach. 
The variation of the HOMO-LUMO gap as calculated within DF-TB with increasing cluster size, 
n, is in good agreement with the SCF-LDA calculations for n > 7. The quantitative differences 
for Sis to Sii4 are at maximum of 20%, whereas the deviations increase with decreasing cluster 
size. Note that an accurate description of unoccupied orbitals often fails due to the use of a 
minimum basis set. We obtained the following results for Sig, Sin, Sii2, Sii3 and Sin: 

Sig: We found two stacked distorted rhombi with an additional atom capped on top (Sig,,) to 
be the lowest-energy cluster. This structure has Civ symmetry and is 0.05 eV/atom more stable 
than the distorted tricapped trigonal prism Sig&, first proposed by Ordejon et al. [25] as the most 
stable structure of Sig. 

Sin: We confirm a structure, Sina, proposed by Lee et al. [26] using a TB-method to be the 
most stable Sin cluster. This structure may be seen as a distorted pentacapped trigonal prism. 
The relaxation out of different starting structures for Sin with the TB-method has also spawned 
another cluster, Sin;,, having no symmetry at all. This cluster is only 0.01 eV/atom less stable 
than Sina. It is a distorted 4-5 prism, with two atoms capping the fivefold ring. 

Sin: Recently Ramakrishna et al. have presented results of their extensive search for the 
ground state of Sii2 [27]. They report on six isomers, which differ by only 0.02 eV/atom in 
cohesive energies, as calculated within the DF-LDA. These isomers can all be described either as 
hexacapped trigonal prisms or antiprisms with different faces capped. Considering their isomer 2 
(Sii2o), a hexacapped distorted trigonal prism with (Cs) symmetry, we obtain a cohesive energy 
of-4.274 eV/atom. We also find another, nonsymmetric, structure Sii26 to be only 0.01 eV/atom 
less stable than their isomer 2. 

5J'I3.' The most stable structure of Sii3 consists of four stacked triangles with a cap on top. 
Recent QMC [28] and DF-LDA [23, 29] calculations found this structure Sii3„ to be favoured 
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against the icosahedral form of Sii3- From the present search we predict the cohesive energy of 
another structure to be very close to that of the lowest energy cluster. This structure, Sii3(,, has 
C2v symmetry and can be described as a distorted tricapped trigonal prism with an additional 
rhombus capped on one edge of the prism. The energy difference between these two structures is 
only 0.014 eV/atom. 

Siu: Only a few structures for Sin have been presented in the literature so far. We suggest 
a stacking sequence of two distorted rhombi, one fivefold ring and an atom on top (Sii.|„) as a 
candidate for the equilibrium structure. Another local stable isomer is the octacapped trigonal 
prism with D$h symmetry (Sinc). This geometry is 0.12 eV/atom less stable than the lowest 
energy candidate. 

To aid in the experimental identification of these clusters, we have computed the full vi- 
brational spectra of the structures, along with the Raman activities, IR intensities and static 
polarizabilities, using SCF-DF theory within the LDA. A detailed description of the results can 
be found in [20]. 

Energetic stability and structure of amorphous carbon nitride /29/ 

The behaviour of nitrogen in carbon systems is an area of intense interest within the materi- 
als science research community. At high N incorporation rates, the theoretical prediction of the 
possible formation of a supcrhard C3N.i-phase [32], has spawned an, a.s yet, unsuccessful world- 
wide effort to fabricate it. Various deposition techniques have produced amorphous films with 
a nitrogen content below 40%, which is found to be an upper limit for nitrogen incorporation. 
Infrared (IR) and Raman spectra show that, in films with nitrogen content over 30%, in addition 
to single and double bonds some triple bonding is also present [33]. Simultaneously the mass 
density of 1.8 to 2.3 g/cm3 is usually found to be much lower than the desired 3.5 g/cm3 in the 
low-compressibility pases [34]. 

In reasoning these problems on an atomistic level, we have investigated the chemistry of 
nitrogen incorporation into carbon systems by means of the DF-TB molecular-dynamics (MD) 
scheme. Using MD annealing techniques, we generated amorphous carbon nitride structures, 
<2-CN, with various stoichiometries (0 to 57 %) and densities (1.5 to 4.0 g/cm3). 

Focusing on high densities, we observe clear trends counteracting the formation of a low- 
compressibilty phase: (i) N-incorporation strongly catalyzes C-undercoordination, which in turn 
(ii) causes the nitrogens to develop paracyanogen-like (CN-doubk and -triple) bonding. & (Hi) 
The most favorable densities for a-CN arc far lower than that desired by hard crystalline phases. 
A closer analysis of the high density models with 14% N reveals the nitrogens to be fairly randomly 
distributed over the cell, bonding to both sp3- and sp2-like carbon. Most of the N's have three 
C-neighbors and form single bonds. Approximately one half of them are sp3-hybridized with one 
filled lone-pair orbital, while the other half shows spMiybridization with C-N--C bond angles 
close to 120°. These models can be regarded as heavily N-doped a-C, in which the nitrogens are 
merely substituted into the C-network. 

The microstructure of the models changes considerably, however, at higher N-incorporation 
rates. The structural properties are governed to an ever increasing extent by the C-N-bonding, 
which is highly complex, since both atoms can exhibit several hybridizations, depending on the 
local atomic environment. The changes can be best understood by considering the nitrogens, 
which should be preferably sp2-hybridized as in the /3-phase with three single-bonded C-neighbors. 
With increasing N-content, we observe a pronounced reduction of the N-C coordination number, 
decreasing from almost 3 at low N-conccntration to approximately 2 at 57% N. The overall C- 
coordination simultaneously decreases from 3.91 to 3.61 at 3.5 g/cm3. The related lowering in 
the carbon sp3-fraction versus N-content is plotted in Fig.l for the three highest densities. 

In the nitrogen-free case, the sp3-contcnt rises from approximately 65% at 3.0 g/cm3 to still 
less than 100 % (90 & 94 %) at 3.5 and 4.0 g/cm3. The undercoordinated atoms preferentially 
arrange in pairs, lowering the total energy by forming additional 7r-clusters. This agrees with 
former studies using a slightly different annealing scheme [35] and with predictions of non-SCF ab 
initio MD[36]. The addition of nitrogen lowers the sp3-carbon content drastically. This tendency 
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Figure 1: Carbon sp3-fraction versus N-content. (lines are just drawn to guide the eye.) 

holds true up to a nitrogen concentration of 43%, where we find considerably decreased fractions 
of 26%, 57% and 78% sp3-hybridized carbon at p=3.0, 3.5 and 4.0 g/cm3, respectively. At the 
C3N4-stoichiometry, the values are essentially unaltered. By comparing the models with low and 
high N-fractions at crystalline density of 3.5 g/cm3, the difference is immediately obvious: while 
the former exhibits a compact, three dimensional cross-linked network, the connectivity in the 
nitrogen-rich cell is considerably reduced; there are even some chain-like and layered structure 
elements. Such trends will strongly counteract the successful synthesis of low-compressibility 
C3N4. At the latter stoichiometry we find mainly three types of bonding: 1) 15-20% of the 
nitrogens have three singly-bonded neighbors, again with approximately one half in the most 
favourable sp2-hybridization; the remaining are sp3-like with a doubly occupied lone pair orbital. 
2) 35-45% are bonded to only two carbons, most to one sp3- and one sp2-C, forming one double 
and one single bond. Finally, 3) 25-35% have only one neighboring C-atom, forming short cyanide 
(triple-) bonds. The type 2) and 3) bonding configurations are well-known from paracyanogen, a 
polymerized form of cyanogen, which exhibits conjugated C-N bonds and cyanide groups attached 
to the network. The occurance of paracyanogen-like bonding at even higher densities can explain 
why the IR and Raman spectra of films with an N-content above 30% show not only peaks 
from single and double CN-bonds, but also a peak at 2150 cm-1, which is attributable to cyanide 
bonds. A physical intepretation of the mixed nature of the C-N bonding in a-C3N4 can be gained 
by noting that bonding configurations 1), 2) & 3) are almost isoenergetic. We therefore arrive 
at a surprisingly simple and powerful argument explaining the difficulty in fabricating C-C3N4: 
a pure crystalline low-compressibility form is unlikely to occur when the bonding configuration 
is in competition with the two other, equally viable bonding configurations during the growth 
process. 

IV. THE SELFCONSISTENT-CHARGE EXTENSION, SCC-DFTB 

All the so far discussed applications may be seen as examples, where the electron density of the 
interacting many-atom structures in good approximation may be represented as a sum of atomic- 
like densities. The uncertainties within the standard DF-TB-variant, however, increase if the 
chemical bonding is controlled by a delicate charge balance between different atomic constituents, 
as e.g.   in organic molecules and in polar semiconductors.   Therefore, we have extended the 
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Standard TB-approach to the operation in a selfconsistent-charge mode (SCC-DFTB) in order 
to improve total energies, forces, and transferability in the presence of considerable long-range 
Coulomb interactions. We are starting from equation 3 and now explicitely consider the second 
order term in the density fluctuations. We first decompose 6r>(r) into atom-centered contributions 
which we expand in a series of radial and angular functions. Truncating the multipole expansion 
after the monopole term accounts for the most important contributions of the charge transfer 
yielding an approximate expression for the second order term, for a detailed discussion see M. 
Elstner et al. [37] and J. Eisner et al. [38]. 

Finally, the DFT total energy   (3) is conveniently transformed into a transparent TB-form, 

occ ,    N 

E = £(*,|tf0|>J>,) + -J2laßAqaAqß + Ercp, (13) 
Z aß 

where fag = 7a/?(f/Q, Uß, \Ra - Rß\) is analytically evaluated as the exact Coulomb interaction of 
two exponentially decaying charge contributions that integrate to the correct atomic net charges 
and reproduce the Hubbard-parametcrs Ua of the isolated atoms in the limit \Ra - Rß\ = 0, 
calculated at the LDA-level. This approach is consistent with the use of Slater-type orbitals 
as basis and guarantees a fast transition to Coulomb-like behavior for increasing distances, see 
also [38, 39]. As discussed earlier, the contribution due to H0 depends only on n0 and is therefore 
exactly the same as in the previous non-SCC studies [11]. However, since the atomic charges 
depend on the one-particle wave functions <Pj, now a selfconsistent procedure is required to find 
the minimum of expression (13). 

To solve the Kohn-Sham equations, the single-particle wave functions ty, again are expanded 
into a suitable set of localized atomic orbitals (pu, compare equation (5). In accord with the 
previous scheme [11], we employ confined Slater-type atomic orbitals. These are determined by 
solving a modified Schrödinger equation for a free atom within SCF-LDA calculations. By apply- 
ing the variational principle to the energy functional (13), we obtain the Kohn-Sham equations 
which, within the pseudoatomic basis, transform into a set of algebraic equations. We employ 
the Mulliken charge analysis for estimating the charge fluctuations Aqa = qa - g°, 

-.   occ N 

1° = 2 ^ "' ^ ^ (c»"' c'"' S'"' + c*; c"' 5"") (14) 
i fiEa   v 

and obtain: 
M 

l>w(//„„ - e,S„„) = 0,    V/M, (15) 

1        N 

Htw   =   {<Ptl\H0\V>„) + -Slll,Yi(-/oi + jP()AcU (16) 
C 

= K> + HU ;  sf" = vwlv");  V/'CQ> v(ß- 
Since the overlap matrix elements S)t„ generally extend over a few nearest neighbor distances, 
they introduce multiparticle interactions. The second-order correction due to charge fluctuations 
is now represented by the Mulliken charge dependent contribution H^v to the matrix elements 
ffM„. 

As in previous studies [11], we determine the short-range repulsive pair potential Ercp as a 
function of distance by taking the difference of the SCF-LDA cohesive energy and the correspond- 
ing TB band structure energy (which is now modified by the Coulomb correction) for a suitable 
reference structure. Since charge transfer effects are now considered explicitely, the transferability 
of Ercp is significantly improved compared to the non-SCC approach. Again, we find a simple 
analytic expression for the interatomic, forces by taking the derivative of the final SCC-DFTB 
energy (13) with respect to the nuclear coordinates, 

0 V^    V^ (dHlv     (       Hl„\dStlu\ x^d-,ai dErcp 

dRk      \        S»v I dRk y V 9Rk dR 
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V. IMPROVED TRANSFERABILITY, RESULTS 

In the remainder of this paper, we shall concentrate on presenting results of first successful 
applications of the SCC-DFTB scheme to a wide range of systems which are of interest in chem- 
istry, biology, and physics. In particular, we demonstrate the improvements of the method as 
compared to conventional DF-TB and ab initio calculations. 

Organic and biological systems /37/ 

For our first benchmark, we have calculated the reaction energies of 36 processes between small 
closed shell molecules containing oxygen, nitrogen, carbon, and hydrogen from [40]. We have 
found a mean absolute deviation from experiment of 12.5 kcal/mol for the SCC-TB, compared to 
11.1 kcal/mol for the DFT-LSD calculations. Further, considering the optimized geometries of a 
63 organic molecules test set from Ref. [41], the mean absolute deviations from experiment in the 
bond lenghts and bond angles are AR = O.OIOA and Ad = 1.95° [39] respectively, compared to 
AR = 0.017Ä and AÖ = 2.01° by using the semi-empirical AMI Method [41]. The improvement 
over the non-SCC treatment is impressively demonstrated for systems with a delicate counterbal- 
ance between ionic and covalent bonding contributions, as e.g. in formic acid (see M. Elstner et 
al., this volume). The DF-TB method overestimates the equalization of single and double bonds 
in the amide and carboxyl groups. This is exclusively due to too much charge flow (of nearly 
one electron) from carbon to oxygen, clearly indicating the need for a selfconsistent charge re- 
distribution. SCC can considerably improve vibrational frequencies of very simple molecules like 
CO2, in which charge transfer dominates. The symmetric and antisymmetric stretching modes 
(E3 & £ J change from 1458 k 1849 cm"1 in DF-TB to 1348 & 2305 cm"1 in SCC-DFTB (which 
is in good agreement with the experimental values, 1333 & 2349 cm-1). Frequencies have further 
been tested for a series of 33 standard organic molecules yielding 6.4 % mean absolute deviation 
of vibrational frequencies from the experiment [39]. These are very promising results for future 
applications of the SCC-DFTB scheme to investigations of the geometry, dynamical behavior 
electronic structure of large biomolecules [43]. 

GaAs surface reconstruction /42/ 

The GaAs (111) \/l9 x \/l9 surface periodicity can be observed by heating [45, 46] or annealing 
[47] the sample at fs 500°C. A significant desorption of surface As is reported at the transition 
from 2 x 2 to \/l9 x vT9 periodicity. Moreover, Woolf et al. [48] found that the \/l9 X \/l9 
periodicity does not exist under a strong AS4 flux, clearly showing that this particular surface 
should exist in a Ga rich environment. 

Several structural models have already been suggested to explain the \/l9 x \/l9 periodicity 
[47, 49]. However, a total energy calculation by standard SCF-LDA schemes is still lacking due 
to the computational expenses. Here we are discussing the first conclusive calculations for the 
formation energies of various models for the GaAs (111) VW X \/l9 reconstruction together with 
previously examined models for 2 x 2 reconstructions [47, 49]. 

The relative stabilities of two structures having different numbers of Ga and As atoms depend 
on the reservoir with which the atoms are exchanged in the structural transition. Questions of 
thermodynamic stability are therefore posed within the context of the atomic chemical potentials 
[50]. The surfaces were modeled by two dimensional slabs. To obtain absolute surface energies 
we use an energy density formalism which is described in detail in Ref. [51]. 

Kaxiras et al. [49] proposed a structural model consisting of Ga trimers and three-fold 
coordinated As atoms at the surface. In this structure (see Ref.[49] for a figure) all As lone 
pairs are filled and | of an electron would have to be placed into Ga derived dangling bonds. 
These have, however, high energies causing the structure to relax from this configuration. In 
the relaxed structure there are developing metallic Ga-Ga bonds in favor of emptying related 
dangling bonds. However, our calculation gives a high surface energy. This can be understood by 
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Figure 2: Top view of the Ga metallic model.  Large (small) filled circles represent top (third) 
layer As, empty circles second layer Ga atoms. 
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Figure 3: Surface energies of the GaAs (111) structures plotted versus the Ga chemical potential. 
The part on the left (right) of the diagram corresponds to As (Ga) rich growth conditions. 
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noting that surface Ga trimers are far from being sp2 coordinated and have thus a high surface 
energy. 

High resolution STM images performed by Biegelsen et cd. [47] indicate furthermore that 
the top layer As atoms should be arranged within a hexagonal ring. To match the STM images 
Biegelsen et al. proposed a model, where six top layer As atoms are bound to six three-fold 
and six two-fold coordinated Ga atoms (cf. Ref. [47]). Due to the six two-fold coordinated Ga 
atoms 3.75 electrons would have to occupy Ga derived dangling bonds, which strongly violates the 
electron counting rule. It is therefore not surprising that the atoms relax towards a configuration 
which fulfills the electron counting rule with only two two-fold coordinated Ga atoms and four 
metallic Ga-Ga bonds. The Ga-Ga bonding is achieved by forcing the Ga atoms into nearly 
linear Ga-Ga-As chains which are energetically very costly resulting in a high surface energy. 

We then investigated the stability of a variety of different structures. The energetically most 
favorable configuration is shown in Fig. 2. In agreement with the previously mentioned STM 
pictures [47], six top layer As atoms form a hexagonal ring. Fifteen three-fold coordinated and 
three four-fold coordinated Ga atoms build the second layer. The three-fold coordinated Ga 
atoms adopt an sp2-like hybridisation. The most important feature is the existence of the three 
four-fold coordinated Ga atoms, labeled 1,2,3 in Fig. 2. They exhibit weak metallic Ga-Ga 
bonds between them with a bond length of fa 2.9 Ä which is comparable to the bond length in 
Ga bulk (f» 2.7 A). The structure allows an additional 2.25 electrons per \/l9 x \/i9 unit cell to 
be placed into Ga-Ga bonds before Ga derived dangling bonds would have to be occupied. All As 
lone pairs are filled. The electron counting rule is thus fulfilled. This and the fact that all surface 
Ga atoms are either sp2 hybridised or exhibit metallic bonding and consequently do not have to 
adopt high energy configurations might be the reason for the low formation energy of this surface. 
Fig. 3 shows the energies of the most stable 2x2 reconstructions together with the proposed 
model for the vT9 X vT9 surface. We see that the proposed model is energetically favorable 
under Ga-rich growth conditions and could thus be a candidate for the observed periodicity. 

Theory of threading dislocations in GaN /50/ 

Threading dislocations parallel to c and Burgers vectors c, a and c+a occur at high densities 
~ 109 cm-2 in GaN. Recent cathodoluminescence (CL) studies of the yellow luminescence (YL) 
centred at ~ 2.2 eV have shown that the YL is spatially non-uniform and can be correlated with 
extended defects and especially low angle grain boundaries which contain dislocations [53]. On 
the other hand, atomic force microscopy in combination with CL has led to the conclusion that 
threading dislocations act as non-radiative recombination centres and degrade the luminescence 
efficiency in the blue light spectrum of the epilayers [54]. 

Adressing these experiments we use the SCC-DFTB and the ab initio density functional 
method AIMPRO [55] to investigate dislocations in GaN. Isotropie elasticity theory was used to 
generate the initial positions of the atoms. Relaxations were then carried out using the conjugate 
gradient algorithm. The dislocations are modelled in large clusters and in 576 atom (12 x 12 x 1) 
supercells containing a dislocation dipole in each cell in order to calculate the local line energy 
of the dislocations. In analogy to the formation energy for planar defects [56], we define the 
local line energy of extended defects as Enne = ^{E — Etuik), where E is the total energy of a 
supercel! containing two line defects, Ehulk is the total energy of a bulk system with the same 
number of atoms and L = 5.19 Ä is the length of the supercell of the line defect in the (0001) 
direction. Screw dislocations in a-GaN have elementary Burgers vector ± c and are unusual in 
often being associated with nanopipes with diameters 50 - 250 Ä [57]. We consider therefore a 
model for the open core screw dislocation (6 = ±[000c]). The relaxed structure (Fig. 4) preserved 
the hexagonal core character, demonstrating that the internal surfaces of the dislocation cores 
shown in (Fig. 5) are similar to (1010) facets except for the topological singularity required by 
a Burgers circuit. Indeed the hybridisations of the atoms situated at the wall of the open-core 
are very similar to the corresponding surface atoms at the (1010) surface [58]. In both cases the 
three fold coordinated Ga (N) atoms (no. 1 and 2 in Fig. 4,5) adopt sp2 (p3) like hybridisations 
which lower the surface energy and clean the gap [58]. However, in contrast to the (1010) surface, 
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Figure 4: Top view (in [0001]) of the relaxed core of the open-core screw dislocation ( 6 = [0001]) 
(left) and of the threading edge dislocation (b = [1120]) (right). The three fold coordinated atoms 
1 (Ga) and 2 (N) adopt a hybridization similar to the (1010) surface atoms. 

shallow gap states remain. From calculations for a full core screw dislocation and for an open 
core screw dislocation with a larger diameter we found an equilibrium diameter of 7.2 A [59]. 
Dislocations with large open diameters that are observed might arise from kinetic factors relating 
to the coalescence of misaligned interfacial growth islands leading to pinholes which do not grow 
out [60]. 

Pure edge dislocations lying on {1010} planes are a dominant type of dislocation in a-GaN 
grown by MOCVD on (0001) sapphire, occurring at extremely high densities of ~ 108 - 10" 
cm-2. They were modelled by relaxation of a cluster containing one dislocation with Burgers 
vector o[1120]/3 and a supercell with a dislocation dipole. The relaxed core is shown in Fig. 4. 
Again the three-fold coordinated Ga (N) atoms (no. 1 and 2 in Fig. 4) relax towards sp2 (p3) 
leading to empty Ga lone pairs pushed towards the conduction band minimum, and filled lone 
pairs on N atoms lying near the valence band maximum, in a manner identical to the (1010) 
surface. Thus threading edge dislocations are also electrically inactive. 

In analogy to the open-core screw dislocations we have investigated whether the energy of 
the threading edge dislocation could be lowered by removing the most distorted core atoms (see 
Fig. 4). However, removal of either the lines of atoms 9 and 10 or the atoms 1, 2, 3, 4, 5, 6, 7, 
8 and their equivalents on the right, leads to higher line energies. This implies that, in contrast 
with screw dislocations, the threading edge dislocations should exist with a full core. It is worth 
noting, however, that the core atoms 9 and 10 have very stretched bonds with bond-lengths 
ranging from 2.0 to 2.2 A and thus give rise to a stress field which could act as a trap for intrinsic 
defects and impurities, eg., the Ga vacancy O complex which could be responsible for the YL in 
n-type GaN [61]. 

VI. CONCLUSIONS 

Tight-Binding as a key to complex materials properties at large scale 

We have presented a straightforward extension of the standard TB theory to operation in a self- 
consistent charge mode based on a second order expansion of the Kohn-Sham energy functional. 
By this we successfully address a key problem of electronic structure theory, the development of 
robust, accurate, rapid, and generally transferable methods for ab-initio based simulation and 
characterization of large scale molecular and condensed systems.   The described  benchmarks 
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Figure 5: Projection of the wall of the open-core (d=7.2 Ä) screw dislocation (6= [0001]). The 
three fold coordinated atoms 1 (Ga) and 2 (N) adopt a hybridization similar to the (lOTO) surface 
atoms. 

and results clearly demonstrate the method's successful operation at sufficient accuracy on very 
different systems and materials, including up-to-date results for large-scale biomolecules, GaAs 
surface reconstructions and extended dislocations in Group-III-Nitrides. This clearly shows the 
usefulness of the scheme for improving various TB applications in material science. 

Since further a parallelized SCC-code which extends the currently tractable system size to 
1000 to 2000 atoms is already available (M. Haugk, J. Eisner, Th. Frauenheim, to be published) 
and an order-N scheme will work very soon (M. Sternberg, G. Galli, Th. Frauenheim, to be 
published) for even larger systems, the presented SCC-DFTB scheme may become one key for 
accurate material science simulations of ever larger systems. 
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Tight-binding calculations of electronic structure and resistivity 
of liquid and amorphous metals 

S.K. Bose 
Physics Department, Brock University, St.  Catharines, Ontario L2S 3A1 CANADA 

ABSTRACT 

We discuss various aspects of calculating the electronic structure of liquid and amor- 
phous metals using the recursion method and the tight-binding linear muffin-tin orbitals 
(TB-LMTO) basis. Resistivity calculations for such systems based on the Kubo-Greenwood 
formula and the TB-LMTO-recursion method are presented and compared with similar cal- 
culations based on the linear combination of atomic and atomic-like orbitals (LCAO) and 
the chemical pseudopotential approach. Results for amorphous Fe and Co and liquid Hg, 
Pd, and some 3d transition metals are presented. Sources of error in the calculation and 
ways to improve upon the present calculations are discussed. 

INTRODUCTION 

In this work we will discuss the calculation of electronic structure and the electrical 
conductivities of liquid and amorphous metals using the tight-binding linear muffin-tin 
orbitals1,2 basis. There are obvious motivations for such calculations. Numerical computa- 
tion of the electronic structure of large disordered models, based on real space methods3, 
requires short ranged basis functions. At present the tight-binding linear muffin-tin or- 
bitals (TB-LMTO) basis is the only such minimal basis available, whose properties are 
determined by the density-functional theory and which thus provides the way for a self- 
consistent first-principles calculation. A TB-LMTO basis orbital, centered on one atom, 
depends sensitively via the potential parameters and the TB structure constants1'2 on the 
chemical nature and spatial distribution, respectively, of its neighbors. This property is in 
marked contrast with the conventional TB bases, whose properties are independent of the 
local environment. A TB-LMTO basis is thus a natural choice for calculations involving 
amorphous systems. The TB-LMTO-recursion method has been used with considerable 
success to study the electronic structure and related properties of metallic glasses4-7, liq- 
uid metals8'9, quasicrystals10'11 and amorphous semiconductors12. Often the TB-LMTO- 
recursion method provides a level of accuracy that is comparable to that of the LMTO- 
supercell method4. 

LMTO and TB-LMTO 

For details of the LMTO and the TB-LMTO method we direct the readers to Refs.[l,2]. 
In a nearly orthogonal LMTO representation, the Hamiltonian matrix elements, under the 
atomic sphere approximation, can be written as 

Hta.fi-u = Evm6RK6LL, + h\LtR,v = CRL5RR,6W + A$ [s°(l - 7SV]RLiB,£( &% ■ 

(1) 
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Here R denotes the centers of the muffin-tin spheres into which the entire space in the solid 
or the liquid is divided, and L{= I, m) is the collective angular momentum index. EuR! 

denote the reference energies, usually chosen as the centers of the occupied parts of the 
respective /-bands. The properties of the atoms enter the Hamiltonian matrix H via the 
matrices X(X = C, A, 7), which are diagonal in the indices R and L and are independent 
of m, i.e., 

{X)RL,R'U = XmbRR!&LL> = Xfti6RR'6LL' . 

Also XRI = Xf, where Q is the type of the atom occupying the site R. The matrix elements 
XRL, called the potential parameters, can be derived from the knowledge of the functions 
$£, and their energy derivative at the reference energy E^m, $£, being the normalized 
solution of the radial part of the wave equation for orbital angular momentum / inside the 
sphere at R for the reference energy E„m. S° is the canonical structure constant matrix, 
which depends on the relative positions of the sites R, but is independent of the type of 
atoms that occupy the sites. 

The envelope functions of the LMTOs giving rise to the Hamiltonian of Eq.(l) are long- 
ranged. In the TB-LMTO method one uses short-ranged envelope functions. A diagonal 
"screening matrix", aRifi'u = CRL^RR'^LL'I is introduced in the theory. The resulting 
screened or short-ranged envelope functions give rise to short-ranged basis functions and 
short-ranged Hamiltonian matrix elements with the same form as in Eq.(l): 

H%L,KL, = C°RL8RR,8LL. + (A°,)'/2 [so(1 _ aS°)-}}RLR,L, (A^,)1'2  • (2) 

For disordered structures matrix elements of the screened structure constants Sa = 
S°(l — aS0)-1 connecting atoms further apart than the distance corresponding to the first 
minimum in the pair-distribution function can be neglected without serious error. The rela- 
tion between the LMTO Hamiltonian H given by Eq.(l) and the TB-LMTO Hamiltonian, 
Ha - E„ + ha, is given by 

H = E„ + ha{\ + oah°)-1 = Ha- haoah° + haoahaoah° -   , (3) 

where the parameter oa determines the nonorthogonality of the TB-LMTO basis with the 
corresponding overlap matrix being given by Oa = (1 + haoa)(l + oaha). The relationship 
between the TB-LMTO potential parameters, with superscript a, appearing in Eqs.(2) 
and (3) and the standard LMTO potential parameters appearing in Eq.(l) can be found 
in Ref. [2]. It is clear from Eq.(3) that the accuracy of the TB-LMTO Hamiltonian is cru- 
cially dependent on the parameter o° which determines the degree of nonorthogonality of 
the TB-LMTO basis. The parameters (oQ)_1 have the dimensions of energy and provide a 
measure of the energy window about the reference energies E„ for which the DOS results 
obtained from Ha are reliable. Solving the eigenvalue problem for H° only is equivalent 
to neglecting the nonorthogonality of the TB-LMTO basis. This neglect is justifiable if all 
the oa parameters are small. Since relevant bandwidths are of the order of 1 Ry, oa should 
be less than 1 Ry-1, or (oQ)_1 should be at least 1 Ry, preferably higher. In section 3 we 
will illustrate the effect of neglecting the nonorthogonality of the TB-LMTO basis by com- 
paring the densities of states (DOS) calculated by using the Hamiltonians H\ = H" and 
H2 = Ha - h°oaha for liquid Hg and Pd. Some examples are also discussed in Refs.[4,13]. 
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Pair distribution function in liquid Pd at 1580°C 
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Fig.l. Pair distribution function 
of a simulated 1372 atom cluster 
compared with the experimental 
pair distribution function in liq- 
uid Pd at 1580°C. 

SIMULATION OF LIQUID AND AMORPHOUS CLUSTERS 

Clusters representing the liquid and amorphous metals to be discussed in this work were 
all generated via Monte Carlo(MC) simulation using the Metropolis Scheme14. Results for 
liquid Pd and Hg are reported here for the first time. Therefore we provide some details 
regarding the simulation of these two systems. For simulation details involving other liquid 
and amorphous metals, whose results are occasionally mentioned for the sake of comparison 
and the completeness of the discussions, we refer the readers to previous work (liquid 3-d 
transition metals8, liquid La9, amorphous Fe and Co15 ). 

In order to generate liquid Pd clusters we employed the two body potential used by 
Gillan16 in connection with the study of hydrogen diffusion in Pd. This potential is based 
on a nearest neighbor model developed by van Heugten17 and co-workers by fitting to the 
phonon spectra. It is in the form of a sixth-degree polynomial and has a cutoff at 3.305Ä, 
which lies between the first and second neighbors in fee Pd. The minimum in the potential 
is at 2.884Ä. The depth is 0.1607 eV or 2138 K. Several(10-20) 1372-atom clusters were 
generated using this two-body potential. The number densities of the clusters were chosen 
to be 0.0594Ä-3, the density of liquid Pd at 1580°C18. The pair distribution functions of 
all such clusters, in equilibrium, compared well with the experimentally determined pair 
distribution function18. The pair distribution function of one such simulated 1372-atom 
cluster is shown in Fig.l. Except for a small difference in the location of the peak, the 
agreement is excellent. 

Since there is no suitable pair potential available in the literature for solid or liquid 
Hg, we attempted to construct one based on a method proposed by Carlsson et al.19. 
These authors derived a procedure for inverting the cohesive energy of an isostructural one- 
component system as a function of volume in order to obtain a pair potential. Essentially, 
the cohesive energy is written as a lattice sum of some effective two body potential. The 
series for the cohesive energy is inverted to obtain the pair potential in the form of a 
series involving the cohesive energies for various lattice parameters. We used the cohesive 
energy obtained by standard LMTO-ASA method for Hg in the fee structure. By writing 
the cohesive energy as a sum of two body potentials involving more and more distant 
neighbor shells one can hope to converge to a potential.   We found that for practical 
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purposes of generating a liquid cluster there is no obvious advantage in trying to achieve 
such a convergence. For example, the potential obtained with the von Barth-Hedin20 

exchange-correlation potential and with eight neighbor shells showed little difference from 
that obtained with only two neighbor shells. However, in the MC simulation, for reasons 
of computer time involved, the potential is cut off beyond distances larger than the second 
peak in the pair distribution function. The main features of the potential, such as the 
depth and the location of the minimum, are converged within 5% with only just two shells 
of neighbor. Thus we used a two body potential obtained by writing the cohesive energy 
as a sum of interactions involving only two shells of neighbors in the fee structure. For use 
in the MC simulation we fitted it to the Morse function form: 

<[>(r) = c(e-2a(r-ro) - De-Q(r-ro)), (4) 

with C = 0.18343 eV, a = 1.8537Ä-1, r0 = 3.1366.4. D = 1.6877. The potential was cut off 
beyond 4.5Ä. As discussed in detail by Carlsson et al.19, the depth of the potential thus ob- 
tained is too large compared with the potentials obtained by the pseudopotential approach 
(for sp-bonded metals) or by fitting to experimental cohesive energy and other elastic prop- 
erties. For example, the potential given by Eq. (4) has a depth of 0.128 eV, whereas the 
melting point of Hg is 233 K or 0.02 eV. The simulation using the above potential had to be 
carried out at a very high temperature (above 3000 K) to obtain pair distribution functions 
that match the experimental curves in the temperature range [150°C - 250°C]18. In the 
context of the present work the simulation temperature has no physical significance beyond 
simply a means of generating liquid clusters via a canonical MC simulation. In Fig. 2 we 
compare the pair distribution functions of 1372 atom clusters obtained via simulations with 
the experimental distributions at 150°C and 250°C. The number densities of these clusters 
are chosen to be the appropriate values for the corresponding temperatures (0.0386Ä-3 

at 250°C, and 0.0397Ä"3 at 150°C18). The agreement between the experimental and the 
simulated pair distribution functions is excellent at 250°C and becomes poorer for lower 
temperatures. However, for 150°C the agreement is still good enough to permit the use of 
the simulated clusters as appropriate models for liquid Hg at 150°C. Potentials constructed 
via nonlocal exchange- correlation functional (e.g Perdew-Wang21) differ somewhat from 
those obtained with local functionals in terms of the depth and the location of the min- 
imum. However, the clusters obtained via these potentials show similar pair distribution 
functions. Experimental pair distribution functions of liquid Hg for temperatures higher 
than 250°C are not available. We were thus unable to generate models appropriate for 
higher temperatures. The details of derivation of the potentials and the simulations will 
be published elsewhere. 

CALCULATED ELECTRONIC STRUCTURE OF LIQUID AND AMORPHOUS MET- 
ALS 

TB-LMTO studies of the electronic structure of liquid 3d transition metals8, amorphous 
Fe and Co15, and liquid La9 have been reported previously. The bouble peaked structure 
of the DOS in the crystalline phases of the 3d transition metals is found to survive in both 
the amorphous and the liquid phases, with small (less than 5%) band narrowing occurring 
between the crystalline, amorphous and the liquid phases as a result of decreasing density. 
The agreement with experimental results (such as photoemission, magnetic moment for the 
amorphous phase), whenever available, is good. In the following we present the electronic 
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Pair distribution function in liquid Hg at 250 C Pair distribution function in liquid Hg at 150°C 
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Fig.2.  Pair distribution function of simulated 1372 atom Hg clusters compared with the 
experimental pair distribution function in liquid Hg at (a) 250°C and (b) 150°C. 

structures of liquid Pd and Hg, which have not been studied so far using the tight-binding 
method. 

Electronic properties of liquid mercury seem unusual compared with most other liquid 
metals. It has a rather high dc resistivity, which decreases on addition of most metallic 
impurities. In order to explain this and several other empirical facts Mott22 proposed the 
pseudogap model, suggesting a substantially reduced density of states at the Fermi energy. 
Since then several authors have tried to compute the electronic density of states in liquid Hg 
using various methods. Some of these have been reviewed by Ballentine23. Mattheiss and 
Warren, Jr.24 presented a band model calculation for the electronic structure of expanded 
liquid mercury. Yonezawa et a/.25 employed an effective medium theory and the single-site 
approximation to discuss the electronic structure of some liquid metals including liquid Hg. 
The DOS calculations of Ballentine and co-workers (see ref. 23) are based on the Green's 
function approach, with the self-energy calculated by using a nonlocal pseudopotential. 
Most other calculations for liquid Hg are based on various other model pseudopotentials, 
with their suitability being debated among the authors. As pointed out by Ballentine23^ 
in spite of all these calculations and the available experimental results, there remain open 
questions about the electronic structure of liquid mercury. In this paper the first density 
functional(TB-LMTO) calculation for liquid mercury based on a realistic structural model 
is presented. In Fig.3(a) we show the DOS's calculated for fee Hg at a density of 0.0386 
atoms/A3, the density of liquid Hg at 250°C, using the standard LMTO method and the 
recursion method3 applied to a 1372 atom fee cluster with periodic boundary conditions. 
The Hamiltonian H2, as defined at the end of section II, was used for the recursion method 
calculation and the continued fraction was terminated using the linear predictor method of 
Allan26. The differences in the band widths in the two calculations is due to the differences 
in the Hamiltonians used, H2 being only the first two terms in the infinite series on the 
r.h.s. of Eq.(3) representing the full LMTO-ASA Hamiltonian. 

Both DOS's show a pseudogap with the Fermi energy (EF) lying slightly above the 
minimum of the pseudogap. The similarity of the two curves shows the reliability of the 
real space method we are going to use for calculating the liquid state electronic structure and 
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Fig.3. (a) The DOS of fee Hg at the density of liquid Hg at 250°C, calculated via standard 
LMTO-ASA (k-space) method and the rescursion method using Hamiltonian H2, (b) the 
DOS in liquid Hg at 250°C and 150°C calculated via recursion method using Hamiltonian 
Hi. Results show 100 atom averages. 

also that features such as a deep minimum are reproducible via the recursion method3. The 
DOS in the ground state of Hg (rhombohedral) does not show such a pseudogap. However, 
the DOS in the fee structure at the density of solid Hg (which is only marginally higher in 
energy with respect to the rhombohedral structure) does have a minimum close to EF. This 
pseudogap, related to the separation of the centers of the '6s' and '6p' bands, is expected to 
increase with increasing temperature or decreasing density, ultimately producing a metal- 
semiconductor transition. However, as shown in Fig.3(b), the pseudogap does not exist in 
the liquid state around the temperatures 150-250°C. In Fig.3(b) we show the DOSs for 1372 
atom clusters representing liquid Hg at 250 and 150°C, obtained using the Hamiltonian 
Ho. Each DOS shown is an average over the local DOSs for 100 atoms in the cluster. 
The pseudogap observed for the crystalline phase disappears due to fluctuations in local 
environments causing local '6s' and '6p' DOSs to vary considerably in their peaks heights, 
centers and widths. These variations are sufficient to wipe out any pseudogap reminiscent 
of the crystalline phase. Thus although it is expected that at higher temperatures this 
pseudogap should reappear and become deeper, eventually giving rise to the semiconducting 
state, it is nonexistent at low temperature (below ~ 300°C) liquid mercury and cannot be 
responsible for the observed decrease in its resistivity on alloying with other metals. In 
Fig.4(a) we show the s- and p-orbital projected DOSs in liquid Hg at 250°C. In Fig.4(b) we 
compare the s- and p-orbital projected DOSs in liquid Hg clusters at 250 and 150°C. It is 
apparent that there is no pseudogap at the Fermi energy. The deep minimum occurring in 
the s,p- DOS at energies below EF is not due to increased separation between the centers of 
the 6s and 6p bands, but due to the hybridization of the d-band with the sp-band, sometimes 
referred to as a 'Fano effect'. As shown in Fig.3(b), apart from an almost imperceptible 
decrease in the d-bandwidth there is virtually no change in the DOS as the temperature 
increases from 150°C to 250°C, the DOS at EF remaining around [2-2.5] states/(Ry. atom), 
the same as in the rhombohedral ground state of Hg. Both s- and p-DOSs are found to 
remain unchanged in our calculation as the temperature increases from 150°C to 250°C. 
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Fig.4. (a) s- and p-orbital projected DOSs in liquid Hg at 250°C, (b) total s+p DOSs in 
liquid Hg at 250°C and 150°C. Vertical lines show the locations of the Fermi energy. 
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The lack of variation in the s-DOS is in agreeemnt with the measurement of the Knight 
shift in liquid Hg, which is found to be more or less independent of the density around these 
values24. The effect of the nonorthogonality of the TB-LMTO basis on the DOS is shown 
in Fig.5 by comparing the DOSs calculated with the Hamiltonians H2 and Hi for a 1372 
atom cluster representing liquid Hg at 250°C. The effect of the second term on the r.h.s 
of Eq.(3) is to shift most energy eigenvalues to higher energy, increasing the bandwidth as 
well as pushing the bottom of the band to higher energy compared with the TB-LMTO 
Hamiltonian H\. 

We have computed the electronic density of states in liquid Pd using the TB-LMTO 
method and the structural model presented in Fig.l. Several 1372- atom clusters repre- 
senting liquid Pd at 1580°C were used to compute an average DOS, and in each case an 
average over the local DOSs corresponding to 100 atoms were considered. In Fig.6 we show 
the DOSs for liquid Pd at 1580°C calculated by using Hamiltonians Hi and H2. For the 
sake of comparison we also show the corresponding DOSs calculated for 1372 atom fee Pd 
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Fig.6. (a) DOSs in liquid Pd at 1580°C calculated by using the Hamiltonians Hi and H2 

and (b) the same for fee Pd at the same density as the liquid cluster. Vertical lines show 
the locations of the Fermi energy. 

clusters at the same number density(0.0594 atoms A-3) as the liquid cluster. Here the ef- 
fect of the nonorthogonality of the TB-LMTO basis seems negligible for the occupied part 
of the DOS. The total bandwidth of the Hamiltonian Hi is smaller. The correction term 
hoh in H2 pushes the energy eigenvalues on the high energy side to higher values, while the 
DOS for lower energies remains nearly unaffected. The number density of crystalline fee 
Pd is 0.068 atoms A"3, about 13% higher than the liquid at 1580°C. For the fee structure 
the total d-bandwidth decreases by about 20% (from 0.5 Ry. to 0.4 Ry.) as the density 
decreases from 0.068 atoms A-3 to 0.0594 atoms A"3, the density of liquid Pd. However, 
in the liquid state, because of the fluctuations in local environment, the total d-bandwidth 
increases to 0.55 Ry., 10% higher than the ground state fee value (although the root mean 
square d-bandwidth remains slightly smaller). The DOS at EF is about 17 states/(Ry. 
atom) in the liquid state, compared with about 27 states/(Ry. atom) in the fee ground 
state. The shape of the DOS is similar to that of 3d liquid transition metals. The com- 
puted DOS compares well with the LMTO supercell calculation of Jank et aP7. However, 
there are differences in the structural models used. The agreement with the experimental 
pair distribution function is slightly better for our model around the first peak of the pair 
distribution function, and considerably more so around the second and third peaks and 
beyond. 

ELECTRICAL CONDUCTIVITY 

In this section we discuss how the TB-LMTO method can be used to carry out a real 
space calculation of the electrical conductivity of disordered metals and alloys. Interested 
readers are also urged to consult the work by D. Mayou28 and D. Mayou and Khanna29, 
where alternative approaches to this problem, based on the properties of orthogonal poly- 
nomials, are presented. 

According to the Kubo-Greenwood30'31 formula the diagonal elements of the zero- 
temperature dc conductivity tensor in the eigenfunction representation are given by 
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aii = 77 E I < Ern\vj\En > \26{Em - EF)6((En - EF) , (5) 
"   m,n 

where Q is the sample volume, h is the Planck's constant, EF is the Fermi energy and Vj is 
the j component of the velocity operator. Relating the Dirac-5 function to the imaginary 
part of the Green's function and using the expression 

£ 8(E - Em) < Em\f(E)\Em >= g(E)f(E)Bm=E , (6) 
m 

where the bar implies an average over the eigenfunctions with energy E, and g(E) is the 
sample DOS at energy E, Eq.(13) can be given a physically transparent form: 

a.. = l-n(EF)D(EF) . (7) 

Here fia is the volume per atom, n(EF) is the DOS per atom at the Fermi energy and 
D(EF) is the diffusivity given by 

D{Ef) = -h lim Im[< Em\vjG{E} + ie)vj\Em >]Em=EF ■ (8) 
e—+0+ 

Apart from a numerical factor, D(EF) can be considered as the average local DOS projected 
onto the states vj\Em >, and can be calculated via the recursion method3. The eigenvectors 
\Em > can be calculated by a filtering technique used originally by Kramer and Weaire32. 
The matrix elements of the velocity operator in the TB-LMTO basis are 

ivi)ßy = (*) YKHßf>x36i ~ xwHh) - (9) 
n      6 

where x and H denote the position and the Hamiltonian operators and the subscripts 
denote the combined angular momentum and the site indices. The matrix elements of the 
position operator, x3^, can be written as 

Aß — < X?Mx? >= 2« + 4)°°ß+ < X?l p - 2-(4 + 4)] IX? > , (10) 

where x3ß is the x^ coordinate of the atomic nucleus on which the orbital ß is centered. \\ß > 
represents a TB-LMTO orbital with the subscript denoting jointly a site and the collective 
angular momentum index L. The second term on the right hand side of the above equation, 
the so-called dipole term, is neglected. If the diffusivity calculation is carried out by using 
the Hamiltonian H2, then the nonorthogonality of the basis is small and can be neglected. 
For calculation involving Hi the overlap matrix O"^ must be included in the computation 
of the matrix elements of the position operator. Further details of the calculations of these 
matrix elements appear in Ref. [8]. 

The resistivity of amorphous iron, with the diffusivity calculated via the first order 
Hamiltonian Hi, comes out to be 125 /jQcm. This value lies intermediately between the 
reported measurements: 100±20/^Qcm33 and 150/iftem34. The difference between the two 
measured resistivities of amorphous Fe films is not necessarily to be ascribed to experi- 
mental error, since there is no evidence that the structures of the amorphous films were 
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the same in the two experiments. For a-Co, a similar calculation based on the most tight- 
binding Hamiltonian Hi yields a resistivity value 110 /xficm, a bit lower than the measured 
resistivity 115 /j.Qcm of liquid Co35,36. 

In ref.[8] we have shown that the above TB-LMTO-recursion method, based on the first 
order Hamiltonian Hi, yields resistivity values in good agreement with experiments for 
liquid M transition metals Cr, Mn, Fe and Co. For liquid Ni the calculated value was twice 
as large as the measured value. The reasons behind large errors for liquid Ni, practical 
limitations of the method and the ways of improvement have been suggested in ref.[8]. The 
accuracy obtained via Hi is sufficient for liquid Cr, Mn, Fe and Co, but not for liquid Ni. 
The parameter oa for the d-states steadily increases across the transition metals series, from 
0.3 Ry_1 for liquid Cr to 1.35 Ry_1 for liquid Ni. Thus for liquid Ni the correction due to 
the term haoaha is significant around the Fermi energy. One way to correct the situation 
is to perform the DOS calculation with the reference energies Ev put at the centers of the 
occupied parts of the partial /-bands, but the diffusivity calculation(via Hi) with all the 
£„'s set to EF- The choice of the Ev equal to the centers of the occupied parts of the partial 
/-bands ensures that the DOS at EF and EF itself are calculated properly. The choice of 
Ev being equal to Ep should then make the diffusivity calculation most accurate, since 
the latter involves only the states near EF- This prescription for calculating the diffusivity 
with Hi yields resistivity value for liquid Ni in agreement with the measured value36. 

The resistivity calculation for the clusters representing liquid Pd and liquid Hg, dis- 
cussed in the earlier sections, was carried out using the Hamiltonian H2. The calculated 
value for liquid Hg at 250°C was approximately 200 /jficm. The measured resistivity val- 
ues at 100°C and 500°C are 103.3 /zficm and 160 ßQcm, respectively. A similar diffusivity 
calculation using Hi yields a resitivity of 120 /iQcm for liquid Pd at 1580°C, while the 
experimental value is 85 ^ficm. The agreement with the measured value can perhaps be 
improved using the Hamiltonian H\, with the reference energies Ev being replaced by EF 

for the diffusivity calculation. This calculation has not yet been performed. 
By resolving the eigenvectors at EF into their orbital components we can estimate the 

contribution to the resistivity purely from the diagonal (s,p. and d) channels as well as 
the contributions from the mixed (off-diagonal) channels. We denote by Ds, Dp, and Dd 

the contributions of s,p, and d orbitals. respectively, to the full diffusivity, divided by the 
fractional s,p, and d components of the total DOS. For liquid and amorphous 3d metals 
both D, and Dp are found to be 7 to 12 times larger than Dd (for calculations involving 
Hi). However, conductivity is still dominated by the d states in the sense that add is ap- 
proximately five to six times larger than ass and app, because of substantially large weight 
of the d states at EF- The off-diagonal channels contribute significantly to the conductiv- 
ity. The off-diagonal contribution is usually negative, and is anywhere between 50% and 
100% of the diagonal contribution. The hybridization between the s,p, and d bands thus 
impedes the process of conduction. This result is in marked variation with that of similar 
calculations37 employing LCAO (linear combination of atomic-like orbitals) basis and the 
chemical pseudopotential scheme (see article by Bullett in Ref. [3]), where the off-diagonal 
channels were found to have negligible contribution to the process of conduction, inspite of 
substantial s-d hybridization in the Hamiltonian. These LCAO-based calculations3'w had 
produced resistivity results in reasonable agreement with measured values for liquid V, Cr, 
Mn and Fe. But the results for liquid Co and Ni were poor, with liquid Ni being the most 
troublesome case37'6'. 

The most noteworthy source of error in the above calculations is approximate treatment 
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of the velocity matrix elements. The neglect of the dipole trem in Eq.(lO) can be justified if 
the basis consists of only s- and d-orbitals, with pure s- and d-symmetry. The inclusion of 
the p-orbitals in the basis, as well as the fact that the TB-LMTO orbitals lack pure angular 
momentum (L) symmetry1'2, makes the validity of this approximation questionable. Apart 
from this, there are possible errors associated with the recursion method, and inadequacies 
in structural models. Inspite of these drawbacks the method remains promising for high 
resistivity liquid and amorphous metals, being one of the very few methods available at 
present for a first-principles study of the transport properties of such systems. 

COMMENTS AND CONCLUSIONS 

In the preceding sections we have discussed how the LMTO method can be used to 
study electronic structure and transport properties of liquid and amorphous metals. The 
method can be used at various levels of sophistication, ranging from the level of semi- 
empirical tight-binding schemes to the level of the most elaborate charge self-consistent 
first principles calculation. The errors involved at various levels of approximation used to 
implement the method are well-understood and can be removed with increased computa- 
tional efforts. Some recent developments38 within the LMTO scheme provide an improved 
basis set for describing the electronic structure of inhomogeneous matter. These involve 
screened spherical waves with position dependent screening parameters. The errors in the 
eigenvalues obtained via this method are proportional to fourth order in deviations from 
the reference energies E„. This screened spherical wave basis has not yet been used for 
liquids and amorphous systems , but certainly holds much promise. 
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ABSTRACT 

In the present paper different tunneling mechanisms in conventional and half-metallic fer- 
romagnetic tunnel junctions are analyzed within the same general method. Theoretically 
calculated direct tunneling in iron group systems leads to about a 30% change in resistance, 
which is close but lower than experimentally observed values. It is shown that the larger 
observed values of the TMR might be a result of tunneling involving surface polarized states. 
We find that tunneling via resonant defect states in the barrier radically decreases the TMR 
(down to 4% with Fe-based electrodes), and a resonant tunnel diode structure would give 
a TMR of about 8%. With regards to inelastic tunneling, magnons and phonons exhibit 
opposite effects: one-magnon emission generally results in spin mixing and, consequently, 
reduces the TMR, whereas phonons are shown to enhance the TMR. The inclusion of both 
magnons and phonons reasonably explains an unusual bias dependence of the TMR. 

The model presented here is applied qualitatively to half-metallics with 100% spin po- 
larization, where one-magnon processes are suppressed and the change in resistance in the 
absence of spin-mixing on impurities may be arbitrarily large. Even in the case of imperfect 
magnetic configurations, the resistance change can be a few 1000 percent. Examples of half- 
metallic systems are Cr02/Ti02 and Cr02/Ru02, and an account of their peculiar band 
structures is presented. The implications and relation of these systems to CMR materials, 
which are nearly half-metallic, are discussed. 

INTRODUCTION 

Tunnel magnetoresistance (TMR) in ferromagnetic junctions, first observed more than a 
decade ago,1,2 is of fundamental interest and potentially applicable to magnetic sensors and 
memory devices.3 This became particularly relevant after it was found that the TMR for 
3d magnetic electrodes reached large values at room temperature4,5, and junctions demon- 
strated a non-volatile memory effect. These observations have ignited a world-wide effort 
towards using this effect in various applications, with memories and sensors being the most 
natural choices. 

A simple model for spin tunneling has been formulated by Julliere1 and further devel- 
oped in Refs. [6,7]. This model is expected to work rather well for iron, cobalt, and nickel 
based metals, according to theoretical analysis6 and experiments.4 However, it disregards 
important points such as impurity-assisted and inelastic scattering, tunneling into surface 
states, and the reduced effective mass of carriers inside the barrier. These effects are impor- 
tant for proper understanding of the behavior of actual devices, like peculiarities in their 
I — V curves, as considered in Ref. [8] and the present paper. I shall also discuss a couple 
of half-metallic systems which should in principle achieve the ultimate magnetoresistance 
at room temperatures and low fields. 
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ELASTIC AND INELASTIC TUNNELING, MODEL 

The model that we will consider below includes a Hamiltonian for non-interacting con- 
ducting spin-split electrons Ho, electron-phonon interaction Hcp, and exchange interaction 
with localized rf; electrons Hx, the later giving rise to the electron-magnon interaction. 
Impurities will be described by a short-range confining potential V;, 

H   —   Ha + Hep + Hx + Hi, (1) 

?*i = 5><(r-n,) 

where r stands for the coordinate of the electron and nj denotes the impurity sites. 
The non-interacting part of the Hamiltonian H describes electrons in the ferromagnetic 

electrodes and insulating barrier according to the Schrödinger equation7 

(ftoo - h • o)i> = Eij), (2) 

where %w = -(fi2/2mQ)V2 + Ua is the single-particle Hamiltonian with C(r) the potential 
energy, h(r) the exchange energy (= 0 inside the barrier), a stands for the Pauli matrices; 
indices a=l, 2, and 3 mark the quantities for left terminal, barrier, and right terminal, 
respectively (Ho is the expression in brackets). We shall also use the following notations 
to clearly distinguish between left and right terminal: p = kj and k = k3. Solution to this 
problem in the limit of a thick barrier provides us with the basis functions for electrons 
in the terminals and barrier to be used in Bardeen's tunneling Hamiltonian approach.9'10 

We assume that all many-body interactions in the electrodes are included in the effective 
parameters of (2). To fully characterize tunneling we add to Bardeen's direct tunneling 
term HT the contributions from Hx and Hep: 

HT   
==    Ttf -f- rtj' + rtf , (3) 

W-T    —     2-, ^pa,karka'pa + h.C, 
p,ka 

KaM   =   -h2/(2m2)JjA(fka V<Apa - VÄa V) I (4) 

nx
T   =   -  E On) [(Si - (^»(rkT/pt - r^/pl) + S+rl^ + S"^] + h.a., 

an,k,p 

-ril   =      E   T^(q)rllptt(bqa-blqa) + h.c. (5) 
aan,k,p 

Here the surface E lies somewhere in the barrier and separates the electrodes, we have sub- 
tracted an average spin S* - (S^) in each of electrodes as part of the exchange potential, the 
exchange vertex is TJ ~ Jnexp(—KW), and the phonon vertex is related to the deformation 
potential D in the usual way \Tep(q) ~ iDq(h/2Mugy/2 exp(-Kw)], where M is the atomic 
mass, q is the phonon momentum, n marks the lattice sites, and the vertices contain the 
square root of the barrier transparency.10,11 The operators la and ra annihilate electrons 
with spin a on the left and right electrodes, respectively. Two more things to note: (i) 
the summations over p and k always include the densities of initial gLa and final gm states, 
that makes both exchange and phonon contributions spin-dependent, (ii) when the magnetic 
moments on the electrodes are at a mutual angle 9, one has to express the operator r w.r.t. 
the lab system and then use it in HT (5). 



The tunnel current will be calculated within the linear response formalism as10 

I(V,t) = ^ft   dt'([dNL(t)/dt,UT(t')})0, (6) 
ft J-oo 

where N^t) = X)pa 'poWpa(i) is the operator of the number of electrons on the left terminal 
in the interaction representation, ( )0 stands for the average over W0, 

HT(t) = exp(-ieVt/h)A(t) + h.c,      A{t) = £ TpaMb(t)rlb{t)lpa{t), 
pa,kb 

the tunnel vertex T is derived for each term in (5), and V is the bias. We shall later consider 
impurity-assisted tunneling within the same general approach. 

Elastic tunneling 

We are now in position to calculate all contributions to the tunneling current, the simplest 
being direct elastic tunneling due to "Hj>- ^ *s worth noting that it can also be calculated from 
the transmission probabilities of electrons with spin a, Ta = J^,b Tab, which have a particularly 
simple form for a square barrier and collinear [parallel (P) or antiparallel (AP)] moments 
on the electrodes.8 We obtain the following expression for the direct tunneling conductance, 
assuming mi = m.3 (below the effective mass in the barrier will be measured in units of mi): 

T     =     i(£Lo = GFBp(l + PF
2BCOs(0)), (7) 

0 _      c     rv0 
UFBF    —     ZZZZ itnnw 

e2 K0 \m,2Ko{k-t +kijfal + mlk-tki) 
(K§ + mlfc|)(K§ + ml/c2) 

and (8) 

■A; KI - mlkfkj. 

k-f + k± K§ + Tn^k-fki' 

where PFB is the effective polarization of the ferromagnetic (F) electrode in the presence 
of the barrier (B), K0 = [27712(^0 - E)/h2}1/2, and U0 is the top of the barrier. Eq. (7) 
corrects an expression derived earlier7 for the effective mass of the carriers in the barrier. 
By taking a typical value of G/A =4-5 fT^m-2 (Ref. [4]), kt = 1.09A-1, £4. = 0.42Ä-1, 
mi « 1 (for itinerant d electrons in Fe)6 and a typical barrier height for AI2O3 (measured 
from the Fermi level /i) (j> = Uo — ß = 3eV, and the thickness w « 20 A, one arrives at the 
following estimate for the effective mass in the barrier: m2 « O.4.13 These values give the 
renormalized polarization PFeB = 0.28, which is less than the bulk value for iron Ppe = 0.4 
(Ref. [3,4]). Note that the neglect7 of the mass correction makes PpeB < 0, a result which 
is not corroborated by experimental evidence where the polarization in all systems studied 
was found positive, P > 0. The majority spin electrons in all cases were predominant in 
the tunnel current (Ref. [3], p.204). 

In the standard approximation of a rectangular shape the barrier height is U0 = \{4>L + 
4>R — eV) and this leads to a quick rise of the conductance with bias, G°(V) = G° + 
const ■ V2 at small V {4>L and <J>R are the work functions of the electrodes). In practice, 
the barrier parameters should be extracted from independent experiments, such as internal 
photoemission, etc., but here we are concerned with the generic behavior, where the present 
formalism is sufficient for qualitative and even semi-quantitative analysis. Since the barrier 
shape depends in a non-trivial manner on image forces, the calculations have been performed 
numerically with the actual barrier shape at finite temperatures (Fig. 1). 
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Figure 1: Conductance and magnetoresistance of ferromagnetic tunnel junctions versus bias. Top panel: 
conventional (Fe-based) tunnel junction (for parameters see text). Middle panel: half-metallic electrodes. 
Bottom panel: magnetoresistance for the half-metallic electrodes. Dashed lines show schematically a region 
where a half-metallic gap in the minority spin states is controlling the transport. Even for imperfect 
antiparallel alignment (8 = 160°, marked t\)> tne magnetoresistance for half-metallics (bottom panel) 
exceeds 3000% at biases below the threshold Vc. All calculations have been performed at 300K with the 
inclusion of multiple image potential and exact transmission coefficients. Parameters are described in the 
text. 

We note that the (undesirable) downward renormalization of the polarization rapidly 
goes with diminishing effective carrier mass in the barrier. The renormalization is completely 
absent in half-metallic ferromagnets with Refc; = 0, as we shall discuss below. 

We define the magnetoresistance as the relative change in contact conductance with re- 
spect to the change of mutual orientation of spins from parallel (Gp for 0 = 0) to antiparallel 
(GAP for 9 = 180°) as 

MR = (Gp - GAP)/GAP = 2/VB^B/(1 " fta^ (10) 

The most striking feature of Eqs. (3),(4) is that the MR tends to infinity for vanishing 
Refcj., i.e. when both electrodes are made of a 100% spin-polarized material (P = P' = 1), 
because of a gap in the density of states (DOS) for minority carriers up to their conduction 
band minimum ECBI- Then GAP vanishes together with the tunnel probability, since there 
is a zero DOS at E = /i for both spin directions. 

Such half-metallic behavior is rare, but some materials possess this amazing property, 
most interestingly the oxides Cr02 and Fe304.

14 These oxides have potential for future 
applications in combination with lattice-matching materials, as we shall illustrate below. 

A more accurate analysis of the I - V curve requires a numerical evaluation of the 
tunnel current for arbitrary biases and image forces, and the results are shown in Fig. 1. 
The top panel in Fig. 1 shows I - V curves for an iron-based F-B-F junction with the 
above-mentioned parameters. The value of TMR is about 30% at low biases and steadily 
decreases with increased bias. In a half-metallic case (Refcj. = 0, Fig. 1, middle panel, where 
a threshold eVc = ECBI — ß = 0.3 eV has been assumed), we obtain zero conductance GAP 

in the AP configuration at biases lower than Vc. It is easy to see that above this threshold 
GAP oc (V - Vc)5''2 at temperatures much smaller than eVc.

8 Thus, for |V| < Vc in the 
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Figure 2: Schematic of tunneling via chains of the localized states in the barrier (a) and into the localized 
surface states (b). 

AP geometry one has MR = oo. In practice, there are several effects that reduce this 
MR to some finite value, notably an imperfect AP alignment of moments in the electrodes. 
However, from the middle and the bottom panels in Fig. 1 we see that even at 20° deviation 
from the AP configuration, the value of MR exceeds 3,000% within the half-metallic gap 
|V| < Vc, and this is indeed a very large value. 

Impurity-assisted tunneling 

An important aspect of spin-tunneling is the effect of tunneling through the defect states 
in the (amorphous) oxide barrier (Fig. 2). Since the devices under consideration are very 
thin, their I — V curves and MR should be very sensitive to defect resonant states in the 
barrier with energies close to the chemical potential, forming "channels" with the nearly 
periodic positions of impurities (Fig. 2).15 Generally, channels with one impurity (most 
likely to dominate in thin barriers) would result in a monotonous behavior of the I - V 
curve, whereas channels with two or more impurities would produce intervals with negative 
differential conductance.15 

Impurity-assisted spin tunneling at zero temperature (at non-zero T one should include 
an integration with the Fermi functions) has a resonant form15'8 

2P2 
^La^R 

TTh^iEi-tf+T*' (11) 

where V = TLa + T^ is the total width of the resonance given by the sum of the partial 
widths TL (TR) corresponding to electron tunneling from the impurity state at the energy 
Ei to the left (right) terminal. For the tunnel width we have 

r(M). = 2ir2K0(h
2/m2)

2   Y.   I^(i,«,>*)|2<5(£k-£i) 
k(i,R)« 

(12) 

where V,k(1R)0(ni) is the value of the electrode wave function, exponentially decaying into 
the barrier, at an impurity site n*. For a rectangular barrier we have8 

TLO — £i 
2m2ka      e-Ko<ro+2^ 

Kl + mlkl  Ko{\w + ZiY 
(13) 

where zt is the coordinate of the impurity with respect to the center of the barrier, e, = 
T?Kll(2m2). For e.g. P configuration and electrodes of the same material, the conduc- 

tance would then be proportional to [(£* - ß)2 + 4rgacosh2(2K0Zj)]    , where r0a equals 
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(13) without the factor exp(-2K0z,) [c.f. Eq. (15)]. The conductance has a sharp maximum 
(= e2/(27r/i)) when ß = Ei and TL = TR, i.e. for the symmetric position of the impurity 
in the barrier |z,| < 1/K0 in a narrow interval of energies \ß - E{\ < T. Averaging over 
energies and positions of impurities in Eq. (11), and considering a general configuration of 
the magnetic moments on the terminals, we get the following formula for impurity-assisted 
conductance in the leading order in exp(-Ku;): 

^- = GLP(l+n|Bcos(ö)), (14) 

where we have introduced the quantities 

e2 

ith 

Fl   =   eiT^r(rt + r+)2'     nFB = (rt-ri)/(rt + ri),     and 

ra   =   [m2K0ka/(K
2

0 + mlkl)]1'2, (15) 

with Ni being the effective number of one-impurity channels per unit area, and IIFB is the 
'polarization' of the impurity channels. When the total number of one-impurity channels 
N\ = N\A » 1, then the conductance will be a self-averaged quantity, otherwise it will 
depend on a specific arrangement of impurities (regime of mesoscopic fluctuations). 

Comparing the direct and the impurity-assisted contributions to conductance, we see 
that the latter dominates when the impurity density of states v > («O/TT)

3
«:,

-1
 exp(-K0w), 

and in our example a crossover takes place at v > 1017cm~3eV_1. When the resonant 
transmission dominates, the magnetoresistance is given by 

MRi = 2n n'/(i - n n'), (i6) 

which is just 4% in the case of Fe. Thus, we have a drastic reduction of the TMR due to 
non-magnetic impurities in the tunnel barrier, and in the case of magnetic impurities the 
TMR will be even smaller. 

With standard ferromagnetic electrodes, the conductance is exponentially enhanced 
[G1 oc exp(-«0w), whereas G° oc exp(-2K0w)] but the magnetoresistance is reduced in 
comparison with the 'clean' case of a low concentration of defect levels. These predictions8 

have been confirmed by recent experiments.12,16 

With further increase of the defect density and/or the barrier width, the channels with 
two- and more impurities will become more effective than one-impurity channels described 
above, as has been known for quite a while.17,15 The contribution of the many-impurity 
channels, generally, will result in the appearance of irregular intervals with negative differ- 
ential conductance on the / - V curve.15 Thus, the two-impurity channels define random 
fluctuations of current with bias. This is due to the fact that the energy of defect states 
depends on bias as e{ = e? + eVzi/w. With increasing bias (i) the total number of two- 
impurity channels increases but (ii) some of these channel go off resonance and reduce their 
conductance. Accidentally, the number of two-impurity channels going off resonance may 
become larger than a number of new channels, leading to a suppressed overall conductance. 
If we denote by T2 the width of the two-impurity channels, then the fluctuations would 
obviously occur on a scale AV < T2/e. Then, according to standard arguments, the change 
in current will be 
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where JV = eVWi/^ is the number of the two-impurity channels contributing at the bias 
V > r2/e, N2 is the total number of the two-impurity channels, M2 = A^w3^^1, 
and T2 = (4eir1/(/«o«)))1/2-15 When eV/T2 > Af2{K0w)2, then the second (random) term 
in (17) exceeds the first term, and this leads to random intervals with negative differential 
conductance. 

Obviously, with increasing temperature or/and bias in thick enough barriers longer and 
longer impurity channels will be 'turned on'. A corresponding microscopic model should 
include impurity states coupled to a phonon bath, and such a model has been solved in 
Ref. [18]. The authors found an average conductance due to n-impurity chain in the limit 
eV < T: 

%^ ~ (I/K0-2t0T)"-1(AT/eo)(B-1)/(,,+1) exp (^Koto) , (18) 

where the dimensionless parameter A = D2el/(h3ps5), p is the mass density, s is the velocity 
of sound. As follows from (18) there is a sequence of specific power law dependencies of G 
on temperature. It is also evident that the hopping exponent strongly favors many-impurity 
chains. For n = 2 we have G2{T) oc T4/3, then G3{T) oc T5/2, and so on. In the opposite 
limiting case eV > T the result is:18 G2{V) oc Vi/3, and this crossover behavior is indeed 
in very good agreement with experiment on a-Si barriers.19 

One may try to fabricate a resonant tunnel diode (RTD) structure to sharply increase 
the conductance of a system. We can imagine an RTD structure with an extra thin non- 
magnetic layer placed between two oxide barrier layers producing a resonant level at some 
energy Er. The only difference from the previous discussion is the effectively ID character of 
the transport in the RTD in comparison with 3D impurity-assisted transport. However, the 
transmittance will have the same resonant form as in (11). The estimated magnetoresistance 
in the RTD geometry is, with the use of (11), 

MÄRTD=[(r?-r2)/(2rtr4)]2, (19) 

which is about 8% for Fe electrodes. We see that the presence of random impurity levels or 
a single resonant level reduces the value of the magnetoresistance as compared with direct 
tunneling. 

The general reason for the MR being reduced even by non-magnetic impurities is the 
downward renormalization of spin polarization of tunneling current by non-magnetic insula- 
tor (proximity effect). Since the exchange potential vanishes in non-magnetic insulator like 
AI2O3, matching of the corresponding wave functions results in a reduced difference in the 
density of majority and minority states, i.e. reduced polarization. Same, of course, is true 
of electron states in electrodes overlapping with a non-polarized defect state in the barrier. 
As we have seen, this proximity effect is enough to reduce MR down to small values, and if 
we were to include exchange effects (spin mixing) on impurities the MR will be even less. 
This prediction8 has indeed been confirmed experimentally.12'16 

Roughness 

As we have seen, the conductance is dominated by the exponentially small barrier trans- 
parency, oc exp(-2w(/CQ + k||2)1/2), so that the contribution comes mainly from electrons 
tunneling perpendicular to the barrier, i.e. with small parallel momenta |ky| < (K0/W)

1/2
. 

For barriers with a rough interface w = W + h, where h is the height of asperities and «7 
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is the average barrier thickness. Each asperity will contribute a factor of exp(2n0h) to the 
conductance, which we have to average. We assume a normal distribution for roughness, 
P{h) = (27r^)-1/2exp(-/i2/(2/ig)). Then, the average conductance G becomes 

G = GJ_   dhexp(2K0h)P(h) = Gexp(2K2
0hl)ocexp[-2K0{w-Kh2

0)]. (20) 

This result means that the effective thickness of the barrier is reduced by nti2 in compar- 
ison with the observed average thickness w. The generalization for the case of correlated 
roughness is straightforward and does not change this result. 

Tunneling via Surface States 

Direct tunneling, as we have seen, gives TMR of about 30%, whereas in recent experiments 
TMR is well above this value, approaching 40%.12,23 As we shall see shortly, this moderate 
difference is unlikely to come from the inelastic processes. Up to now we have disregarded 
the possibility of localized states at metal-oxide interfaces (Fig. 2). Keeping in mind that 
the usual barrier AlOj is amorphous, the density of such states may well exceed that at 
typical semiconductor-oxide surfaces. If this is true, then we have to take into account 
tunneling into/from those states. If we assume that electrons at the surface are confined 
by a short-range potential then we can estimate the tunneling matrix elements as described 
above. The corresponding tunneling MR is given by11 

Gb.(») 
A irh 

At - Dsj 

BDs(l + PFBP,cos{0)), 

P., 
Dat + D3i' 

B   -    w      (K
2 + m2k2)(K

2 + m2k2)    eXP(-2*°H (21) 

where Ps is the polarization and D, is the average density of surface states, e, = h2K2
0/(2m2). 

The corresponding magnetoresistance would be MRbs = 2PFBPS/(1 - PFBP>)- 
Comparing (21) with (7), we see that the bulk-to-surface conductance exceeds bulk-to- 

bulk tunneling at moderate densities of surface states D, > Dsc ~ 1013cm~2eV-1 per spin, 
comparable to those found in MOSFET structures. 

If on both sides of the barrier the density of surface states is above critical value D,c, 
the magnetoresistance will be due to surface-to-surface tunneling with a value given by 

MÄ33 = 2PslP,2/(l - PalPs2), 

and if the polarization of surface states is larger than in the bulk, as is often the case even 
for imperfect surfaces,20 then it would result in enhanced TMR. This mechanism may be 
even more relevant for Fe/Si and other ferromagnet-semiconductor structures.21 
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Figure 3: Fit to experimental data for the magnetoresistance of Co/Al203/NiFe tunnel junctions [12] with 
inclusion of elastic and inelastic (magnons and phonons) tunneling. The fit gives for magnon DOS oc w065 

which is close to the standard spectrum oc w1/2. 

INELASTIC TUNNELING, 'ZERO-BIAS' ANOMALY 

So far we have disregarded all inelastic processes, such as phonon emission by the tunnel- 
ing electrons. These processes were long thought to be responsible for a so-called 'zero-bias' 
anomaly observed in a variety of non-magnetic22 and magnetic junctions.12'23 Magnetism in 
electrodes introduces new peculiarities into the problem, which we will now discuss. The 
obvious one is related to emission of magnons. At temperatures well below the Curie temper- 
ature and not very large biases, one can describe spin excitations by introducing magnons. 
Then the calculations of exchange- and phonon-assisted currents become very similar. Thus, 
we obtain from (6) and (5) the following expression for magnon-assisted current in e.g. par- 
allel configuration (corresponding expressions can be easily found for other configurations 
as well): 

+   9i9?(eV-u) 

1- 

JVU + 1 

■ + : ■ exp(-/?(eV + w))  '  l-exp(ß(eV + u>)) 

+ ■ 
1 - exp(-/?(eV - w))     1 - exp(ß{eV - w)) )■ 

(22) 

where iVw = [exp(/?u>) - 1] \ ß = 1/T is the inverse temperature, w=u° and Xa is the 
magnon incoherent vertex related to the \T*£{2SJN)lt2\2 (5) with all momenta parallel to 
the barrier integrated out.11 To get this expression, we have also assumed that the electron 
densities of states g in (22) vary on a larger scale than the bosonic contributions do, and, 
therefore, substituted them by representative values at the nominal Fermi levels. If there 
are some fine features in the electron DOS, then the integral over electron energies should 
remain, thus necessarily smoothing out any such fine features in the electron DOS. 

For the limiting case of T = 0, we obtain for magnon-assisted inelastic tunneling current: 

/f   =   ^.^X'^fdufC^ieV-^OieV-ij), 
n,     a ■> 

J*p   =   ^[xRg$g«JcLüpT9(u)(eV-uj)e(eV-üJ) 
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XLgL
igf jdwp™a9(u)(eV - u)B{eV - u) (23) 

where 0(x) is the step function, /9™s(w) is the magnon density of states that has a general 
form />™9(w) = {v + l)w7wj+1, v can be used as a fitting parameter to define a dispersion 
of the relevant magnons, and u>0 is the maximum magnon frequency. 

For phonon-assisted current at T = 0 we have 

&   =   ^Z9a9? fdt»/fa
h(uj)P0(uj)(eV-u;)6(eV-u), (24) 

Jft   =   2j^Y,9a9-Jdu&h(u)Pa{u){eV-uj)e(eV-w). (25) 
n     aa J 

One can show that the ratio of phonon to exchange vertex is P(UJ)/X = yu)/uiD, where 7 is 
a constant depending on the ratio between deformation potential and exchange constants,11 

and U>D is the Debye frequency. 
The elastic and inelastic contributions together will define the total junction conduc- 

tance G = G(V, T) as a function of the bias V and temperature T. We find that the in- 
elastic contributions from magnons and phonons (23)-(25) grow as Gx(V,0) oc (\eV\/u0)

v+i 

and Gph(V,0) oc (\eV\/wD)A at low biases. These contributions saturate at higher biases- 
G*(V,0) a 1 - ^ß-{ at \eV\ > u,0; G"h(V,0) oc 1 - §^ at \eV\ > u,D. This behavior 
would lead to sharp features in the / - V curves on a scale of 30-100 mV (Fig. 3). 

It is important to highlight the opposite effects of phonons and magnons on the TMR. If 
we take the case of the same electrode materials and denote D = pt and d = gv then we see 
that Gx

P(V,0) - G*AP(V,0) ex -(D - d)2(\eV\/u>0y^ < 0, whereas G?(V,0) - Gft(V,0) oc 
+(D - d)2{\eV\/uD)4 > 0, i.e. spin-mixing due to magnons kills, whereas the phonons tend 
to enhance the TMR.24 

Finite temperature gives contributions of the same respective sign as written above. For 
magnons: G£(0,T) - Gx

AP(0,T) oc -(£> - df(-TdM/dT) < 0, where M = M(T) is the 
magnetic moment of the electrode at a given temperature T. The phonon contribution is 
given by a standard Debye integral with the following results: GP

h(0,T) - G^p(0,T) a 
+(D - d) (T/uoY > 0 at T < wD, and a linear temperature dependence at high tempera- 
tures Gp

P
h(0,T) - Gft(0,T) oc +{D - d)2(T/u,D) at T > uD" We note again the opposite 

effect of magnons and phonons on the tunneling magnetoresistance. 
It is worth mentioning that the magnon excitations are usually cut off by e.g. the 

anisotropy energy K„n at wc = 2gßBKm/Ms, where Ms is the saturation magnetization. 
Therefore, at low temperatures T < wc the magnon finite temperature contribution to 
conductance will be exponentially small, oc exp(-wc/T), and the conductance at zero bias 
will be almost independent on temperature at T < (UC,UJD). 

We have not included Kondo25 and other correlation effects that might contribute at 
very low biases, since they usually do not help to quantitatively fit the data.19 

The role of phonons is illustrated by my fit to recent experiments carried out at HPL:12 

it appears that only after including phonons is it possible to get a sensible fit to the magnon 
DOS with v = 0.65, which is close to the bulk value \ and 7 w 0.1 (Fig. 3). 

100% POLARIZATION 

It is very important that in the case of half-metallics r4 = 0, nFB = 1, and even with 
an imperfect barrier magnetoresistance can, at least in principle, reach any value limited 
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Figure 4: Density of states of Cr02/TiC>2 (top panel) and (CrOt)t/'Ra02 (bottom panel) half-metallic 
layered structures calculated with the use of the LMTO method. 

by only spin-flip processes in the barrier/interface and/or misalignment of moments in the 
half-metallic ferromagnetic electrodes.8 We should note that the one-magnon excitations 
in half-metallics are suppressed by the half-metallic gap, as immediately follows from our 
discussion in the previous section. Spin-mixing can only occur on magnetic impurities in 
the barrier or interface, because the allowed iioo-magnon excitations in the electrodes do 
not result in spin-mixing. 

Therefore, these materials should combine the best of both worlds: very large magne- 
toresistance with enhanced conductance in tunnel MR junctions. One should be aware, 
however, that defects in the barrier (like unpaired electrons) will induce spin flips, so the 
magnetoresistance could vanish with an increasing concentration of defects. In the case of 
conventional systems (e.g. NiFe electrodes) we have seen, however, that resonant tunneling 
significantly reduces the tunnel MR by itself, so the possibility of improving the conductance 
and still having a very large magnetoresistance resides primarily with half-metallics. I shall 
finish with a couple of examples of systems with half-metallic behavior, Cr02/Ti02 and 
Cr02/Ru028 (Fig. 4). They are based on half-metallic CrC>2, and all materials have the ru- 
tile structure with almost perfect lattice matching, which should yield a good interface and 
should help in keeping the system at the desired stoichiometry. TiC>2 and Ru02 are used as 
the barrier/spacer oxides. The half-metallic behavior of the corresponding multilayer sys- 
tems is demonstrated by the band structures calculated within the linear muffin-tin orbitals 
method (LMTO) in a supercell geometry with [001] growth direction and periodic bound- 
ary conditions. The calculations show that Cr02/Ti02 is a perfect half-metallic, whereas 
(Cr02)2/Ru02 is a weak half-metallic, since there is some small DOS around EF, and an 
exact gap opens up at about 0.58 eV above the Fermi level (Fig. 4). In comparison, there 
are only states in the majority spin band at the Fermi level in Cr02/Ti02- An immediate 
consequence of the fact that minority spin bands are fully occupied is an exact integer value 
of the magnetic moment in the unit cell (=2/iB/Cr in Cr02/Ti02), and this property is a 
simple check for possible new half-metallics. 

The electronic structure of Cr02/Ti02 is very interesting in that it has a half-metallic 
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gap which is 2.6 eV wide and extends on both sides of the Fermi level, where there is a gap 
either in the minority or majority spin band. Thus, an huge magnetoresistance should in 
principle be seen not only for electrons at the Fermi level biased up to 0.5 eV, but also for 
hot electrons starting at about 0.5 eV above the Fermi level. We note that states at the 
Fermi level are a mixture of Cr(d) and 0(2p) states, so that p - d interaction within the 
first coordination shell produces a strong hybridization gap, and the Stoner spin-splitting 
moves the Fermi level right into the gap for minority carriers (Fig. 4). 

An important difference between the two spacer oxides is that Ti02 is an insulator 
whereas Ru02 is a good metallic conductor. Thus, the former system can be used in a 
tunnel junction, whereas the latter will form a metallic multilayer. In the latter case the 
physics of conduction is different from tunneling but the effect of vanishing phase volume for 
transmitted states still works when current is passed through such a system perpendicular 
to planes. For the P orientation of moments on the electrodes, Cr02/Ru02 would have a 
normal metallic conduction, whereas in the AP one we expect it to have a semiconducting 
type of transport, with a crossover between the two regimes. One interesting possibility is 
to form three-terminal devices with these systems, like a spin-valve transistor,26 and check 
the effect in the hot-electron region. CrC>2/Ti02 seems to a be a natural candidate to check 
the present predictions about half-metallic behavior and for a possible large tunnel magne- 
toresistance. An important advantage of these systems is almost perfect lattice matching 
at the oxide interfaces. The absence of such a match of the conventional A1203 barrier with 
Heusler half-metallics (NiMnSb and PtMnSb) may have been among other reasons for their 
moderate performance.27 

By using all-oxide half-metallic systems, as described herein, one may bypass many ma- 
terials issues. Then, the main concerns for achieving a very large value of magnetoresistance 
will be spin-flip centers and imperfect alignment of moments. As for conventional tunnel 
junctions, the present results show that the presence of defect states in the barrier, or a reso- 
nant state like in a resonant tunnel diode type of structure, reduces their magnetoresistance 
by several times but may dramatically increase the current through the structure. 

Finally, we can mention the CMR materials. Experiment28 and LDA calculations29 

indicate that manganites are close to half-metallic behavior as a result of a significant spin- 
splitting presumably due to significant Hund's rule coupling on Mn. Manganites are strongly 
correlated materials, likely with electronic phase separation,30 which makes their study a 
real challenge. There are a number of studies of systems, where transport is going across 
grain boundaries or between Mn02 layers in tailored derivatives of the perovskite phase.31 

A hope is that some of these structures with manganites might operate at low fields and 
reasonably high temperatures.32 The low field (below 1000 Oe) TMR in polycrystallinc 
La2/3Sri/3Mn03 perovskite and Tl2Mn207 pyrochlore is about 30% and is likely due to 
intergrain carrier transport. It would be interesting to apply the results of the present 
work to tunneling phenomena in the CMR-based layered/inhomogeneous structures. For 
instance, Cr02 junctions would help to check on the relevance of the half-metallic behavior 
to conduction in the CMR materials. In particular, it should be signaled by a plateau in the 
tunneling magnetoresistance as a function of bias within the half-metallic band gap (Fig. 1). 

I am grateful to J. Nickel, T. Anthony, J. Brug, and J. Moodera for sharing their data, 
and to G.A.D. Briggs, N. Moll, and R.S. Williams for useful discussions. 
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ABSTRACT 

We present an extension to the tight-binding (TB) approach to improve total energies, 
forces and transferability in the presence of considerable long-range Coulomb interactions. 
We derive an approximate energy expression in terms of charge density fluctuations Sn at 
a reference (input) density n0, which is a second order approximation to the total energy 
expression in density functional theory (DFT). With the choice of n0 as a superposition of 
densities of neutral atomic fragments, we can define a repulsive potential as in standard 
TB theory, which is pairwise, short ranged and transferable. The zero order terms in the 
total energy expression are recoverd as the standard terms of our density-functional based 
tight-binding (DF-TB). For the second order terms, the charge density fluctuations 5n 
are approximated by the total charge fluctuation Aqa at atom a, which is qualitatively 
estimated by employing the Mullikan charge analysis. Within this approximations the total 
energy expression contains new parameters, which are related to ab-intio DFT calculations. 
Finally, by introducing localized basis functions and applying the variational principle we 
arrive at the Hamilton matrix elements, wich themselves depend on the charge fluctuations 
and, therefore, the general eigenvalue problem has to be solved self-consistently. To obtain 
forces for efficient geometry relaxation and molecular-dyamics, we calculated analytical 
derivatives of the total energy with respect to the atomic sites. In order to demonstrate 
the strenghts of our self-consistent-charge tight-binding (SCC-TB), we calculated reaction 
energies, geometries and vibrational frequencies for a large set of molecules and compare 
the results to semi-empirical methods, density-functional calculations and experiment. 

I. INTRODUCTION 

It has been shown that the TB-approach in general may be understood as a stationary 
approximation to density-functional theory (DFT) [1, 2, 3, 4, 5j. Central features of the 
common methodology, namely, non-selfconsistent treatment of the Kohn-Sham equations 
and the exploitation of pairwise repulsive interactions are strongly related to an appropriate 
"educated guess" for the inital charge density of the system. 

In standard tight-binding theory, the calculated total energy differs from the true 
ground state energy in second order of the charge density fluctuations, which can be shown 
to be small for a properly chosen input density. For an input density, which is the su- 
perposition of the electronic density of neutral atomic fragments, a repulsive part in the 
total energy expression can be defined, which is pairwise, short ranged and depends only 
on the chosen input density [2]. In heteronuclear systems with considerable charge trans- 
fer, where the groundstate density may not be representable as a superposition of neutral 
atomic fragment densities, i.e. the initial charge density is not close to the ground state 
density, the second order corrections may become important. On the other hand, choosing 
an input density close to the true ground state density would inquire a priori knowledge of 
the particular system. Several proposals have been made to genearlize the TB-energies to 
account for charge transfer effects (see Frauenheim et al., this volume for references). But 
the need for a self-consistent extension of the TB-scheme is not necessarily indicated by a 
large charge transfer in the system. As Harrison has pointed out [7] for example, in really 
ionic systems with large charge transfer (e.g. NaCl) the non-selfconsistent methods lead to 
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an adequate description in many cases. The terms in a self-consistent TB method, which 
correct for the charge flow, tend to cancel in these cases. However, it is not. valid in general 
and breaks down in systems with more subtle charge transfer effects, as for example many 
organic molecules, surfaces or defects in solids. Here, we focus on a systematic extension of 
the tight-binding formalism and of our DF-TB scheme [3, 6] in order to derive a generalized 
selfconsistent charge (SCC) methodology [13]. This differs from previous approaches since 
we base the modification of the TB total energy expression on a second-order expansion of 
the Kohn-Sham energy functional [8] with respect to density fluctuations. 

II. SELFCONSISTENT-CHARGE TIGHT-BINDING METHODOLOGY 

In the non-selfconsistent DFTB scheme the Hamilton matrix elements are calculated 
explicitly within an atomic orbital basis [C] and depend on the charge densities of neutral 
atomic fragments n0. These scheme yields accurate results for a broad range of bonding 
situations, for which the superposition of overlapping atom-like densities serves as a good 
approximation for the many-atom structure. In order to recover the non-selfconsistent 
DFTB scheme as a zero order appromimation for vanishing charge flow, we expand the 
Kohn-Sham. energy expression up to second order at the input density n0 (see Frauenheim 
et al., this volume), yielding: 

ocr 1    r r'   r)'r?n r 
E = EW^ol*,) - - ff pJj>  + E„[v0] - j v;>oH + Eti 

+1 [['( 1   I PE" 
2JJ   Vlf-f'l      SnSn' 

6nSn'. 

The traditional TB-approach is to preserve the first 5 terms in this final equation, 
with H0 as the Hamiltonian operator resulting from an input density n0. The Kohn-Sham 
equations arc then solved non-selfconsistently and the second-order correction is neglected. 
However, in a situation with considerable charge fluctuations, the second-order term in (1) 
may yield important corrections. 

The contributions in (1) that depend on the input density n0 only and the core-core 
repulsion arc taken to be a sum of one- and two-body potentials [2]. So, denoting the 
latter by Erep, we can define a repulsive Potential, which is strictly pairwise, repulsive and 
short-ranged also in the presence of considerbale charge flow. Since Errp depends on n0 

only, this term is not, influenced by the charge redistribution. 
In order to include the effects of charge transfer in a simple and efficient TB concept, we 

first decompose 6n(f) into atom-centered contributions which decay fast with increasing 
distance from the corresponding center. The second-order term then reads: 

E2nä = 5 E //' r[f, r", no] Snn(r) 5nß(f), (2) 
1 iß 

where we have used the functional T to denote the Hartrcc. and XC contributions. Second, 
the 5na may be written as a product of radial and angular functions: 

<5n„(r)    =   ^K^F^r-R^Y,,,,' 

«   A.7nF0
0

0(|r--.Rn|)y„o, (3) 

where F^t denotes the normalized radial dependence of the density fluctuation on atom rv 
for the corresponding angular-momentum.  While the angular deformation of the charge 
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density, e.g. in covalently bonded systems, is already described very well within the non- 
SCF approach, the charge-transfer effects are not properly handled. Therefore, we truncate 
the multipole expansion (5) to the monopole term, accounting for the leading charge trans- 
fer contributions at conserved total charge, thus guaranteeing £Q Aqa = 0. Substitution 
of (5) into (2) yields the simple final expression for the second-order energy term: 

1 N 

E2„d= -^2AqaAqßjaß ,      where (4) 

7* = //r|f,?>0]«Ü|. (5) 

is introduced as shorthand. In the limit of large interatomic distances, the XC contribution 
vanishes within LDA and E2nd represents a pure Coulomb interaction between two point 
charges Aqa and Aqg. In the opposite case, where the charges are located at one and the 
same atom, a rigorous evaluation of jao would require the knowledge of the actual charge 
distribution. In order to avoid the numerical effort associated with such an approach, we 
assume that the self-interaction of the spherical charge fluctuation is essentially unaffected 
by the neighborhood and thus is the one of a free spin-unpolarized atom, i.e. it primarily 
depends on the atom type. This approximation is widely used in semi-empirical quantum 
chemistry methods relying on Parisers observation [9], that ~/aa can be approximated by 
the difference of the atomic ionisation potential and the electron affinity, which is two times 
the chemical harndess rja, or the Hubbard parameter Ua: "faa « Ia-Aaas 2rja = Ua. The 
expression for jaß then only depends on the distance between the atoms a and ß and on 
the so-called chemical hardness or Hubbard parameters Ua and Uß. These are constants 
and can be calculated for any atom type within LDA as the second derivative of the total 
energy in DFT with respect to the occupation number of the highest occupied atomic 
orbital. 

Common functional forms for jaß, which interpolate between these two cases, have 
been presented by Mataga-Nishimoto [12] and Dewar-Sabelli [10], Klopman [11]. In this 
work we use the latter which has the functional form 

laß 
\lR»ß + Ki^ + uj) 

Finally, the DFT total energy (1) is conveniently transformed into a transparent TB- 
form, 

occ 1    N 

E = J2{^i\H0\%) + -Y,l«ßAqaAqß + Erep, (6) 
i l a,ß 

As discussed earlier, the contribution due to H0 depends only on nQ and is therefore exactly 
the same as in the previous non-SCF studies [6]. However, since the atomic charges depend 
on the one-particle wave functions *;, a selfconsistent procedure is required to find the 
minimum of expression (6). 

To solve the Kohn-Sham equations, the single-particle wave functions *; are expanded 
into a suitable set of localized atomic Orbitals ip„ for which the expansion coefficients are 
denoted by cvi [6]. By applying the variational principle to the energy functional (6), we 
obtain the Kohn-Sham equation which, within the pseudoatomic basis, transforms into a 
set of algebraic equations. For quantitatively estimating the charge fluctuations Aqa, we 
employ the Mulliken charge analysis. Then, the Kohn-Sham equation reads: 

M 

XI c^(-ff/"' - £is^v) = 0,    V/i, i, (7) 
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1     N 

H„„   =   {<pll\H0\ipv) + -Slu,'£('y^ + fßi:)^ (8) 

=   H°w + E)w ;    S„„ = <¥>>„) ;    V/irn, w/J. 

Since the overlap matrix elements 5,,,, generally extend over a few nearest neighbor dis- 
tances, they introduce multiparticle interactions. The second-order correction due to 
charge fluctuations is now represented by the Mulliken charge dependent contribution Hl

fu, 
to the matrix elements Hlw. 

As in previous studies [6], we have determined the short-range repulsive pair potential 
Ercp as a function of distance by taking the difference of the SCF-LDA cohesive energy 
and the corresponding TB band structure energy (which is now modified by the Coulomb 
correction) for a suitable reference structure. A simple analytic expression for the inter- 
atomic forces for use in efficient MD simulations is easily derived by taking the derivative 
of the final TB energy (6) with respect to the nuclear coordinates, see e.g. [14]. 

RESULTS 

In the remainder of this paper, we shall concentrate on presenting results of first suc- 
cessful applications of the SCC-DFTB scheme to a wide range of systems, being of interest 
in chemistry, biology and physics. Thus, we demonstrate the improvements of the method 
as compared to conventional DF-TB, other semiempirical methods, ah initio calculations 
and experiment. 

For our first benchmark, we have calculated the reaction energies of 36 processes be- 
tween small closed shell molecules containing oxygen, nitrogen, carbon and hydrogen from 
Ref.[15], some of them shown in Tab. I. 

Table I: Hydrogcnation reactions (kcal/mol) for small organic molecules in comparison 
with DFT-LSD calculations and experiment [15]. 

reaction SCC-TB    LSD   exp 
CH-iCHi + H2-> 2G'W4 20 18 19 
CH3NH2 + ff2 ->■ CHt + NH3 23 24 26 
CH3OH + H2^> CHA + H20 32 28 30 
NH2NH2 + H2 -> 2NH3 30 43 48 
HOOH + H2 -»• 2H20 101 80 86 
CH2CH2 + 2H2 -> 2CHA 71 67 57 
CH2NH + 2H2 -> CHA + NH3 66 67 64 
CH20 + 2H2 -> CHA + H20 65 67 59 
NHNH + 2H2 -> 2NH3 56 89 68 
C2H2 + 3H2 ->• 2CHA 124 131 105 
HCN + W2 -> CHA + NH3 88 102 76 
CO + 3H2 -> CH„ + H20 83 93 63 
N2 + 3H2 -> 2NHS 37 71 37 

For all 36 reactions we have found a mean absolute deviation from experiment of 12.5 
kcal/mol for the SCC-TB, compared to 11.1 kcal/mol for the DFT-LSD calculations. In 
further considering the optimized geometries of a 63 organic molecules test set from Ref 
[16], the mean absolute deviations in the bond lenghs and bond angles from experiment 
arc AR = O.OIOA and A0 = 1.95° [14] respectively, evaluating 158 bondlenghts and 64 
bond angles. This has to be compared to the deviations of other semiempirical methods 
like AMI and others as listed in Tab. II, which has been taken from Ref. [21]. 

The values of the table are based on on a larger test set, evaluated for 228 bond 
lenghts and 92 bond angles.  However, evaluating the errors of the AMI Hamiltonian for 
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Table II: Performance of four different semiempirical methods for a test set of molecules, 
containing oxygen, nitrogen, carbon and hydrogen. Mean absolute errors, evaluated for 
228 bond lenghts and 92 bond angles. 

semiempirical Methods AR (A) A6> (°) 
MNDÜ 0Ü15 2.69 
AMI 0.017 2.01 
PM3 0.011 2.22 
ECP-MNDO 0.012 1.88 

the same test set as used for the SCC-TB, the AMI errors appear even to be slightly 
worse as indicated in the Table. The improvement over the non-SCF treatment is impres- 
sively demonstrated for systems with a delicate counterbalance between ionic and covalent 
bonding contributions, as e.g. in formic (c.f. Table III). 

Table III: Optimized geometries (bondlengths in A) of formic acid for the DF-TB, the 
SCC-TB , AMI Methods and experiment). 

DF-TB SCC-DFTB AMI exp. 
c=o 1.282 1.215 1.230 1.202 
C-0 1.292 1.349 1.356 1.343 
O-H 0.984 0.978 0.972 0.972 
C-H 1.100 1.119 1.103 1.097 
OCO 116.7 123.1 117.7 124.9 

The DF-TB clearly overestimates the equalization of the single and double bonds be- 
tween carbon and oxygen. This is exclusively due to too much charge flow (of nearly one 
electron) from carbon to oxygen, clearly indicating the need for a selfconsistent charge 
redistribution. 

Further, we have tested frequencies a series of 33 standard organic molecules yielding 
6.4 % mean absolute deviation of vibrational frequencies from the experiment [14]. 

The very promising results for the organic molecules described above lead us to believe 
that the method can be applied to investigate the geometric and electronic structure of 
large biomolecules. In order to demonstrate this, we have simulated the retinal in the 
bacteriorhodopsin molecule, a polyene structure linked via a Schiff base to the protein 
a-Helix. The SCC-TB geometries are in good agreement with the experimentally reported 
crystalline structure of the retinal [17]. In particular, the planar relaxation of the reti- 
nal Schiff base is described correctly, a characteristic which both classical force field and 
semiempirical calculations have failed to model [18, 19]. In Tab. IV we show the cal- 
culated rotational barriers of some molecules in comparison with AMI calculations and 
experiment. Although the barrier in ethylene is overestimated, all other barriers compare 
very well with experiment. This holds especially for the rotational barrier in formamide, 
which is a very important property for a realistic simulation of structural and energetic 
properties of peptides and proteins. This is so largely underestimated by semiempirical 
methods like AMl, that an additional correcting empirical force field must be introduced 
there for this purpose. 

Further, the effects of hydrogen bonding within the SCC-TB are described properly, the 
correct geometry for the water dimer is predicted and the barrier for proton transfer in the 
HsPt test-system is overestimated by only 12 % compared to DFT-B3LYP calculations. 
This opens the path for studies of the retinal in the protein enviroment and proton transfer 
mechanisms, including several hundred atoms of the retinal enviroment [20]. Since the 
time-limiting step in both, non-SCF and SCC-TB calculations is the solution of the general 
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Table IV: Rotational barriers (kcal/mol) for small organic molecules in comparison with 
semi-empirical AMI [16] calculations and experiment [16]. 

SCC-TB    AMI     cxp 
C2th 100 65.0 65.9 
C2H6 2.4 1.25 2.9 
CH3NH2 2.25 2.29 2.0 
CH3OH 1.3 1.04 1.1 
formamide 18.3 10.11 w 20 

eigenvalue problem, one step in the MD-simulations for structural relaxations by means of 
the SCC-TB requires this problem to be solved 2 to 3 times on average, independent on 
implementation. 

SUMMARY 

Summarizing, we have presented a selfconsistent-chargc extension of the non-orthogonal 
(two-center) DF-TB scheme based on a second-order expansion of the total energy as cal- 
culated within DFT. The method can be seen as a general SCC-extension of TB theory 
offering the great advantage to incorporate any atom type in a straightforward manner. 
This hopefully will stimulate not only MD-applications to large-scale semiconductor struc- 
tures and biological systems, but also for other challanging types of materials. 
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ABSTRACT 

The central ideas and the advantages of the difference equation Green's function ap- 
proach for layered systems with 2D-periodicity are presented. The tight-binding linear 
muffin-tin orbital and other practical aspects of the implementation are discussed. Prelim- 
inary test results are presented. 

INTRODUCTION 
Layered materials with 2D-periodicity form an important class of systems for electronic 

structure studies, warranting a special and optimized treatment. They include surfaces, 
interfaces, single and multiple quantum well heterostructures. Such systems are important 
for metals (e.g. magnetic layered structures), semiconductors, and for combinations of the 
two (e.g. Schottky barriers, metal based resonant tunneling structures). In this paper, 
we present the key ideas and preliminary results of a new method, which makes optimal 
use of the layered arrangement. The method is based on the difference equation approach 
(DEA) of Chen et al. [1] and implemented in the framework of the tight-binding linear 
muffin-tin orbital (TB-LMTO) method [2] in its atomic sphere approximation (ASA). This 
makes the method compatible with the local density functional approach and as such a 
first-principles method. It is closely related to the LMTO surface Green's function method 
(GFM), which was proposed in Ref. [3] and subsequently developed and used successfully 
by Skriver et al. [4, 5, 6] and Kudrnovsky et al. [7]. 

While the current restriction to ASA limits its applicability to solve structural prob- 
lems, it is hoped that future developments of full charge density LMTO [8] within the same 
general theoretical framework, will allow to overcome this difficulty. The main strength of 
the presently proposed method is that it makes explicit use of the fact that when several 
layers (to be defined properly below) see effectively the same potential, the DEA allows 
us to "jump" over these layers. This implies that the method scales effectively with the 
number of interfaces rather then with the number of atoms. At the heart of the method 
is the observation that charge density and potential perturbations are usually confined 
to the immediate neighborhood of each interface, while individual wave functions or the 
Green's function (GF) at a particular energy are much longer range. As such, the Green's 
functions propagating through these bulk-like regions can still establish important inter- 
action effects between interfaces. We anticipate that the method will thus be most useful 
for problems which involve some longer range interaction effect between rather well sepa- 
rated interfaces. Examples of this are oscillatory magnetic couplings in metallic artificially 
layered structures and transport in resonant tunneling structures in semiconductors. In 
both these examples, the physics involves primarily electrons near the Fermi energy. We 
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emphasize that the central quantities in both these problems involve off-diagonal elements 
of the Green's function. Because the DEA obtains these exactly for any stack of identical 
layers in terms of the complex band structure [9], no numerical accumulation of errors 
takes place when increasing the distance which connects the off-diagonal elements. 

At the same time, the potential variations near each interface must be obtained self- 
consistently. This involves primarily the diagonal elements of the Green's function because 
they determine the local charge density. We show explicitly that this can be done in order- 
N matrix operations with N the number of layers. In order to dampen the charge sloshing 
effects, which considerably slow convergence to self-consistency, especially in large systems, 
one may dramatically accelerate convergence by estimating the self-consistent density from 
the input and output density in the linear response approximation [10, 5j. Entering into the 
linear response is the unscreened susceptibility matrix, which tells us how much charge is 
induced at one site when the potential is changed at another site. It is effectively obtained 
in terms of the off-diagonal Green's functions as 

XRW = llmldzY.G%^I,{z,h)G%,-,R,,{^h)' (1) 

in which the GF and the energy contour will be specified below. This emphasizes again the 
importance of off-diagonal GF matrix elements, for which the DEA is particularly suited. 

TB-LMTO ASPECTS 
The key feature of any tight-binding method is the range of the interactions. In the 

present context of layered systems, it defines the size of the so-called principal layer (PL). 
This is a layer of such size that interactions couple only nearest neighbor PLs. A 2D Bloch- 
transformation exploiting the 2D periodicity is tacitly understood. By this partitioning 
in PLs, the electronic structure problem is then reduced to matrix equations which are 
block tridiagonal. As will be shown below, the DEA as other surface GFMs exploit this 
sparscness of the matrix equations optimally. 

Within the ASA-LMTO framework, the multiple-scattering or "tail-cancellation" equa- 
tions provide the most suitable formulation of the electronic structure problem for the 
present purpose. The associated Green's function equation is: 

\PluAz)?>RL,R'L' - SRLtR'L'{k\\)\<]R'L',R"l"{2, k\\) = <5/?/„R»/.", (2) 

with Pflx(ß) the potential functions (essentially cotangent of the phase shift), and Snr.n'r,1 

the structure constants. Using the TB screening representation of the LMTO method [2], 
the structure constants are typically limited to next nearest neighbors while the Hamil- 
tonian matrix involves products of such structure constants and thus reaches at least to 
4th nearest neighbors. Additionall}', when the potential is perturbed on site R, only the 
local potential function is changed, whereas off-diagonal Hamiltonian matrix elements to 
the neighboring atoms are also changed. For the present purpose it is sufficient to note 
that the full GF in real space, i.e. G(r, r', z, fcy) can be obtained from it, as well as all other 
necessary quantities for a self-consistent calculation. For example, the local charge density 
in angular momentum channel L at site R is given by 

nRL = hmjdzE{tA».W]1/W,w,(z,fc||)[^/-W],/2 - d\n{PliL{z)\V2/dz},     (3) 
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in which the contour is a semicircle in the lower half plane starting below the bands 
of interest and cutting into the real axis at the Fermi level and the dot means energy 
derivative. 

PRINCIPLE LAYER GREEN'S FUNCTIONS 

As already mentioned, the PL technique, which is central to all TB surface GFMs, 
exploits the property that the (P - S) matrix is tridiagonal in the PL-representation. One 
can build up the GF from left to right by adding layer by layer [7]. Each step corresponds 
to applying the Dyson coupling equation: 

[Pn — Snn — Snn-ign_ln_lSn-in]g!£> = lnn, (4) 

in which gfö> is the GF of the n-th layer when the system is truncated at that layer, 5„_i„ is 
the structure constant matrix coupling layer n - 1 to layer n, the energy and k\\ arguments 
have been suppressed, and the elements are understood to be matrix blocks labeled by 
sites and orbitals in each layer. For an interface system, one starts from the surface GF 
block of an ideal semi-infinite crystal (which can be obtained in a variety of ways, e.g. see 
below), and in the last step, one couples simultaneously the last layer of the interface region 
(say, layer N) to the stack of layers on the left and the surface block of the semi-infinite 
ideal crystal on the right by adding the term -SW+ISAT+IJV+I'SWIW to the expression in 
square brackets in Eq. 4. At this point one has the true GF of the interface system on the 
last layer N. One can then retrace one's steps to update the GF of the previous layers 
in the stack. It is important to realize that at each step, the true GF g is known on the 
previous layer coming from the right (say n + 1), as well as the GF of the uncoupled system 
terminated on the current layer n, g%$. One obtains from the Dyson equation 

g-nn+l     =     flnn"nn+lffn+ln+li 

9n+ln     =     ffn+l,n+lS>i+in<7„n , 

9nn     =     g^nJ + 9n}Snn+l9n+l,n- (5) 

The computational effort required to obtain all diagonal GF blocks in the interface layer 
scales linearly in the number of layers, N. (Inversions and multiplications take comparable 
computing time.) Additional off-diagonal Green's functions can be similarly computed: a 
band of gn~m,n+m requires order mN operations for N layers. For a straightforward self- 
consistent calculation, only the diagonal matrix elements are required. The off-diagonal 
matrix elements decay exponentially as the distance between the atoms increases; thus one 
needs only a few off-diagonal elements to generate, for example, x- 

DIFFERENCE EQUATION GREEN'S FUNCTION APPROACH 
The DEA [1] takes advantage of the fact that the various matrix blocks occuring in the 

secular equations are the same whenever they apply to bulk-like layers. Let us reconsider 
the secular equation for a stack of equivalent layers, i.e. layers with the same potential and 
structure. Introducing the notation S10 = S„+i]n, (S-P)00 = Snn-Pn, (which emphasizes 
that these are independent of the actual layer n), the equation becomes: 

SwCn~i + (P — S)00Cn -I- 5i0Cn+1 = 0 (6) 
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Because this is a second order difference equation in the layer index, its general solution 
can be written as Cn = Y,j ajr'jVj m terms of the eigenvalues r, and eigenvectors Vj of the 
quadratic characteristic equation: 

\S\0 + (S- P)00r + Sl0r
2}V = 0, (7) 

The eigenvalues of this equation occur in pairs r, 1/r; this is a consequence of Eq. 7 being 
a quadratic eigenvalue problem. Their physical meaning is that r = exp (ikza:) with a. 
the distance between the layers and kz a complex wave vector, provide the so-called com- 
plex band-structure. They arc equivalent to the complex wave numbers in the eigenvalue 
method of Chang and Schulman [9]. The GF g^m satisfies the same equation as Cn when 
m 7^ n. When m = n, the right hand side must be replaced by —lnn. If m > n, we can 
write 

9L = V<rm-nV-'g,^ (8) 

in which r is now a diagonal matrix containing only the eigenvalues for which \r\ < 1 
and V< is a square matrix obtained by juxtaposing the corresponding eigenvector columns 
because gmn must decrease with increasing distance. Similarly, if m < n, only eigenvalues 
\r\ > 1 appear, which correspond to 1/r in the previous set. (By adding an imaginary 
part to the energy, one insures that the eigenvalues strictly fall in either one of these two 
categories.) The equation for the bulk GF then becomes: 

[Sio^rV-1 + (S - P)o„ + Sw^rl'-'k»  = -1 ■ (9) 

So, the bulk GF is obtained by one inversion once the characteristic eigenvalue problem 
has been solved. The left and right ideal semi-infinite GF, i.e. the GF for the truncated 
systems, can be obtained either from 

ISUV^V-'+ (S - P)00]g',;^-1 (10) 

[(5 - P)oo + S10V<rV^]g™ = -1 (11) 

in which only one "coupling term" appears, or, using the Löwdin downfolding approach 
[11, 12], in which the SGF is given by 

"S    -"B    -"\Kr9on,r (12) 9'mn — 9mn       SmolffooJ 

Since [fl^,]"1 as well as the off-diagonal g%n are already known from Eqs.(9,8), we have for 
m > n, 

aL = {[V<r""%-'] - [V^V-'W^V-^g^. (13) 

The important thing to realize is that Eq. 8 can be used to obtain the required off-diagonal 
elements of the GF linking the blocks on cither end of a stack of equal layers without the 
need to determine the ones in between. This is because the information on the evanescent 
and propagating states is already contained in the complex band structure eigenvalues and 
eigenvectors. As Eq. 13 illustrates, any surface GF and, in fact, any finite piece GF can 
be written analytically in terms of r, V<, V> and the bulk diagonal g®Q. It means that the 
computational effort is independent of how many equivalent layers occur. In other words, 
the method becomes ordcr-N in the number of interfaces, rather than the number of layers. 
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TEST RESULTS 

Because of the central role played by the complex band structure in the DEA, we 
show an example the complex band structure of Si along the [110] direction in Fig. 1. 
Good agreement is obtained on the topology of the bands with previous pseudopotential 
calculations of Chang and Schulman.[9] 

Si [110] 

-0.3 
Imk, 

0.7        0.9 
Im k, -0.5 

0.1        0.3 

Rekz 

Figure 1: Complex band structure of Si [110]. Real bands are indicated by filled circles, 
imaginary bands with real part zero by open circles with negative Im kz, imaginary bands 
with real part at the zone boundary by open circles with positive Im kz and complex bands 
by x. 

An important test is whether the method provides the same result as a standard band 
structure calculation in case of a bulk periodic system. Fig. 2 shows the density of states of 
bcc Fe obtained with the present GFM and from the band structure using the tetrahedron 
method. The GFM uses a 16 x 16 point 2D k-mesh. In fact, the calculation was made 
self-consistently entirely using the GFM and converges to the same result. One important 
difference with bulk band structure calculations is that in GF calculations the Fermi level 
is fixed rather than the number of electrons in the cell. Therefore, one must shift the 
potential by a constant until the correct number of electrons required by charge neutrality 
is obtained. In Fe, this requires high accuracy on the DOS, because of the sharp peak at 
the Fermi level, thus providing a demanding test. 

CONCLUSIONS 
The difference equation Green's function approach is a promising technique for 2D 

periodic systems. It makes use of the complex band structure. Preliminary tests of its 
TB-LMTO implementation are satisfactory. Applications are under development. 

WL was supported by NSF (DMR-95-29376), MvS by ONR (N00014-96-C-0183). 
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0.0 5.0 
ENERGY (eV) 

Figure 2: Density of states in bec Fe. Solid line: standard LMTO band structure calcula- 
tion; dot-dashed line: GFM along a line just below the real axis; dashed line: GFM using 
Pade approximation to the GF along an elliptical contour in lower half plane (using only 
40 complex z-points) and analytic continuation. The various curves are offset for clarity. 
The Fermi energy is chosen as zero of the energy scale. 
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INTERACTIONS OF POINT AND EXTENDED DEFECTS IN 
STRUCTURAL INTERMETALLICS: 
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ABSTRACT 

A real-space TB-LMTO-recursion method for electronic structure calculations is applied 
to the study of interacting extended and point defects in NiAl. Results of calculations for 
the pure intermetallic and with ternary additions (within a supercell model) show good 
agreement with band structure results. Further, electronic structure and total energy cal- 
culations of point (single impurity, M=Ti, V, Cr, Mn, Fe and Co) and planar defects such 
as anti-phase boundaries (APB) were carried out and the interaction between them was 
determined. We found that for the ^(111){110} APB in NiAl, ternary additions occupy 
exclusively the 3d-metal sublattice and decrease the APB energy (except for Co). Finally, 
we employ TB-LMTO-REC to study the electronic structure of the most complex extended 
defect, a dislocation. We demonstrate for the (100){010} edge dislocation in NiAl that: (i) 
quasi-localized states may exist as a result of specific lattice distortions in the dislocation 
core with a type of "broken" bonds; (ii) the electronic structure changes appreciably in the 
process of dislocation motion; (iii) van-Hove singularities present in the ideal crystal may be 
shifted to Ef as a result of the dipolar character of the deformations in the dislocation core. 

INTRODUCTION 

Transition metal aluminides, such as NiAl, FeAl and 7-TiAl, are of great interest as 
structural materials. The mechanical properties of intermetallic compounds strongly depend 
on the presence of ternary additions, which may be able to change such characteristics as 
ductility, fracture mode, oxidation behavior, etc. Experiments show that small amounts 
of ternary additions in NiAl lead to increased ductility (solid solute hardening) [1]. The 
influence of impurities on the electronic structure and energetics of extended defects in 
crystals is of special interest in this context. It was shown previously [2] that the energy of 
anti-phase boundaries (APB) is the main factor which determines the preference slip systems 
in intermetallics. Alloying can change the APB energy and so can influence their mechanical 
behavior. Another mechanism, responsible for solid solute hardening, may be impurity- 
dislocation interactions. Theoretical investigations of such interactions by standard band 
structure methods are complicated due to the absence of translation symmetry. In this work 
we demonstrate that an alternative, real-space technique is the effective tool for studying 
the interactions of point and extended defects in structural intermetallics. 

METHOD 

For the electronic structure calculations, we employ the real-space tight-binding linear 
muffin-tin orbital method [3] combined with recursion (TB-LMTO-REC) [4], [5], tailored 
to treat an impurity problem as described in [6]. Perturbations of the electronic structure, 
introduced by point (impurity) or extended defects (APB or dislocations) can be treated 
rigorously within the region of several shells of nearest neighbors around the defect. This 
region is subsequently embedded in a larger cluster of several thousand atoms, which repre- 
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sents the bulk material, and then boundary conditions relevant to the problem arc simulated. 
For the embedded region, the effects of the electron density redistribution is described self- 
consistently in the framework of the local density approximation and local charge neutrality 
within the atomic spheres of varying size is achieved. The perturbation of the remaining 
part of the cluster is taken into account approximately due to changes of structure constants 
under lattice deformations, but with LMTO potential parameters taken to be fixed as in the 
bulk. In the present work, all calculations were carried out in a basis of s, p and d states, 
for which, respectively, 10, 20 and 30 pairs of recursion coefficients were calculated. The 
procedure of Beer and Pettifor [7] was exploited for the correct termination of continued 
fractions. The second order Hamiltonian and exchange-correlation potential of von Barth 
and Hedin were used. 

DC 
0.0-■ 

-0.2 

-i 1 1 1 1— 

■ - FLMTO, 
supercell (12.5%) 

• -TB-LMTO-REC, 
supercell (12.5%) 

RESULTS 

The precision of our implementation of the real space TB-LMTO-REC method and the 
self-consistency procedure employed was checked by calculating the equilibrium volume of 
pure NiAl. We found that the equilibrium lattice constant (a=2.S24 A) is in good agreement 
both with experiment (2.887 Ä) and with results of band structure methods (FP-LMTO 
a=2.839 Ä[2], FLAPW a=2.810 A[8]). A 2% underestimation of the equilibrium lattice 
constant is typical for methods using the local-density approximation. We also found that 
the variations of recursion scheme parameters (cluster size from 1000 to 10000 atoms, length 
of continued fractions from 20 to 50, presence or absence of periodic boundary conditions) 
lead to less than 0.5 mRy changes in the self-consistent total energy, and do not change the 
position of theoretical equilibrium volumes. 

0.4-1—i 1 1 1 1 1 1—1 To better understand the mechanisms of so- 
lution strengthening in ordered alloys, the infor- 
mation regarding the crystallographic site occu- 

0.2H   * *. •-lo-LMiu-HEi,, pancy of the ternary element is required.    To 
verify the applicability of the method for pre- 
ferred site energy evaluation, we calculated its 
values for transition metals (TM) from Ti to 
Ni modeled with a small 16-atom supercell, as 
was done previously by Medvcdeva, et.al. [9] 
by the FLMTO method, which corresponds to a 
12.5% impurity concentration. These supercells 
form a cubic cluster of 2000 atoms with periodic 
boundary conditions. The preferred site energy 
is determined as the difference between the to- 
tal energies of supercells with additions in both 
sublattices and of pure Ni and Al metals in their 
structural forms having the lowest total energy. 
The results are presented in Fig. 1 in comparison 
with results of [9]. One can sec the very good 
agreement between real space and band super- 

cell results. 
According to our calculations, the site preference for Ti, V and Cr substitutions must 

be the Al sublatticc, in agreement with experimental data [10]. For the series of transition 
metals, the preferred site energy decreases from Ti to Mn, while Fe and Co impurities have 

A-TB-LMTO-REC, 
single impurity 

Ti   V   Cr   Mn Fe Co   Ni 

Figure 1: Preferred site energies for 
TM impurities in NiAl calculated by 
FLMTO and TB-LMTO-REC methods 
in supercell and single impurity ap- 
proaches. 
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a trend to replace Ni. For the Fe impurity this is in contradiction with experimental studies 
[10], which show for nickel-rich (with 0.3 at.% Fe) and for aluminum-rich (with 2.2 at.% Fe) 
NiAl alloys that the Fe substitutes Al in both alloys. The reason for discrepancies between 
theoretical and experimental results may be due to different impurity concentrations. The 
calculations were performed for the case of periodically ordered impurities with relatively 
high concentration, but it is known [1] that the solid solution hardening effect takes place at 
low impurity concentrations. To find out concentration differences in preferable site energies, 
we carried out the calculations for the case of infinitely dilute alloys, which were simulated by 
a single impurity placed in the center of 2000 atom clusters of NiAl. Potentials of the impurity 
atom and 6 shells of its nearest neighbors were included in the self-consistent procedure, 
giving us a cluster of 65 atoms embedded in a, non-perturbed host. As shown in [6], in metallic 
systems six shells of nearest neighbors essentially screen the perturbation induced by the 
impurity atom to the host, and we have used changes of the total energies for the embedded 
cluster in estimations of the preferred site energies. These results are also presented in Fig. 1. 
We see that, for the case of a single impurity, a similar trend in preference energy and site 
is observed: it decreases from Ti to Mn, then the preference site is changed from Al to Ni. 
But for the single Fe impurity we have obtained an even higher preference energy for the 
Ni site than for the case of finite impurity concentration. There may be several reasons for 
such a discrepancy with experimental results: (i) lattice relaxations around the impurity 
were neglected in this work; (ii) experimental results were obtained for non-stoichiometric 
compositions, whereas it was shown in [12] that small deviation from stoichiometry may 
significantly change alloy formation energies, such as enthalpy of formation. 

-0.10 T—i 1 1 1 1 1—i According to both experimental [13] and the- 
oretical [2] results, the major deformation mode 
in NiAl is (100){110} slip. Now, promotion of 
(111){110} slip through alloying may be promis- 
ing for increasing the ductility of NiAl. We have 
investigated the influence of TM impurities on 
the i(lll){110} APB energy in NiAl. In con- 
trast to previous band structure calculations of 
APB's, we do not have to introduce a sequence 
of repeated supercells thereby avoiding possible 
interactions between periodic APB's in different 
supercells. In this work, atomic relaxations at 
the APB interface were neglected. 

We have checked the dependence of the APB 
energy on the geometry of the cluster and have 
found that for clusters of 1300, 4200 and 10000 
atoms the APB energy was 890, 920 and 920 

mj/m2, respectively. It is seen that even a relatively small cluster of 1300 atoms gives an 
almost converged APB energy. Our results for the APB energy are also in good agreement 
with results obtained previously by band structure methods for an unrelaxed APB: 880 
mJ/m2 ([11], LMTO-ASA), 1000 mJ/m2 ([2], FP-LMTO), 1000 mJ/m2 ([12]). As shown in 
[8],[12], relaxation effects may result in a lowering of the APB energy by up to 20% of the 
unrelaxed value. 

To study the interaction of transition metal impurities with the APB, a single impurity 
was placed in the APB plane, substituting either Al or Ni. Potentials of impurity atom and 

Figure 2: Preferred site energies for TM 
impurities in ±(111){110} APB in NiAl. 
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Figure 3: Dependencies of APB energy 
on impurities concentration. 

three shells of its nearest neighbors were calculated self-consistently. The results of preferred 
site estimates are presented in Fig. 2. It was found, in contrast to the case of pure NiAl, 
that the preferred site for all transition metal impurities is the Ni site. The main reason for 
that is the change in impurity-nearest neighbor interactions, mainly due to changes of first 
neighbor position occupants. 

Knowing the changes of total energies of the 
APB due to introduction of a single impurity 
when it is placed in the preferred position, we 
can evaluate the concentration dependence of 
the APB energy. Such an analysis is possible 
only for low impurity concentrations, and was 
made assuming the following approximations: 
(i) impurities do not interact with each other; 
(ii) the concentration of impurities on the APB 
is equal to those in the crystal (no impurity seg- 
regation on APB); (iii) only impurities in the 
APB plane can influence its energy. Taking into 
account that in our calculations perturbations 
due to the impurity were considered as localized 
within 3 neighbor shells, this "non-interacting 
limit" can be roughly estimated as about 4 at%. 
The calculated dependencies of the APB energy 
as a function of impurity concentration were cal- 

culated and presented in Fig. 3. Transition metal impurities cause the notable decrease of 
APB energy (up to 30% in the concentration region considered). The largest effect is for 
early impurities (Ti-Cr) and then decreases. By lowering the |(111){110} APB energy, 
early TM impurities promote (111){110} slip. However, to answer the question whether 
this effect is large enough to change the preferred slip system, a further detailed analysis of 
impurity-induced changes of deformation modes, dislocation structures and Peierls stress [2] 
is neccessary. 

Another factor, which may be involved in solid solution hardening, is impurity-dislocation 
interactions. In [14], in the framework of a semi-empirical model, the interactions of impu- 
rities with different types of dislocations were analyzed and it was shown that extra solid 
solution hardening may arise in cases when localized electronic states appear on dislocations. 
This is most probable for dislocations with (100) Burgers vector. 

We have investigated the electronic structure of an (100){010} edge dislocation. The 
coordinates of atoms in the dislocation core were determined within the Pcicrls-Nabarro 
model [14] with parameters obtained from ab-initio calculations of the generalized stacking 
fault energetics [2]. The effects of the electron density redistribution in the region with up 
to 100 atoms in the dislocation core (shown in Fig. 4) are treated self-consistently. The 
size of the cluster was taken to be about 10000 atoms in order to minimize the effects of 
the boundaries. Two non-equivalent dislocation cores are possible in NiAl depending on 
the position of the dislocation axis: with the top layer (open circles in Fig. 4) filled with 
(i) Ni atoms (which we denote as position A), and (ii) with Al atoms (which we denote as 
position B). Numbered atoms represents regions of compression (2-4, 9-11) and expansion 
(5-7, 12-14) within the dislocation core. 

The local densities of states (LDOS) for Ni atoms in the center of the dislocation core are 
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presented in Fig. 5 for positions A and B, respectively. The main features of the electronic 
structure are: 

(i) well-defined peaks of quasi-localized states 
are seen for atoms in the center of the disloca- 
tion core. Hence, this effect may be associated 
with "broken" bonds or a change of coordination 
number in comparison with the bulk; it is most 
pronounced in the top layer, where distortions in 
the center of the dislocation core may be asso- 
ciated with "missing" atoms [14]; (ii) some fea- 
tures of the electronic structure, especially those 
corresponding to quasi-localized states for a dis- 
location in positions A and B are seen to be 
appreciably different. Hence, in the process of 
dislocation motion, the dislocation core intro- 
duces different perturbations into the electronic 
subsystem, (iii) The electronic structure of bulk 

Figure 4: Positions of atoms in the NiA1 is characterized by a van-Hove singularity 

<100){010} edge dislocation core with below the Ferml leveL Thus' there is the Possi- 
the region marked by dashed lines blllty that diPolar dilatation (compression and 
treated self-consistently. Open circles exPansion regions m the dislocation core) may 

denote atoms in top layer and open result ln a shlft of the vHS onto Ef for some 

squares - in bottom layer. atoms m the dlslocation core. Our ab-mitio cal- 
culations do support such a scenario for some 

atoms in the compression region of the dislocation core (atoms 2-4). This result may be 
treated as clear theoretical evidence for specific mechanisms of electron scattering by dislo- 
cations, which may possibly be revealed in the electronic transport properties of real metallic 
crystals. 
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Figure 5: Local densities of states for Ni atoms from the center of dislocations (atom 
1 in the position A and atom 8 in the position B) in comparison with those in pure 
NiAl. 
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CONCLUSIONS 

We have demonstrated that, due to its real-space nature, the TB-LMTO-REC method al- 
lows one to evaluate the electronic structure in complex situations, typical for real materials, 
such as dislocations, planar defects and their interactions with point defects. For supercell 
calculations, the results from this method are in good agreement with conventional band 
structure results. We find that interactions of TM impurities with the |(111){110} APB in 
NiAl decrease its energy, and so may favour {111){110} slip. Further, the method allows one 
to address such extremely difficult problems as electronic states on dislocations. For the first 
time within an ab-initio method, we provide evidence for the possibility of electronic state 
localization in metallic systems due to the lattice distortion in the edge dislocation core. 
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ABSTRACT 

We have calculated the cohesive energies, bulk moduli and equilibrium volumes 
of Be and Mg oxides, sulphides and selenides, in both zincblende and rocksalt structures. The 
calculations have been performed with the Discrete-Variational-Method (DVM), a real space 
first-principle local-density-functional approach. Comparisons with the experiment and with 
other first-principles approaches show that the electronic and structural properties of solids can 
be computed with DVM at least as accurately as with the usual plane-wave pseudopotential 
methods. This result is especially interesting in view of the fact that an order N implementation 
of DVM, based on the W. Yang's divide and conquer method, has been recently developed. 

INTRODUCTION 

First-principle pseudopotential methodsfl] within the local density-approximation[2] 
(LDA) have abundantly proved their value in the calculation of total energy and related 
properties in almost every kind of solids, irrespective of the bonding and of the conduction 
type. Though in principle resorting to real space techniques is at least as good a choice, in 
practice only recently the emergence of order N methods[3] to tackle large scale computational 
problems has brought again to the forefront of research the use of localized orbitals. A need 
therefore exists for a reappraisal of real space methods in total energy calculations, and for a 
thorough testing of their accuracy and reliability. In this paper we offer a first evaluation of the 
Discrete Variational Method[4] (DVM) in the study of the binding energies of beryllium and 
magnesium chalcogenides. 

Beryllium and magnesium chalcogenides are in fact wide band-gap semiconductors of 
technological and scientific interest because of their hardness and of their potential applications 
for blue-green laser diodes. In addition their joint study offers a particularly interesting 
challenge for a single theoretical approach since BeS and BeSe crystallize in the cubic 
zincblende structure while, in spite of their close chemical similarity, MgS and MgSe crystallize 
in the rocksalt structure. Furthermore BeO ground state structure is wurtzite while MgO one is 
rocksalt. The high pressure behaviour of these compounds is also a suitable testing ground for 
phase stability investigations, since e.g. differences by more than a factor of 6 in LDA 
pseudopotential predictions of transition pressures have been found for BeO[5] and further 
checkings with alternative methods have been called for. 

A further motivation to study these compounds with DVM is the fact that all of them 
have been recently thoroughly investigated with a variety of methods, most of them first- 
principles ones. An impressive set of theoretical results, which range from the equilibrium 
lattice constants to bulk moduli, elastic constants and binding energies in zincblende, wurtzite 
and rocksalt phases and include estimates of the transition pressures, is thus available for 
comparison. While the experimental evidence is not so abundant, part of these results are in 
good agreement with the experiment, part are merely predictions. However, since our main goal 
is to test the reliability of a real space method such as DVM against the other available theoretical 
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tools, even comparisons of theoretical predictions obtained by different methods can be fully 
meaningful. 

In this preliminary report we shall confine ourselves to zincblendc and rocksalt 
structures, and to the calculation of cohesive energies, bulk moduli and equilibrium volumes. 
Moreover all calculations have been performed with a minimal basis set plus an extra set of p 
orbitals. Further properties and crystal structures, together with the extension to BcTc and 
MgTe phases, will be taken into account in a forthcoming paperfö], where an optimization of 
the basis will be carried out. 

THE DISCRETE VARIATIONAL METHOD 

DVM has been originally developed in the seventies by Ellis and Painter[7] to perform 
band structure calculations, its basic idea being to capitalize on the high efficiency of a numerical 
representation of localized orbitals to make their use competitive against plane waves 
expansions. In the case of solid state calculations this attempt has been effectively frustrated by 
the advent of norm conserving pseudopotentials[8], and DVM has since evolved into a full- 
fledged first-principles method specialized to deal with clusters[4,9]. We have undertaken the 
job of taking one of the latest versions[10] and converting it to an object-oriented architecture by 
embedding most of its Fortran instructions into a C++ framework[l 1]. In this way we have 
been able to retain the optimisation of the key numerical routines of the original code while 
enjoying the flexibility of the object-oriented C++ language. The advantages of this new 
architecture has greatly eased the subsequent transitions, again to solid state calculations and to 
W. Yang's order N approach[12]. 

Our computational procedure is thus based on a DVM code which straightforwardly 
implements all-electron density-functional calculations within LDA. We have used the Von 
Barth-Hedin formulation of the exchange and correlation contribution. The wavefunctions arc 
expanded into a set of orbitals, obtained by solving numerically the isolated atom problem, and 
a grid of 2000 points/atom is used in numerical integrations in the unit cell. The use of such a 
high density grid has been made necessary by the convenience[6] of using the highly efficient 
diophantine algorithm even in the framework of integrations over unit cells (instead of the whole 
space). We have used the frozen core approximation to avoid spurious energy minimization 
effects on our structural properties. The cohesive energy has been computed for sets of 
molecular volumes for both structures of each compond and the results have been fitted to the 
Mumaghan equation of state. 

RESULTS AND DISCUSSION 

Our cohesive energies per atom versus the atomic volume, for zincblendc and rocksalt 
structures, are shown in Figs. 1(a)-1(c) and in Figs. 1(d)-1(f) for Be and Mg chalcogcnidcs, 
respectively. The curves predict that of the two structures zincblendc is the most stable one for 
Be compounds, while the reverse should happen for Mg compounds. Both predictions arc in 
agreement with the experiment, though the experimental stable structure of BcO is wurtzitc, 
which we did not take into account, but which has the same coordination number as zincblendc 
and usually gives rise to a cohesive energy curve which runs parallel and quite close to the 
zincblendc one. 
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Another feature that is apparent from the curves is the shift in the relative positions of the 
equilibrium atomic volumes for the two structures, which means that in the case of Be 
chalcogenides one can, by the application of a suitable pressure, transform the zincblende stable 
structure into a rocksalt one, while this transformation is impossible for the analogous Mg 
compounds. For the latter a transition under pressure to a higher coordination structure such as 
cesium chloride should still be possible and seems indeed to be verified [13]. 

More quantitative comparisons are allowed by tables I - III. While our cohesive energies 
show the usual overestimation with respect to the experiment that is typical of local-density 
calculations, the estimates of the energy differences between the two structures taken into 
account arc in line with the other theoretical calculations. 

Table I - Cohesive energies Ec, lattice constants arj, and bulk moduli B for zincblende and 
rock-salt structures of BeO, BcS and BcSe, obtained with the DVM method and compared with 
the available experimental data and other recent theoretical values. 

BeO BeS BeSe 

rocksalt zincblende rocksalt zincblende rocksalt zincblende 

Ec(eV/atom) 
DVM 
expt. 
others 

8.9 

6.61' 

9.1 

7.02' 

4.6 5.2 

(A=0.6)2 

4.2 4.6 

(A=0.6)2 

ao(A) 
DVM 
expt. 
others 

3.65 

3.589' 

3.839 
3.7973 

3.767' 

4.41 

4.4924 

4.90 
4.8655 
4.7454 

4.75 

4.7954 

5.183 
5.139s 

5.0374 

B(GPa) 
DVM 
expt. 
others 

307.6 

272' 

260 
2126 

229' 

101.6 

127.54 

86.9 

1164 

104.4 

91.24 

86.7 
92.27 

98.84 

1. FPLMTO results from J.C. Bocttger and J.M. Wills, Phys. Rev. B54, 8965 (1996) 
2. A = Ec(zincblende) - Ec(rocksalt) from 4) 
3. A. Lichanot and M. Rerat, Chem. Phys. Lett. 211, 249 (1993) 
4. A. Munoz, P. Rodriguez-Hernandez and A. Mujica, Phys. Rev. B 54, 11861 (1996) 
5. Data in Science andTechnohvy. Semiconductors: Others than Group IV elements and III-V 

Compounds, edited by O. Madelung (Springer-Verlag, Berlin, 1992) 
6. Wurtzite phase data from R.M. Hazen andl.W. Finger, J. Appl. Phys. 59, 3728 (1986). 
7. H. Luo, K. Gandehari, R.G. Greene, A.L. Ruoff, S.S. Trail and F.J. Di Salvo, Phys. Rev. 

B52, 7058 (1995) 

Inspection of the tables also shows that DVM equilibrium lattice constants 
compare quite well with the experiment for the experimental stable structure and with previous 
theoretical results for the other one. It is to be noted that for the stable structure our values are 
closer to the experiment that pseudopotential based methods. For BeO, where accurate all- 
electron calculations are available, our result has an absolute error quite close to the one of a 
full-potential linear muffin-tin orbital (FPLMTO) method[5]. We are also on the mark with 
zincblende MgS, for which an experimental estimate of the lattice constant has been possible 
from the study of zincblende ZnSe/MgS supcrlattices[14]. 
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TABLE II - Cohesive energies Ec, lattice constants ao, and bulk moduli B for zincblende and 
rocksalt structures of MgO, MgS and MgSe, obtained with the DVM method and compared 

MgO MgS Mg Se 

rocksalt zincblende rocksalt zincblende rocksalt zincblende 

Ec(eV/atom) 
DVM 
expt. 
others 

5.9 
5.151 
4.852 

5.8 5.1 
4.01 
4.503 

4.9 

4.493 

4.7 
3.41 
4.084 

4.5 

4.044 

ao(Ä) 
DVM 
expt. 
others 

4.05 
4.211 
4.272 

4.7 5.21 
5.206 

5.143 

5.59 
5.597 

5.593 

5.476 
5.4638 

5.504 

5.81 
5.899 

5.984 

B(GPa) 
DVM 
expt. 

|       others 

153.7 
16010 
1502 

126.2 

15111 

90.3 

77.73 

68.3 

573 

89.6 

65.44 

62.3 

47.84 

1. From the CRC Handbook of Chemistry and Physics, 70th edition. ....,, „„ ,. 
2 P. Cortona and A. Villafiorita Monteleone, J. Phys.: Condens. Matter 8, 8983 (1996) 
3. Sun-Ghil Lee and K.J. Chang, Phys Rev. B52,1918. (1995) 
4. P.E. Van Camp, V.E. Van Doren and J.L. Martins, Phys. Rev B55, 775 (1997) 
5 Data in Science and Technology. Semiconductors:Others than Group IV elements and III-V 

Compounds, edited by O. Madelung (Springer-Verlag, Berlin, 1992) 
6. R.W.G. Wyckoff, Crystal Structures (Wiley, New York, 1963) 
7. K. Uesugi, T. Obinata and I. Suemune, Appl. Phys. Lett. 68, 844 (1996) 
8. Inorganic Compounds, Crystal Data, Vol. II, edited by J.H. Donnay and H.M. Ondik 

(U.S. Department of Commerce, Washington DC, 1972) 
9. H. Okuyama, K. Nakano, T. Miyajima and K. Akimoto, J. Cryst. Growth 117, 139 

(1992) 
10. Z.P. Chang and E.K. Graham, J. Phys. Chem. Soli 
11. N.C. PypeT, Phil. Trans. R. Soc. A352, 89 (1995) 

Chem. Solids 38, 1355 (1977) 

Table III - DVM values of transition pressures PT from zincblende to rocksalt structure and of 
corresponding transition volumes (normalized to zincblende equilibrium volumes) for BeO, BeS 

BeO BeS BeSe 

zincblende rocksalt zincblende    rocksalt zincblende    rocksalt 

PT(GPa) 
DVM 
others 

31.3 
94.11 , 21.72 

35.8 
52.353 

23.4 
42.763 

Vr/Vn 
DVM 
others 

0.908 
0.7761, 
0.9302 

0.784 
0.6881 
0.7422 

0.811 
0.7573 

0.544 
0.6513 

0.845 
0.7593 

0.634 
0.6593 

1. FPLMTO results from J.C. Boettger and J.M. Wills, Phys. Rev.. B54 8965 (1996) 
2 Ab initio pseudopotential results for the wurtzite-rocksalt transition from K.J. Chang, and 

M.L. Cohen: Sof. St.Commun. 50, 487 (1984) . . . 
3 Ab initio pseudopotential results for the wurtzite-NiAs transition from A. Munoz, P. 

Rodriguez-Hernandez and A. Mujica, Phys. Rev. B 54, 11861 (1996) 
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As for our calculated bulk moduli the tables show that they follow the same trends and 
have the same kind of agreement with the experiment as the pseudopotential calculations by Lee 
and Chang[15], Mufioz et al. [16, 17] or Van Camp et al.[18], or the all-electron FPLMTO ones 
by Boettger and Wills[5]. As is well known, of course, agreement with the experiment is 
significantly worse than with the equilibrium lattice constants. 

DVM predictions for transition pressures, reported in table III for Be chalcogenides (no 
pressure-induced transition to zincblcnde structure being feasible for Mg chalcogenides), 
confirm the general agreement with previous LDA results for the transitions between the same 
or very similar pair of structures. However in the case of BeO the spread of numerical 
predictions strongly suggests further more accurate investigations, both theoretical and 
experimental. 

CONCLUSIONS 

A systematic investigation of the structural properties of the chalcogenides of Be and Mg 
has been made with a real space method like DVM. In spite of the use of a not optimized basis 
set our results clearly show the reliability of the method and its applicability over a wide range 
of bonding types, from elemental semiconductors (studied in Ref. 10) to strongly ionic 
compounds such as BeO. On this basis its usefulness as an investigation means, both on its 
own and as the heart of an order N computational engine, can be stated with confidence. 
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ABSTRACT 

Over the last decade, Quantum Monte Carlo (QMC) calculations for tight binding 
Hamiltonians like the Hubbard and Anderson lattice models have made the transition 
from addressing abstract issues concerning the effects of electron-electron correlations on 
magnetic and metal-insulator transitions, to concrete contact with experiment. This paper 
presents results of applications of "determinant" QMC to systems with disorder such as 
the conductivity of thin metallic films, the behavior of the magnetic susceptibility in doped 
semiconductors, and Zn doped cuprate superconductors. Finally, preliminary attempts to 
model the Kondo volume collapse in rare earth materials are discussed. 

INTRODUCTION 

The determinant QMC method[l] is a powerful technique for understanding the physics 
of itinerant, interacting electrons. Its primary strength is that it treats the correlations be- 
tween electrons exactly, in contrast to other approaches which resort to various simplifying 
approximations. The chief disadvantage is its computational cost, which limits the com- 
plexity of the models which can be considered. Many of the past applications^] have been 
to the single-band two-dimensional Hubbard Hamiltonian. This model is of theoretical 
interest since it is the simplest lattice Hamiltonian exhibiting both an interaction-driven 
("Mott") metal-insulator transition and also long range magnetic order. It is also poten- 
tially of importance in understanding the magnetic and superconducting properties of the 
Cu02 sheets of high temperature superconductors. That the model has a single band and 
is in two-dimensions has played a crucial role in making simulations on reasonable lattice 
sizes (up to 16x16 sites) possible. 

As algorithms and machine speeds have improved, however, computational restrictions 
are becoming less prohibitive, and the determinant QMC approach is being applied to 
tight-binding models which include features such as many orbitals, disorder, and higher 
dimensionality. In this paper we will provide an overview of four such applications. First, 
we have studied a model of disordered superconducting films, where there has been a 
long-standing interest in the possibility of a universal conductivity at the superconductor- 
insulator phase transition. [3] Second, we examine the effect of topological randomness on 
magnetically ordered phases, where one issue is the enhancement of the uniform spin sus- 
ceptibility at low temperatures observed in doped semiconductors.^] We next describe 
the behavior of magnetic correlations when non-magnetic impurity sites are introduced, a 
problem under investigation with recent experiments on Zn doping of ladder compounds 
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and high temperature superconductors.[5] Finally, we describe preliminary results on the 
phase diagram of the periodic Anderson Hamiltonian in three dimensions. [6] Here the key 
question is constructing a minimal model which might contain the essential features neces- 
sary for describing the "volume-collapse" transition observed in many rare earth systems. 

In the remainder of this introduction, we will describe in more detail the physics of these 
problems. Following this, section 2 contains a discussion of the QMC algorithm. Sections 
3, 4, and 5 contain the results of our simulations, and section 6 is a brief conclusion. 

i. Most bulk metals, and many alloys, undergo a superconducting phase transition in 
which the resistivity plunges abruptly to zero as the temperature is lowered. Over the 
last two decades, this transition has been exhaustively studied for thin films.[7] When 
small amounts of Pb or Sn, for example, are deposited on a substrate, the resistance 
increases as the temperature is lowered; the material is an insulator. However, as more 
material is deposited, the resistance goes to zero as the temperature is lowered. That is, 
there is a superconducting-insulator transition controlled by the film thickness. These 
experiments have been carried out for a large variety of materials and substrates, and were 
also performed with different tuning parameters for the transition, for example changing 
the magnetic field strength in Bi or oxygen concentration in In^a-O^ samples at fixed 
thickness. 

The remarkable observation is that the "critical resistance" which separates systems 
which are insulating from those which are superconducting is nearly the same for all materi- 
als. This is, of course, surprising, since such universality is normally expected in quantities 
like critical exponents, not in the coupling strength determining the location of a transi- 
tions. There have been a number of analytic attempts to explain this phenomenon,[8] but 
until very recently numeric approaches have been restricted to simplified "boson" models 
in which the electrons are treated as preformed Cooper pairs.[8, 9] 

In section 3 we describe QMC calculations for a model of interacting, two-dimensional 
electrons which is known to display a superconducting phase transition as the temperature 
is lowered. We add disorder to this model, and show that a superconductor -insulator phase 
transition is induced, and evaluate the resistance at the transition. 

ii. Doped semiconductors like Si:P exhibit a number of interesting magnetic phenom- 
ena. The basic physics is that of a two-fluid system with both itinerant electrons and 
randomly positioned local moments.[10] One essential question concerns whether there is a 
low temperature divergence of the magnetic susceptibility x(q = 0). It has been suggested 
that random exchange couplings between moments can lead to isolated spins which have 
a Curie-like contribution to x- Similar rapid increases in the susceptibility as the temper- 
ature is decreased are observed in the quasi-lD TCNQ compounds,[11] and are likewise 
believed to have their origin in randomness. Section 4a contains a discussion of simula- 
tions of a model of itinerant interacting electrons with hopping disorder which captures 
this behavior. 

Another magnetic system in which controlled disorder can be studied is Zn substitution 
in ladder compounds[12] and in the cuprate superconductors.[13] There it is observed that 
antiferromagnetic order can be stabilized by randomness. Recent numerical studies have 
shown that, indeed, short range magnetic correlations can be enhanced by non -magnetic 
defects.[14] Here we present, in section 4b, a discussion of the effect of non-magnetic 
impurities on long range magnetic correlations and on the Mott metal-insulator transition. 

iii. Many rare earth systems undergo a transition in which the volume is abruptly 
and drastically reduced as the pressure increases. For example, Ce, a particularly simple 
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case because the transition is isostructural, exhibits a first order phase transition with 
a 15% change in volume at 8 kbar. There are a number of competing theories for the 
origin of this effect.[15, 16] At the crudest level, a transfer of electrons between localized / 
and itinerant d orbitals might account for the volume change. Many theories assume that 
electron correlations play a crucial role, because the transition involves a loss of magnetic 
moments. 

In section 5, we describe QMC simulations of the three-dimensional periodic Anderson 
model (PAM). This Hamiltonian has the requisite complexity to allow for the processes 
which may underly the volume collapse transition, namely separate conduction and local- 
ized orbitals and the potential for charge transfer between them; and also the possibility 
of "singlet" formation between electron spins in the two orbitals which would account for 
the disappearance of magnetic moments. 

THE DETERMINANT QUANTUM MONTE CARLO METHOD 

Determinant QMC has proven very useful for evaluating correlation functions in tight- 
binding problems of interacting electrons. Consider the Hubbard Hamiltonian, 

r 1 1 1 

which consists of a kinetic energy term describing the hopping of electrons between nearest- 
neighbor sites i and j, an interaction term giving a repulsion between electrons of opposite 
spin species on the same site, and a chemical potential term which controls the filling.[17] 
Since our interest will be in disordered models, we have explicitly indicated that the transfer 
integrals ty, interaction strengths Uit and local chemical potentials m may be random. The 
Hamiltonian Eq. 1 is "particle-hole symmetric" at ßi = 0 so that each site is precisely "half- 
filled", («i) = 1, regardless of the values of the hopping and interactions (in the absence of 
charge-density-wave formation). 

In general, QMC methods map a quantum problem in d spatial dimensions to a classical 
problem in d+ 1 dimensions, where the inverse temperature ß = 1/T gives the additional 
length to the lattice. The reason is that in a classical statistical mechanics problem, the 
Boltzmann factor, exp[-ßE\, is a real-valued function of the degrees of freedom. In a 
quantum mechanical problem the relevant quantity is exp[-ßH] where H is an operator. 

This exponential of the Hamiltonian operator cannot be computed without diagonal- 
izing H (that is, solving the problem exactly). However, it is often the case that the 
exponential of the kinetic and potential energy pieces of H can be separately diagonal- 
ized, for example by working in momentum- or real- space respectively. Unfortunately, 
these constituent pieces do not commute, so the full exponential cannot be broken up into 
the product of the individual exponentials. The trick is to discretize the inverse temper- 
ature ß into a large number L of much smaller divisions Ar = ß/L and use the "Trotter 
approximation," [18] 

Z = Tt[e-ßb] = Tr[e-
Ar»]L « Tr[e-

ATVA^]L. (2) 

The discretization of ß has introduced a small parameter and breaking up the exponential 
is now a procedure which becomes arbitrarily accurate as L increases. This discretization 
of ß generates the added "inverse temperature" dimension to quantum simulations. In the 
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case of the Hubbard Hamiltonian, K includes the one body terms, the kinetic energy- and 
chemical potential, and V includes the two-body interactions. 

In the "world-line" algorithm, complete sets of states are introduced into Eq. 2, and the 
resulting matrix elements are evaluated analytically. The determinant QMC algorithm in- 
stead reduces the exponential of V to an exponential of a one body operator by introducing 
an integration over an auxiliary "Hubbard-Stratonovich" field, 

c-ATt/(n,f-l)(nu-l) _ Ie-ATt//4      y>      e-AS(i,l)(nif-nu)_ /gj 

S(l,l)=±l 

The coupling constant A is given by cosh(A) = exp[ArU/2]. We must introduce a field 
variable S(i,l) at each spatial site i of the lattice where an interaction is present, and also 
at each imaginary time slice / in the Trotter decomposition of exp[-ßH]. 

The final step is to evaluate the trace over the fermion degrees of freedom, which can 
now be performed analytically since the exponentials involve only one-body terms. 

Z =      Y,     detMr(5)detM|(5). (4) 
{S(!,I)}=±1 

Detailed forms for the matrices Ma, which have dimension the number of spatial sites in 
the lattice, are given in the literature.[1] To summarize Eq. 4, the quantum mechanical 
partition function has been expressed in terms of an equivalent classical problem in one 
higher dimension; Z is a sum over a classical field indexed by i and / with an argument 
which no longer involves operators but is instead an effective classical Boltzmann weight. 

We conclude with some general comments. First, the scaling of the algorithm is as 
the cube of the number of sites,[19] because of computations of the determinants of the 
matrices M„. Simulations of about 100 sites are already fairly computationally intensive, 
indicating why most applications have been to the simplest single orbital models in low 
dimension. Second; we are actually interested in measuring operator expectation values, 
(A) = Z~lTr[Äe~ßH]. Here, A might be the charge, spin, superconducting pair, or current 
density on a site or a "correlation function" consisting of a product of two such densities 
on different sites of the lattice. Such traces can easily be formulated in the same way 
as outlined above for Z, and, indeed, measurements of such physical quantities involve 
only accumulating the appropriate elements of the inverse of Ma. Finally, there is a very 
important limitation to determinant QMC simulations. The determinants can become 
negative, and in such cases measurements can have impractically large variance. In this 
paper we will deal with situations where this problem does not occur.[20] 

The calculations presented here will be mainly results from determinant QMC, but 
we will also show a few computations using "dynamical mean-field theory" (DMFT).[21] 
This technique also employs an auxiliary-field QMC algorithm, but introduces a local 
approximation to the self-energy, which becomes exact in the limit of infinite dimensions, 
and allows a more complete exploration of parameter space. 

DISORDER-DRIVEN SUPERCONDUCTOR-INSULATOR PHASE TRANSITIONS 

We first study a Hamiltonian of the form given in Eq. 1 with uniform hoppings t-,j = t 
and uniform attractive interactions U\ = —\U\. In the absence of randomness in the 
chemical potential, this "attractive Hubbard model" is known to exhibit a Kosterlitz- 
Thouless phase transition to a superconducting state as the temperature is lowered off 
half-filling. 
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Figure 1: Left panel: Pairing correlations as a function of lattice separation for different 
disorder strengths, — V/2 < ßi < V/2. For V a; 3 the correlations become very small at 
large distances. Right panel: Superfluid stiffness Ds as a function of disorder strength. 
Again, for V « 3 this measure of superconductivity vanishes. The Drude weight D, the 
coefficient of S(u) in the ac conductivity, tr(w), is also shown, and equals Ds for this system. 
The lattice size is 8x8. 

In Fig. 1 we show what happens to two quantities which measure whether the system 
is in a superconducting state. The pair correlation function, 

P.Ü) = ( \+i*l > A] = c;,c ,trt 
tic4J> (5) 

will go to a constant non-zero value at large separations j if the state is superconducting, 
and otherwise decay to zero. 

The superfluid stiffness is a second quantity which is non-zero in the superconducting 
state. It is defined in terms of an appropriate limit of the current-current correlation 
function, 

D3   =   -KX-\
T, 

Kx    =     \—t 2-j\c\+x,ac\,a + c\,<7C\+x,a))i 
a 

AT   =   lim,v_K) Arafe = 0, qv; iun = 0), 

-KJ„T 
Ara(q;iwn)   =   T,J0 dT{JA^r)jx(0,0))eicile- 

i«(l.r) ^ 2^(cl+i,o-cl,<r ~~ Cl,acl+£,a) (6) 

Here a>„ = 2nn/ß. In the right panel of Fig. 1 we show D„ as a function of the randomness 
V in the chemical potential. Disorder drives a transition to a state in which the pairing 
order is destroyed and the superfluid stiffness vanishes. 
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Figure 2: Left panel: dc resistivity as a function of temperature for different disorder 
strengths. For V sa 3 the traces show a transition from superconducting (dp/dT > 0) to 
insulating (dp/dT < 0) behavior. pQ = ft2/4e2 is the quantum of resistance. Right panel: 
Density of states N(u>) as we sweep through the transition. For both panels, the lattice 
size is 8x8. 

What happens to the resistivity, pdc, the experimentally most interesting quantity, as 
we cross through this transition? In the left panel of Fig. 2 we show pdc as a function of 
temperature. This plot looks remarkably similar to that seen in experimnnts[7]: a family 
of traces exhibiting insulating behavior is separated from a family where the resistivity 
decreases as T is lowered, with a roughly constant separating curve at a critical disorder 
strength. (This value is consistent with estimates of the transition point obtained from the 
data of Fig. 1.) The value of the critical resistance is roughly the same as that obtained 
in previous numerical studies of bosonic models, which are the \U\/t —> oo limit of the 
Hamiltonian considered here.[8, 9] This value is about twice that observed experimentally, 
a disagreement which may be due to the lack of long range Coulomb repulsion in the model. 
We are currently studying this issue in greater detail. 

The right panel of Fig. 2 shows the density of states (DOS). Interestingly, the gap in 
the density of states which exists in the superconducting phase is not destroyed when the 
disorder is increased to large enough values to suppress pair correlations and Ds (Fig. 1) 
to zero. This is in contrast to results[22] for the repulsive Hubbard model in which the 
analogous long range AF correlations appear to be necessary for the existence of a gap in 
N(UJ). The DOS was obtained using the "maximum entropy algorithm."[23] Our results 
show that this technique works well even in the presence of disorder and the associated 
error bars from disorder averaging. 

DISORDER-DRIVEN MAGNETIC PHASE TRANSITIONS 

In the previous section we saw that random chemical potentials drive a superconducting- 
insulator transition and evaluated the resistivity at the transition, a quantity which exhibits 
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a roughly "universal" value experimentally. Just as disorder interferes with long range pair- 
ing order in the attractive Hubbard model, it also can affect magnetic correlations in the 
repulsive case. In this section we describe simulations of these effects in models which have 
been suggested as appropriate to P doped Si, and Zn doped LaCu04. 

Random Bond Models 

It is believed that the random hopping Hubbard Hamiltonian, and its strong coupling 
limit the random exchange Heisenberg Hamiltonian, might be appropriate models of the 
behavior of the magnetic susceptibility in doped semiconductors. [25] The idea is that as the 
randomness is increased, singlets can form on strong bonds, instead of the magnetically 
ordered phase in which all spins are correlated, which is the ground state in the clean 
limit. Depending on the topology, some single spins may be left isolated in this process 
of singlet formation, and these spins contribute a divergent Curie term to the magnetic 
susceptibility at low temperatures. While the Hubbard case has been studied analytically, 
and numerically on small lattices, QMC simulations in two dimensions have only recently 
been reported. [4] Here we review simulations of Eq. 1 in which the interactions E/j = U > 0 
and chemical potentials ft = 0 are constant, but the hopping is disordered, t - A/2 < <y < 
t + A/2. We show that indeed, anomalies in x do appear. 

The left panel of Fig. 3 shows the spin-spin correlation function, 

(7(1) = {M{+1Mf) = <(n,+it - ni+u)(nit - ",+)), (7) 

as a function of separation for different disorder strengths. C(l) exhibits a characteristic 
alternating pattern indicative of antiferromagnetism.  Bond disorder steadily suppresses 
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Figure 3: Left panel: Spin correlations as a function of lattice separation for different 
disorder strengths. For A m 1.6, a finite size scaling analysis indicates the absence of long 
range order. Right panel: Uniform susceptibility as a function of temperature. In the 
presence of disorder and interaction, x is enhanced. The "prime" on A indicates the use 
of a specific type of correlated disorder discussed in Ref. [4]. 
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these correlations. A finite size scaling analysis indicates that for A > Ac sw 1.6 the AF 
order parameter vanishes, and, instead, a singlet phase emerges. 

The right panel of Fig. 3 exhibits the behavior of the uniform susceptibility, 

X = £ [ßdT{eT"M?+le-rHM?), (8) 

for different parameter regimes. The solid curve shows the noninteracting limit. In the 
presence of interactions, and at a small disorder value, x(0,0) is reduced below this U = 0 
value. (The AF response, x(7ri7r) ls, of course, dramatically enhanced.) Meanwhile, for 
A « Ac the uniform susceptibility instead shows a significant increase. 

Nonmagnetic Impurity Models 

We now turn to a model in which the hopping and chemical potential in Eq. 1 are 
uniform, but the interactions are random.[5] Specifically, we choose to set f/j to zero at some 
fraction / of the sites of the lattice. One motivation for studying such a model is a purely 
theoretical one. The Hubbard Hamiltonian at half-filling exhibits both a Mott metal- 
insulator transition when the energy cost U for double occupancy exceeds the bandwidth, 
and also AF order. There has recently been considerable discussion concerning whether 
a Mott gap can open in the absence of symmetry breaking such as that associated with 
AF order.[24] A model with a fraction / of sites with U-, = 0 might separate these two 
phenomena, since the Mott gap will be shifted from half-filling to a density (r?) = 1-1- /, 
while AF order is likely to remain at half-filling due to commensuration effects. 

An experimental motivation for the model is provided by studies of the effect of doping 
non-magnetic impurities like Zn into ladder compounds and oxide superconductors. One 
observation is that, in the latter case, AF order persists out to a Zn concentration of 
xc « 0.10 — 0.15, far larger than the amount of doping with an isovalent element like Sr, 
xc « 0.03, required to destroy AF. 

In Fig. 4 we give results of DMFT simulations of the Hubbard Hamiltonian with U-, = 0 
impurity sites. The left panel shows the phase diagram, and demonstrates the interesting 
feature that turning on randomness enhances the region of stability of the AF phase. In 
finite d the region of AF order at zero defect density, / = 0, will be shrunk down to 
half-filling (n) = 1, but the enhancement remains and AF order persists significantly away 
from half-filling. Unfortunately, because of this stabilization of AF order out to the density 
(n) = 1+/, we conclude this model does not exhibit a separation of Mott and AF behavior. 

The right panel of Fig. 4 shows the DOS. At half-filling the DOS for the U = U sites 
shows typical AF structure, two broad Hubbard bands, two quasi-particle peaks at low 
energies, and a gap at the Fermi energy. Surprisingly, there is an induced gap in the AF 
phase, even for the [7 = 0 sites, despite the absence of interactions there. The lower plot 
shows that at n = 1 + / = 1.11, the position of the Mott transition, there is still AF order. 

VOLUME COLLAPSE TRANSITIONS 

Several Lanthanides exhibit phase transitions under pressure characterized by abnor- 
mally large volume changes (14 % for Cerium and 9 % for Praseodymium). The physical 
mechanisms responsible for these transitions have been debated since discovery of the 
Cerium phenomenon over 50 years ago. Currently, the two main viable conjectures are a 
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Figure 4: Left panel: Phase diagram of the Hubbard Hamiltonian as a function of filling 
and concentration of defect sites within dynamical mean field theory. The disorder extends 
the region of long range AF order to larger doping. A disordered phase (D) is dominant 
at high carrier and defect doping. Right panel: The density of states on the U = 0 and 
U = 8 sites at a) half-filling and b) (n) =1.11. 

Mott transition of the 4f electrons accompanied by magnetic ordering[15] and a "Kondo 
volume collapse" due to rapid change in the 4f-valence electron coupling. [16] In both cases 
the strongly correlated nature of the 4f electrons is fundamentally implicated. To model 
such a transition it is necessary to consider systems with separate conduction and localized 
orbitals to allow for the transfer of charge between them and also for Kondo screening of 
the local moments by the conduction electrons. Indeed, our studies of single band models 
put the transition at grossly incorrect values of the ratio of interaction to bandwidth.[6] 

In Fig. 5 we show the phase diagram we have obtained for the three dimensional periodic 
Anderson model. The precise Hamiltonian we have studied at this point consists of a cubic 
array of conduction sites hybridized to their near-neighbors by tvv = 1, and also connected 
to localized orbitals (tff — 0), with an inter-orbital hybridization tfv. on near-neighbor 
sites. We have fixed the repulsion U/f = 8 on the impurity sites, left the conduction 
electrons non-interacting, Um = 0, and explored the properties of the system as we vary 
temperature and tfv. 

We are still in the process of connecting these QMC studies to accurate calculations 
of the band structure in order to extract thermodynamic behavior and the details of the 
volume collapse transition. 
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Figure 5: Phase diagram of the periodic Anderson model in three dimensions. At the lowest 
temperatures the local moments order antiferromagnetically (AF). At higher temperatures 
there are two distinct disordered regions, separated by a fairly narrow cross-over (hatched 
area). A paramagnetic (PM) region exists at small t/v and a "Kondo singlet" (KS) region 
at large tjv. These are distinguished by having small (large) values of correlation between 
near-neighbor / and d electron spins, respectively. The lattice sizes simulated were 43 and 
63. 

CONCLUSIONS 

In this paper we have discussed a number of recent determinant QMC simulations of 
tight-binding Hamiltonians which incorporate some of the complicating features, including 
disorder, non-trivial orbital structure, and higher dimensionality, which are necessary to 
describe realistic materials. A significant amount of work remains to be done before these 
calculations provide compelling descriptions of the experimental properties of solids. While 
some problems have been solved, for example the extension of maximum entropy methods 
to obtain dynamical information in disordered systems, significant bottlenecks include 
adequate treatments of the sign problem to generalize the fillings which are accessible and 
also to make more practical the study of intersite and interorbital repulsion. 
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MONTE CARLO STUDIES FOR STRONG CORRELATIONS IN 
HUBBARD-TYPE MODELS 

E. S. Heeb 
Institute for Theoretical Physics, ETH Zürich, CH-8093 Zürich, SWITZERLAND 

ABSTRACT 

The tight-binding model with repulsive Hubbard interactions represents an ideal pro- 
totype for the study of strong correlations. While exact numerical methods have been 
used with some success, they are typically limited by the size of the clusters that can be 
investigated or by the temperatures that can be reached. Variational methods, on the 
other hand, often require considerable advance knowledge of ground-state properties. The 
method presented here alleviates this problem by augmenting the variational approach with 
a scheme similar to Lanczos iterations thus bridging the gap between exact diagonalization 
and variational approaches. For the t-J model, the low-energy effective Hamiltonian of the 
Hubbard model, material properties like broken translational invariance or superconduct- 
ing correlations are then investigated and a region of stability of a superconducting phase 
is found. 

INTRODUCTION 

The effects of strong correlations in condensed matter systems represent some of the 
most challenging problems in the description of materials. In the framework of the tight- 
binding approach the Hubbard model can be seen as the prototype for a system with strong 
correlations[l]. While originally it has been introduced in order to explain magnetic order- 
ing the Hubbard model and numerous variations are now seen as an effective description for 
systems exhibiting a variety of different ground states. The discovery of high-temperature 
superconductors has renewed the interest in finding ground states with superconducting 
ordering in strongly correlated systems. 

Despite considerable effort not many exact solutions for strongly correlated system 
have been found around which a perturbation expansion would be possible. So far our 
understanding of strong correlations is best for one-dimensional systems. This includes 
an exact solution for the canonical one-band Hubbard model [2] and a categorization of 
possible ground states by a renormalization approach[3]. Yet it is unclear whether or how 
these findings apply to higher dimensional systems, especially since one-dimensional sys- 
tems cannot exhibit some of the relevant properties like long-range superconducting order 
in their ground state. In this situation numerical investigations have proven to be most 
valuable. Some of the most prominent are exact diagonalization of small clusters, a variety 
of quantum Monte Carlo simulations, and high-temperature series expansions. While these 
are some of the most powerful methods available, they have their limitations. Exact diag- 
onalization is restricted to rather small systems and extrapolation to the thermodynamic 
limit is often questionable if not impossible. Quantum Monte Carlo methods suffer from 
the fermionic sign problem and temperatures close enough to the ground state cannot be 
reached before the results are swamped by statistical errors. Similarly, the number of terms 
in high-temperature expansions is the limiting factor in reaching low enough temperatures. 

Variational methods have played a remarkably modest role in the investigation of 
strong correlations, while about at the same time they were crucial to the understand- 

167 

Mat. Res. Soc. Symp. Proc. Vol. 491 ° 1998 Materials Research Society 



ing of the Quantum Hall effect. To bo sure, also for these strongly correlated systems 
with unscreened Coulomb interactions there has been quite some effort to study varia- 
tional approximations^, 5], but so far no systematic scheme has emerged as it has been 
established with the Hartrec-Fock and self-consistent field method for weak correlations. 
The variational results for strong correlations are usually seen as biased and remain con- 
troversial. This presentation tries to eliminate some of the bias by introducing systematic 
improvements to the variational wavefunctions. By proper analysis of the results we can 
achieve much of the confidence that is attributed to self-consistent field solutions. 

THE METHOD 

The variational method in quantum mechanics relies on the Rayleigh-Ritz principle. 
Given any variational wavefunction |*var) we can obtain an upper bound for the ground 
state energy of the Hamiltonian It. The task is then to find an optimal wavefunction where 
the energy expectation value can be easily evaluated and which has the lowest upper bound. 
This method lends itself nicely to a Monte Carlo treatment[6]. If we choose a complete set 
of basis states \a) we can write 

E0S     ' (*w|*w> (1) 

v (iSlm\a) (a\H\*m) , . 

v (a\H\9m) |(«|1'rar)|
2 ,-, 

r     («I*™)      (*var|^r)' ^   ' 

This last equation has the form F = Y,r f{x)P{x). Taking P(x) as a probability distri- 
bution we obtain a statistical estimate of F by sampling f(x) according to the probability 
P(x). The quantum mechanical probability has already the necessary conditions for a 
probability distribution so that no sign problem arises. Also, if |\Pv»r) is close enough to an 
eigenstatc of the Hamiltonian then the sampled values for the energy do not scatter much 
and the convergence if the Monte Carlo sampling is quick. It should also be noted that 
the variance of the Hamiltonian can be calculated with only minimal extra effort. 

4 = («2)-W2   with   «> = £ <«|W|*™> 
<a|*w 

2 in^r 
(tfvarl*™)' 

(4) 

For weakly correlated systems the variational method is very successful. The ground 
state can very well be approximated by a Slater determinant of single electron orbitals. 
Taking the set of all such Slater determinants as our variational wavefunctions we arrive 
at the well known Hartrec-Fock description of electrons. With a Bogolyubov transforma- 
tion we can extend this same scheme to BCS wavefunctions which arc used to describe 
superconductivity. 

This scheme fails to work for strong correlations. As implied by the definition of 
strong correlations the electrons cannot be treated independently of each other and so a 
Hartree-Fock-Bogolyubov type of wavefunction is not any more a good approximation for 
the ground state. Most variational wavefunctions that are constructed to describe strongly 
correlated systems are somewhat ad hoc. They are usually regarded as biased and provide 
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only supportive evidence for the hypothesis that those wavefunctions are supposed to 
describe. 

Nevertheless, the case for the variational method in investigating strong correlations is 
not as grim as it may seem at first. The reason why the independent electron approximation 
works for weak correlation is the observation that for each electron the others act as an 
effective background medium. While this is not true anymore for strong correlations, any 
long range correlations still remain and the orbitals get entangled only on the short scale 
where the strong correlations are most effective. Specifically, if we take superconducting 
long range order as an example we know that it is described by anomalous expectation 
values of the form (CJCJ). We can describe a Cooper pair at position R with A(R) = 
Eij <p(i, j)cR+iCR+j. Superconducting long range order is characterized by 

(At(Ä)A(O)) -> (At(Ä)) (A (0)) = finite   for   R -+ oo. (5) 

This is then evidence for a finite order parameter which in the case of superconductivity 
is described by the Ginzburg-Landau phenomenological theory. 

For strongly correlated systems such an ordered phase is still connected to some long 
range order and the corresponding Hartree-Fock-Bogolyubov wavefunction would still de- 
scribe the correct long range behavior. However it largely misses to represent the strong 
local correlations and therefore does poorly on the energy. We then need to improve the 
local correlations without changing the long range part of the wavefunction. It turns out 
that this can be done systematically. 

A first approach to a systematic improvement of the local correlations are Lanczos iter- 
ations as they are used in exact diagonalization. Starting with a variational wavefunction 
1*^) the n-th Lanczos iteration will produce an improved wavefunction 

1*$*) = C (l + ßlH + ß2H
2 + ... + ßnHn) \9°w) , (6) 

where the ßt are optimized to obtain the lowest energy and C is a normalization constant. 
These Lanczos iterations lead to significant improvements in the energy. Test calcula- 

tions for the 2-dimensional antiferromagnetic Heisenberg model[7] where the ground state 
energy is known from other numerical methods have shown that for some realistic starting 
wavefunctions improvements on the order of 80 % of the remaining correlation energy are 
possible in each Lanczos step. The calculations also show that the symmetry properties 
of the wavefunction have a great impact on the rate of convergence. It is more important 
that the starting wavefunction has the same symmetry properties as the ground state than 
that the energy expectation value for the starting wavefunction is lowered by including 
a number of correlations that happen to be easy to implement. This observation can be 
explained easily. Each Lanczos iteration suppresses higher excited states more and more. 
If we relax the requirements on the symmetry of the starting wavefunction we make it 
possible to mix in low-lying excited states with different symmetry properties. While this 
will lower the energy of the starting wavefunction it also makes it harder for the Lanczos 
iteration to project out the excited states. As a rule of thumb we can expect that if the 
starting wavefunction is composed of n energy eigenstates it will take n — 1 Lanczos itera- 
tions to arrive at the ground state. Requiring the symmetry of the starting wavefunction 
to be the same what is known of the ground state is then a convenient way to speed up 
convergence even if it means to start from a slightly higher variational energy. 

For practical applications it turns out that Lanczos iterations are not ideal. Using 
expectation values of the original wavefunction as we do in our approach, the time required 
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for the calculation increases exponentially with the number of Lanczos iterations. Already 
the second Lanczos iteration requires a great computational effort on any reasonably sized 
lattice and higher orders are possible only on small lattices. It is then advantageous to use 
the Lanczos method in the conventional way for exact diagonalization, where in each step 
the complete wavefunction is stored and the computational effort increases only linearly 
with the number of Lanczos iterations. Obviously we need to enhance our method. There 
is an important observation as to why the Lanczos iterations quickly become slow. While 
the first Lanczos iteration improves the local correlations due to the local nature of the 
Hamiltonian this is not entirely the case for the second and higher orders. The second 
application of the Hamiltonian on the variational wavefunction need not pick up where the 
first one left off. In this way the Lanczos iterations also affect the long range part of the 
wavefunction which in general they need to. However, in our scheme it is the task of an 
optimal choice of the variational parameters in the starting wavefunction which controls 
long range behavior. It is therefore a waste of computer time to include terms which act at 
long distances. We replace the Lanczos iterations with a generalized scheme using cluster 
operators 

n 

where the local operators have the form 

■4n = £w,4r,w,-1- (8) 
9 

Here all Al°C3i are operators that act only on a given cluster and leave the rest of a config- 
uration unchanged. The index g runs over all chosen symmetry operations such that for 
each A°csX we arrive at an operator An that preserves all the relevant symmetries. If we 
start from all creation and annihilation operators for the orbitals in the cluster we can form 
all possible products of any number of them. Many of them don't preserve the number of 
particles and arc irrelevant for our scheme. After we apply the symmetry projection some 
are linear combinations of others and can be dropped. Some linear dependence may not 
be obvious and may in fact also depend on the Hubert space of the wavefunctions. This 
is the case for the particle number operator which is proportional to the unity operator. 
It occurs naturally if we start from an operator measuring the number of particles at one 
site of the cluster and we include the translations in the symmetries. An important point 
about these cluster operators is that there are a finite and in fact quite manageable number 
of them and that they can be constructed automatically. Of course the exact number of 
operators depends on the choice of the cluster and of the symmetries. For our method it 
is also important that this number is independent of the lattice size. The complexity of an 
operator, i.e., the number of individual terms in the sum, depends on the symmetries and 
grows linearly with the size of the lattice. This is in stark contrast to the Lanczos iterations 
where the complexity increases exponentially with the number of iterations. Replacing the 
Lanczos iterations with the cluster operators makes it possible to improve precisely the 
local correlations that we have otherwise no control over in the wavefunction. 

The new scheme opens another possibility which goes beyond the mere minimization 
of the energy. Our wavefunction is now of the form 

|UftA)) = #)|$(A)). (9) 

With the variational parameter(s) A we control the long range behavior of the wavefunction 
whereas the parameter(s) ß are responsible for the short range part. We can now choose a 
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Energy 

■ minimum energy 
^Y ,&■■•■ 

o 
ground state (unknown) 

Long-range correlations 

Figure 1: Schematic view of the convergence using cluster operators. Shown are the energy 
and a relevant measure for the long range correlations of the variational wavefunctions 
A(ß) |^(A)). The parameter A controls the long range behavior and affects mainly the 
horizontal position while the parameter ß of the cluster operators accounts for some of 
the remaining correlation energy and moves the points down. The dotted lines suggest 
the expected convergence to the ground state if more complex cluster operators could be 
included in the calculations. 

fixed A and minimize the energy only by varying /i. Ideally this should leaves the long range 
properties invariant. We can now measure the corresponding long range correlation before 
and after the application of the operator A(ß) and see whether this is really the case. If it 
should turn out that the short range operators are still changing the long range properties 
we can argue that the starting wavefunction |^(A)} did in fact not have the proper long 
range form. We can repeat this calculation with a different A. By scanning through a 
number of values for A we can find a wavefunction |^(A)) where the local operators don't 
affect the long range part when they optimize the energy. This wavefunction provides 
a good approximation for the long range properties of the ground state and only the 
local correlations need to be fixed. Figure 1 shows a schematic picture of this analysis. We 
measure both the energy and some property describing the long range correlation. For each 
A there are two points, one corresponding to the bare |\t(A)), and one for the optimized 
^(Moptimai(A)) |*(A)). The best energy estimate is of course still the lowest overall value 
and it is always an upper variational bound for the ground state energy. However, with 
the argument presented above the best estimate for the long range properties is the one 
that corresponds to the pair of points which shows no change in long range correlations. 
These points are in general not the same than those that lead to the lowest energy. The 
dotted lines show the expected convergence to the (generally unknown) ground state if we 
could extend the calculations to ever larger clusters for the cluster operators. 

While the method just described is not mathematically rigorous, it provides a powerful 
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Energy 

Variance 

Figure 2: Region of possible values of the energy (W) and variance (H2) — (H)2 for the 
variational wavefunctions. The convergence to the ground state will cause the variance to 
become smaller. Starting from a point close to an excited state will cause the variance 
to increase first when minimizing the energy. This provides an additional check for the 
quality of the variational wavefunction. 

tool resting on physical intuition. Moreover there is still one more test which can be 
implemented easily. It involves the variance of the Hamiltonian. Suppose we know the 
spectral decomposistion of a wavefunction |$) = ££L0 «, \<f>i) where |<fo) are the energy 
eigenstates corresponding to the energy E{. Then we can calculate the energy and variance 
of that wavefunction 

(10) 

(11) 

If only two eigenstates are involved the points on an energy-variance plot lie on a 
parabola. In general there is a whole range of possible values and the corresponding 
region on the energy-variance plot is bounded by parabolas touching the energy axis at 
the eigenvalues as shown in Figure 2. It should be noted that the involved energies are 
only those which are compatible with the chosen symmetry properties and therefore the 
points on the energy axis may remain sparse even for bigger lattices. We see that the 
variance should converge to zero when approaching the ground state and in fact any energy 
eigenstate. If our starting wavefunction happens to be close to an excited state then 
the cluster operators are able to reduce the energy but they will increase the variance. 
Demanding that the variance is reduced at the same time that we minimize the energy 
provides us with a further test for the quality of the starting wavefunction. 

RESULTS 

The simplest model to describe strong correlations in a one-band tight-binding Hamilto- 
nian is the Hubbard model. The Hubbard-Hamiltonian includes on-site Coulomb repulsion 

E   =   <«> = £ft£» 

j=0 

N 

>>j 
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with a coupling constant U and neglects interactions at a larger distance. In the strong 
coupling limit U becomes the dominant energy scale. The states can be characterized by 
the number of doubly occupied sites. If we are only interested in strong correlations and we 
want to describe electron densities of one electron per site or less we can restrict ourselves 
to the subspace with no double occupancy. This leads us to the t-J model as an effective 
Hamiltonian (e.g., see [8]) 

U = ~t  £   (gU> + h.c) + J £ {SSi - -ninj) (12) 
<i,j><r <>j> 

with the usual convention of summing over nearest neighbor bonds <i,j >. The modified 
creation and annihilation operators prevent the formation of doubly occupied sites, i.e., 
cia = cia(\ - c\_aCi-a). They don't obey Fermi commutation relations and there is no 
weak coupling limit of the t-J model. While this makes the model more complex for most 
analytical treatments it turns out to be simpler for most numerical work. In recent years 
it has been the basis a lot of numerical work [9]. 

For large values of J/t the 2-dimensional t-J model shows phase separation between 
an antiferromagnetic Heisenberg ordered phase and one with a low electron density. In 
this way the system tries to minimize the number of broken bonds and we obtain an 
effective interaction between the holes. Exact diagonalization of small cluster suggests that 
this leads to a ground state with d-wave superconducting order for intermediate values of 
J/t [10]. Hence we choose for the starting point of our variational method a BCS-type 
wavefunction composed of Cooper pairs with d-wave symmetry [5]: 

|*(A)> = VGVN rikeBZ K + ^kCk,tc-k,4) \vacuum), 

%/«k = Ak/(ek + ^k + Ak), (13) 
Ak = \{cos(kx) - cos(ky)), 
ek = -2£(cos(fcx) 4- cos(ky)) - e? 

The Gutzwiller projector Va projects out all configurations with double occupancy and 
VN is the N-particle projector. The variational parameter is A. For A -»■ 0 the variational 
wavefunction reduces to the Fermi sea (up to the Gutzwiller projection) and any finite 
value leads to superconducting long range order. The chemical potential eF does not need 
to be adjusted very accurately because VN makes sure that we work with a fixed particle 
number. The cluster operators are constructed using a two by two cluster and enforcing the 
translational and rotational symmetries of the lattice as well as the spin rotation symmetry. 
The calculations are done on a 50 sites lattice with periodic boundary conditions along the 
(7,1) and (-1,7) directions. This lattice has the advantage that no reciprocal lattice vector 
k lies on the diagonal where Ak vanishes. We choose to investigate the fillings of 0, 8, 12, 
16, 20, and 24 holes relative to the half filled case of one electron per site. In these cases 
the variance of the Hamiltonian is consistently reduced when minimizing the energy thus 
suggesting that we are converging to the ground state. A test calculation for four holes has 
shown that the variance increases when minimizing the energy. In this case the variational 
wavefunction has too much overlap with low-lying excited states and is not appropriate 
for our method. For this reason we include only results for the hole densities mentioned 
above in the following presentation. Some preliminary results can be found in [11]. 
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In order to measure long range correlations we use the pair-pair correlation function 

C(Ä) = ^E(A,WA(i + Ä)) (14) 

with the Cooper pair annihilation operator 

AW = Ö YlCi,-cr(c;+x,<7 + Ci-x,,, - C;+£,„ - Ci-iA). (15) 

Our measure for long range correlations is Cx = C(iJmax), i.e., the pair-pair correlation 
at the largest distance. Figure 3 shows the energy versus the long range correlations for a 
hole density of 0.16 corresponding to 8 holes in 50 sites. Shown are the results for three 
different values of J/t. We sec that for J/t = 0.2 there is no long range order and Coo is 
suppressed. Superconducting long range order only appears at higher values of J/t. We can 
collect the values C<x, where the cluster operator don't change the long range order and plot 
them versus J/t as shown in figure 4. Here we can clearly see the onset of superconducting 
order at a finite value of Js = (0.39 ± 0.03)f. for a hole doping of 8 = 0.16. The same 
analysis is repeated for the other dopings. A test calculation for a 16 sites lattice shows 
excellent agreement with exact calculations. 

Before we combine our results into a phase diagram let us have a look at phase sepa- 
ration. For very large values of J/t the system will try to optimize the magnetic energy 
by forn.ing an antiferromagnetically ordered phase without holes thus leaving the holes in 
a dilute phase[12]. A standard Maxwell construction shows whether a combination of two 
phases with different densities has a lower energy than a homogeneous phase at the same 
total density. Our variational calculation gives a good estimate for E(S) for several hole 
densities <5 and allows us to construct an interpolation. If this function bends downward 
we can find a straight line connecting the phases at two densities. This corresponds to 
the energy of the phase separated state and we can find the region where phase separation 
has a lower energy. In this region our homogeneous variational wavefunction does not 
describe the ground state and the results for the superconducting order do not apply. The 
region of superconducting order lies between the onset of the superconducting order and 
the formation of the phase separated state. Figure 5 shows the resulting phase diagram of 
hole density 5 versus coupling constant J/t. There is still some controversy about where 
the line of phase separation lies for low hole densities. Our results agree well with some 
recent calculations obtained by variational mct.hods[13] but presently it remains an open 
question whether phase separation persists down to J/t = 0 as suggested by some Green's 
function Monte Carlo calculations[14], 

CONCLUSION 

We have shown that we can extend the traditional variational scheme to reliably mea- 
sure quantities other than the ground state energy. Specifically it is possible to obtain 
results for long range correlations which relate directly to some order parameter. The key 
feature of the new scheme is a systematic separation of variational parameters controlling 
the long range versus the short range behavior. While the energy is still obtained as an 
upper variational bound according to the Rayleigh-Ritz principle, the long range corre- 
lation is measured by a new stationarity condition. This stationarity condition demands 
that the long range correlations be unaffected when optimizing for the short range part 

174 



-0.48 

-0.50- 

-0.52 
E 
IN 

E 
IN 

E 
IN 

-0.56 

-0.58 ■ 

-0.70 ■ 

-0.72 

-0.74 

-0.76 

-0.78 

-0.80 ■ 
-0.92 

-0.94 

-0.96 

-0.98 ■ 

-1.00 

0.54-?*«    * 

(a) J/t = 0.2 

m ..■•'■' ..-■''■' 

■■-" .* 

***** **''* *'" 

*f 

*   A 
w   *'   m 

(b) J/t = 0.5 

ft        .# ...••J5*f" 

,:l* 

-1.02 

(c) J/t = 0.8 

* MM 
. I*.--' 

•-.v''«} 

*    *- m* 

!* 

* 

* 

0.00 0.02 0.04 0.06 

Figure 3: Energy versus long range correlations before and after minimization with the 
cluster operators for a hole density of 5 = 0.16. The plots show results for three representa- 
tive coupling constants J/t = 0.2,0.5,0.8. The value for which the long range correlations 
Coo remains unchanged before and after minimization starts close to zero and increases 
monotonically with J/t. 
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Figure 4: Long range d-wavc correlation Coo as a function of coupling constant J/t for 
a hole density of 6 = 0.16. The points denote the values measured by the stationarity 
condition of our extended variational scheme. 
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Figure 5: Phase diagram of the t-J model as a function of hole density S versus cou- 
pling constant J/t. The solid line indicates the transition to a phase separated state. 
The phase separation line is obtained by a Maxwell construction using the homogeneous 
variational states. Below the phase separation the measured superconducting long range 
order indicates a region of a superconducting ground state. The points denote the onset 
of superconductivity for the densities under investigation. 
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of the wavefunction. Some other modified variational approaches like the power-Lanczos 
method[15] or the use of Gutzwiller-Jastrow type modfications[16] sometimes allow one to 
obtain better energy estimates but they remain weak in addressing the long range order. 
Our new method allows us to measure the long range order and thus to investigate the 
region of superconductivity of the ground state in the t-J model. We find that there is an 
extended region of hole dopings and coupling constants in the phase diagram of the t-J 
model where a superconducting ground state is most likely. 
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ABSTRACT 

We present the results of a recently developed approach where the interplay between 
the itinerant and localized character of electrons in narrow band materials is described by 
adding on-site correlation effects to a realistic band calculation: the single particle band 
states are treated as mean field solutions of a multi-orbital Hubbard Hamiltonian and the 
many-body term associated with localized e-e interaction is described in a configuration- 
interaction scheme. Quasi-particle states of nickel and CuGe03 have been calculated and 
compared with spectroscopical results. 

INTRODUCTION 

The Hubbard model, dominated by the competition between inter-site hopping and on- 
site electron-electron repulsion, is believed to describe the physics of narrow band materials 
such as transition metals, transition metal oxides, cuprates, etc.. In these systems the itin- 
erant character of valence electrons shown by the k-dispersion observed in photoemission 
coexists with strong local correlations responsible for other spectroscopical features such 
as satellites, band-narrowing, and opening, in some cases, of a Mott-Hubbard gap. In spite 
of the enormous amount of work which has been done on cuprates since the discovery of 
high Tc superconductors, a unified theoretical description of the whole valence spectrum, 
from the high binding energy region characterized by satellites, up to the valence band 
top, including both unperturbed single particle like and strongly correlated Cu derived 
structures, is still missing; this is due to the difficulty to combine an accurate treatment 
of many body terms with a realistic description of the band structure. 

Most of the work on this subject has been based on a drastic simplification of either 
the band structure or the e-e interaction [1]; describing the solid as a finite cluster the e-e 
infraction can be treated accurately, for instance by exact diagonalization techniques but 
in the search for the simplest model containing the relevant physics of superconductors 
one may miss some important effects and the possibility of a quantitative comparison 
with spectroscopical results. Photoemission data of highly correlated materials have been 
also interpreted using cluster configuration-interaction models which assume a strong wave 
function localization and adopt a rather simplified description of the band structure, with 
a considerable number of adjusting parameters [2]. Other approaches have been based 
on the density functional approximation (self-interaction corrected [3] and LDA+U [4] 
functionals) which fully include the itinerant character of electron states but describe the 
electron-electron interaction as a mean field effective single particle potential. 

A theoretical approach is then needed which includes both the hybridization between 
Cu and the ligands (or between sp and d states in the case of transition metals) accounted 
for by first principle band theory, and a treatment of e-e interaction which must be non- 
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perturbative, to deal with systems which are in the high correlation regime, and beyond 

mean field, to include finite life-time excitations. 
The 3 Body Scattering (3BS) method [5, 6] can be seen as an extension to the solid state 

of the configuration-interaction scheme used for finite systems: the Hubbard Hamiltonian 

is projected on a set of states obtained by adding a finite number of e-h pairs to the ground 
state of the single particle Hamiltonian and this expansion is truncated to include one e-h 
pair. The effect of electron correlation on one-electron removal energies from a partially 
filled band is then described as hole-hole and hole-electron interaction. The 3BS theory 
corresponds to the solution of a 3-body scattering problem involving two holes and one 
electron. Self-energy corrections, spectral functions and quasi-particle band structure can 
be calculated for systems in different correlation regimes, getting a complete picture of the 
whole valence spectrum, including both long-lived coherent quasiparticle structures and 

incoherent short-lived ones. 

THEORY 

Both Hubbard and single particle band Hamiltonians arc approximate descriptions of 
the interacting system which differ for the treatment of the on-site e-e repulsion. They 
can be formally obtained applying mean field approximation to the exact many body 
Hamiltonian, either to all the many body terms, or selectively to the multi-center integrals 
getting an effective single-particle problem (HBND), or the generalized Hubbard model 
(HH), respectively. In a Bloch basis set the two approximate Hamiltonians are 

fi" = E'&^iU + EE^W^k + p) 
krirr aß    nn' 

kk'p mm' 

x   C£(k')*C#.(k' - pKt5k+PtÄk'l«k'-p|. 

kn<7 

here <x^,ä^ are destruction/creation operators of electrons with wave vector k , spin <J, 
band index"n, C£„(k) are the expansion coefficients of Bloch states in terms of localized 
orbitals and Uaß iTthe on-site Coulomb repulsion among Orbitals o and ß. The relationship 
between single particle eigenvah.es c^„D and <£„ appearing in the two Hamiltonians is 

.BND _ ,H       ,   f,n (2) 

-1      occ 

^EK^(k') 
UaPNv k'n 

(3) 
OCC 

Qk„ = £K^(k)l 
aß 

Since we want to augment band theory with the inclusion of on-site correlation, equa- 
tions (2,3) arc essential to define the correct relationship between band and Hubbard 

Hamiltonian, and to avoid double counting of e-e interaction. 
We are interested in the hole spectral function 

D"M   =   £ßk™M< 
kn 

DZJu)   =   -Im- 
E-£- 7T        W - Ck - ^nk 
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which describes the response of the system to one-electron removal and is the quantity 
directly related to the photoemission results. 

In order to calculate the hole self-energy S~k we proceed as in ref. [7], adopting a 
configuration-interaction scheme which consists in projecting the Hubbard Hamiltonian on 
a set of states obtained by adding a finite number of e-h pairs to the Fermi sea, i.e. to the 
ground state of the single particle Hamiltonian. The theory has been formally developed 
to include configurations with up to two e-h pairs [6] but in the limit of an almost filled 
band, as it is the case for the systems of interest here, the configurations can be usefully 
reduced to those involving one e-h pair only; in this way the problem remains an extension 
of previous approaches based on a simplified description of the scattering channels (the so 
called T-matrix approaches [8]) but it is more tractable. 

The interactions between the 3-body configurations (one hole plus one e-h pair) are 
represented by a set of scattering T-matrices, describing h-h scattering 

T*kM = i + UU°J>-»<uV (4) 
1 + Uaßgaß (w) 

with 

and e-h scattering 

with 

gyn = /£Wfd£ 
M;)nf> , (5) 

J-oo      J-oo     w — t  — e — 10 

-uc ß rph-e _  ^°P  (f}\ 
1 - ucß9aß (u) 

'A ,/ f°° A ,   na(t)nß{t') 
i>aß v   ;     J-co     JE,      u-e' + e-xS v ' 

na(e) is the orbital density of single-particle band states. 
The Faddeev theory [6] is used to determine the total scattering matrix and the resolvent 

of the many body system. The hole self-energy is given by 

ß 

YUaßN
h

a-V-ß{u)  , (8) 
ß la 

where N£ is the percentage of empty states in the orbital a and 

yoo 

*£M = E /   ».WC(W " £) t1 + VaßAaß(u - e)] d e; 
a   JEI 

Aaß is the quantity related to Taß
e and is determined solving numerically the integral 

equation described in ref. [6, 7]. 
We have applied this method to a transition metal (nickel) and a cuprate (CuGeOs) 

assuming the localized e-e repulsion among rf-states as the dominant contribution, i.e. 

_ ( Udi    for a,ß = d orbitals 
aß ~ \ 0        elsewhere; 

Uaß - Jaß ^ 0. 

To apply this method to CuGe03 we have used the eigenstates/eigenvalues of ref. [9] and 
assumed Udd = 8 eV. In fig. 1 we plot k-resolved spectral functions along high symmetry 
directions and compare them with single particle band states. 
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Figure l: (a.) Grey scale representation of the k-resolvecl hole spectral functions of para- 
magnetic CuGeO;) with black as maximum intensity, (b) Single-particle band structure of 
rcf. [9]. 

The peaks in the spectral function can be classified either as quasiparticle excitations 
or as satellites, according to their intrinsic line-width arising from different values of the 
imaginary part of self-energy: quasi-particle excitations (sharp lines in fig. I) correspond to 
a small imaginary part, and give rise to the coherent part of the spectral function. Satellites 
(smeared lines) occur where the imaginary part of self-energy is large and correspond to 
short-lived excitations with a large intrinsic line-width; we refer to them as the incoherent 
part of the spectral function. The effect of electron correlation on single particle states is 
dramatic: some bands are shifted to higher binding energies, spectral weight is removed 
from the upper part of the spectrum, and many new states (satellites) appear; onlv states 
around —8, —9 eV and —5, —6 eV are practically unaffected being mainly Ge and 0 derived. 

CuGeOa is an insulator but it is predicted to be a metal by single particle band calcula- 
tion; the inclusion of electron correlation is able to reproduce its insulating behaviour. The 
same was proven to be true also in the case of NiO, where a 3BS description of Hubbard 
correlation was able to reproduce both the complex satellite structure and the measured 
value of the insulating gap [7], 

The ability of 3BS approach to open up Hubbard gaps, i.e. to reproduce an insulating 
behaviour in a system which is metallic according to band theory, is related to its non- 
perturbative character; in fact it has been shown [5, 7] that for U much larger than the 
band width W (U? —> 00) 3HS reproduces exactly the so called '"atomic limit'' solution of 
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Hubbard Hamiltonian, where hole and electron states are separated by a Mott-Hubbard 
gap equal to U. 

In the case of nickel the on-site e-e repulsion is more effectively screened and the esti- 
mated value of Udi is ~ 2 eV [10]. Fig. 2, reporting the comparison between quasi particle 
states and single particle ones, shows that e-e correlation effects are still sizable and they 
are actually essential in order to reproduce the observed spectroscopical features, i.e. satel- 
lite structure at 6 eV binding energy, correct band width (overestimated in LDA), exchange 
splitting [11], and energy dispersion [12]. 
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Figure 2:   (a) Energy position of the peaks of nickel in the spectral function at k-points 
along high symmetry lines of the Brillouin Zone, (b) Single particle band structure. 

SUMMARY AND OUTLOOK 

We have described a method to include on-site interactions in the description of hole 
and electrons states: ab-initio single particle band states are used as input mean field 
eigenstates for the calculation of self-energy corrections according to a 3-body scattering 
(3BS) solution of a multi-orbital Hubbard Hamiltonian. When applied to valence states 
of ferromagnetic nickel it allows to get a quasiparticle band structure which compares 
much more favorably with the experimental observation than conventional mean field LDA, 
reproducing the observed band width, the energy dispersion, the satellite structure and 
the exchange splitting. Since the method does not rely on a perturbation expansion it 
has a wide range of application, including any correlation regime. In the case of a highly 
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correlated system such as CuGcO.j, 3BS is able to reproduce both the insulating behaviour 
and a. correct overall picture of photoemission experiments. 

Our present choice of empirically determining the parameter U of the Hubbard Hamil- 
tonian - which has been fixed to reproduce the satellite binding energy - ensures that we 
obtain a good agreement with experiments; however, previous T-matrix methods [13, 14] 

have not been able to reproduce at the same time the satellite energy position of nickel 
and the valence band width which turned out to be systematically overestimated for values 
of the Coulomb integral fixed to reproduce the satellite binding energy. The possibility 
of reproducing both the satellite structures and other important spectroscopical features 
(band width and energy dispersion in nickel, the insulating gap in CuGe03) can be seen as 
a non trivial result and a success of the method itself. The problem of extracting Hubbard 
U from an ab-initio calculation, either in the so called Constrained-Density Functional 
scheme [15] or as screened Coulomb interaction [16], is an important issue which goes in 
the direction of a full match between model Hamiltonians and realistic systems and that 
we are presently considering as an implementation of our approach. 
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ABSTRACT 

A real-space method has been used to solve the generalized Hubbard Hamiltonian for 
a system with few electrons. The method is based on mapping the correlated many-body 
problem onto an equivalent tight-binding one in a higher dimensional space. For a linear 
chain, we have obtained an exact solution of the problem of three non-parallel electrons. 
The three-body correlation are studied by examining the binding energy in the ground 
state, for different values of the hopping parameters and of the on-site (U) and nearest- 

neighbor (V) interactions. 

INTRODUCTION 

Since the discovery of high-Tc superconductivity [l] in Cu — O compounds, the studies 
on the physics of correlated electrons in low dimensional systems have become extremely 
important. Although the main interest is on the physics of two-dimensional highly cor- 
related electron systems, the one-dimensional models related to high temperature super- 
conductivity are very popular due to the conjecture [2] that properties of the ID and 2D 
variants of certain models have common aspects. Within the models for correlated electron 
systems, that attempt to capture the essential physics of high-temperature superconduc- 
tors and parent compounds, the simple Hubbard model [3], is the crudest approximation 
to include electronic interaction between band-electrons, by retaining only the on-site in- 
teraction U. This model also assigns the same hopping rate t to three different hopping 

processes regardless of the occupation of the two sites involved. 

Besides the on-site interaction, other contributions of the electron-electron interaction 
are required [4], such as the nearest-neighbor interactions and the bond-charge interaction 
term. The Hamiltonian which includes these interactions is often called the generalized 
Hubbard Hamiltonian and has been studied previously by several authors [5-8]. This 

Hamiltonian can be written as 

H = E %M°ci,° + h-c-) + u£n*.T«u + 7 E "*«*. W 
<i,j>,(7 i <hj> 
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where < i,j > denotes nearest-neighbor sites, c+CT (cii(T) is the creation (annihilation) 
operator with spin a =1 or | at site i, and n,- = n^ + niti where nifl = c.^c,,,,. 
It is worth mention that in principle, the parameters U and V are positives because 
they are direct Coulomb integrals. However, U and V could be negative if attractive 
indirect interaction through phonons or other bosonic excitations are included and they 
are stronger than the direct Coulomb repulsion. In Eq. (1), the occupation-dependent 
hopping amplitude, t"j, is given by 

tlj = tAA(l - nj,_„)(l - nj_a) + tBnvi_anj_c + 

</BK>„(1 - ".,-,-„) + n,-,-ff(l - «,-,_„)]. 

The three parameters tAA, tBB, and tAB are the hopping amplitudes from a singly 
occupied to an empty site, from a doubly occupied to a singly site and from a doubly 
occupied to an empty site, respectively. The special case tAA = tBB = tAB = t corresponds 
to the t-U-V extended Hubbard model, which has been studied intensively by analytical 
and numerical methods [3]. When tAA + tBrs - 2tAB = 0 and tAA ^ tBB, the generalized 
model given by Eq. (1) reduces to the Hirsch and Marsiglio model of hole superconduc- 
tivity [4]. In this paper, parings between electrons in a one-dimensional lattice using the 
generalized Hubbard Hamiltonian are analyzed. The analysis has been done following a 
mapping method previously reported [9]. 

RESULTS AND DISCUSSION 

In this section, we study the correlation of three electrons by using the mapping method 
explained in Ref. 9. In order to present a brief explanation of the mapping method, let us 
consider the case of two electrons with opposite spins in an /V-site chain; the number of 
states is given by N2. This states form a square lattice with (37V — 2) "impurities", which 
can be described by a single-body tight-binding Hamiltonian. Of these impurities, TV are 
localized on sites along the principal diagonal of the square lattice with a self-energy U 
and the others, 2(JV — 1), are localized on the two next-diagonals with a self-energy V. 
A simple way to obtain the solution is taking advantage of the translational symmetry 
of the impurities and projecting the two-dimensional lattice of states onto a linear chain 
of effective states, similar to the procedure introduced by Falicov and Yndurain [10]. In 
general, this method will map the original many-body problem onto a tight-binding one 
with some ordered impurities in an rcd-dimensional lattice, being n the number of electrons 
and d the dimensionality of the original system. In this hyper-space lattice, the on-site (11) 
and the nearest-neighbor (V) interactions from the original Hubbard Hamiltonian become 
the self-energies of the impurities. 

For the case of three electrons, two with up-spin and one with down-spin in a linear 
chain, the network of states belongs to a three-dimensional state lattice. For example, let 
us consider these three electrons in a 4-site chain. The state configuration is: 

|l) = |±+00),|2) = |±0 + 0),|3) = |±00+),|4> = |- + + 0), 

|5) = |-+0+),|6) = |-0 + +>,|7> = l + ±00>,|8) = | + - + 0), 

|9) = | + -0+), |10) = |0 ± +0), |11> = |0 ± 0+), |12) = |0 - ++), 
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Figure 1: Lattice of effective states for three electrons with non-parallel spin in a linear 
chain. These effective states are represented by ellipses and the self-energy for each of 
them is indicated inside. There are six different effective-hopping parameters ßA, ßA, ßB, 

ßß, ßAB, and ßAB, w'th values given in the text. 

|13) = | + + -0),|14> = |+0±0)I|15) = | + 0-+>,|16) = |0 + ±0), 

|17> = |0 + -+), |18) = |00 ± +), |19> = | + +0-), |20) = | + 0 + ->, 

|21) = | + 00±), |22) = |0 + +-), |23> = |0 + 0±), |24) = |00 + ±>. 

Spin up and down are denoted by + and —, respectively, a doubly-occupied site by 
±, and a hole by 0. A site occupied by two electrons requires an energy U, and the 
amplitudes of the transition probability for nearest-neighbor states will be tAA, tBB and 
tAB. In general, for an N—site chain the number of states is given by (N — 1)(3N — 2)/2. 
As we already mentioned, the geometric representation of these states belongs to a three- 
dimensional lattice, where taking advantage of the translational symmetry in this network 
of states, it can be projected onto a two-dimensional lattice of effective states. 

In Fig. 1 we show the two-dimensional lattice of states for an original system with 
three electrons in a five-site chain, where the hopping parameters ß\~, ßA, ß%, ßB, ßAB, 
and ßAB are given by 

ßt = tAe' iKa/y/% ß-A = tAe~iKa'^, 

ß% = tBc««/V3i    ß- = fce-uf/vS 

ß\B = tABeiK^,    ß-AB = tABe~iK*l^. 

piKal-Ji 

Here, K is the wave vector and a is the lattice parameter. The two-dimensional results 
must also be integrated with respect to K within the first Brillouin zone. 
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The binding energy (A) as a function of the nearest-neighbor attractive interaction 
(V) is shown in Fig. 2 and Fig. 3, for the case of three non-parallel (TIT) electrons on a 
one-dimensional lattice. Here, the parameter t0 has been taken to be equal to — 1. The 
binding energy has been calculated from the energy difference between the lowest correlated 
state (K = 0), and the original lower band edge when there is not an electron-electron 
interaction. The final numerical diagonalization were carried out for a truncated two- 
dimensional lattice of 551 effective states. The matrix sizes for numerical diagonalizations 
were chosen as the minimum size so that the physical quantities, such as the binding 
energy, have not an important variation with the matrix size. 

In Fig. 2, we show the binding energy for the case tBB = tAB = t0, and for different 
values of the tAA hopping parameters and the U repulsive interaction. We can observe 
that for small values of V, the binding energy is very sensitive to changes on the hopping 
probability tAA, and that for very large values of this attractive interaction regime, A goes 
like V. It is worth mentioning that for the special case tAA = t0, our problem corresponds 
to a three-electron problem within the extended Hubbard Hamiltonian. The results for 
this case were previously calculated for U = 0 [11], and included here for comparison with 

our results. 
In Fig. 3, we plot A for the case tAA = tAB = t0, and for different values of tBB and 

U parameters. For very strong attractive nearest-neighbor interactions the behavior is 
similar to the one given in Fig. 2, it means a linear behavior, while in the weak interaction 

regime the binding energy has and exponential behavior. 

CONCLUSIONS 

We have studied the electronic correlation in a generalized Hubbard model with hopping 
depending on the occupation, using a simple mapping method. This study has been carried 
out for a system with three-correlated electrons in a one-dimensional lattice, where an 
exact solution has been obtained for this problem. The electronic correlation is studied by 
examining the binding energy for differents values of the Hubbard parameters. 
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ABSTRACT 

Self-energy corrections to the DFT-LDA HOMO-LUMO gap for clusters have been 
calculated through an efficient method based on ASCF theory. Total energies for the 
clusters are obtained via discrete variational method (DVM). Good results in comparison 
with experiments and available theoretical data for the sodium tetramer Na4 and C6o have 
been obtained. The localization properties of DVM basis-functions play a fundamental role 
in obtaining the above results with a strongly reduced computational effort in comparison 
with ab-initio schemes. For the two systems under study an estimate of the first excitonic 

transition energy is also given. 

Introduction 

Density-functional theory (DFT) in the local-density approximation (LDA) for the ex- 
change and correlation energy functional has been successfully applied to determine the 
ground-state electronic properties of a large class of materials ranging from bulk systems, 
surfaces and etherostructures to atoms and clusters.[1] On the other hand if DFT-LDA is 
used to determine the quasiparticle (QP) spectra of many-electron systems in most cases 
results are obtained in disagreement with experiments.[1] For example, in the case of bulk 
semiconductors, assumption of the Kohn-Sham eigenvalues as electronic QP energies leads 
to a systematic underestimate of the electronic transition energies with respect to the ex- 

periment (band-gap problem).[2, 3] 
In the present paper we apply the idea outlined by Gunnarson and Jones[l] in order to 

efficiently calculate the HOMO-LUMO (highest occupied molecular orbital-lowest unoccu- 
pied molecular orbital) gap and the QP spectra of clusters. It is based on the calculation 
of total DFT-LDA energies of charged and neutral systems. Since total energies only are 
needed, and not the full dielectric screening function of the system as in the case of the 
GW approach, [2, 3] the QP spectrum calculation is then feasible on any vax-class mi- 
crocomputer. Total energies of the clusters in their ground-state are determined using a 
code founded on the discrete variational method (DVM).[4] This method has its basic idea 
in using a discrete sample of points for integrating in real space the hamiltonian and the 
overlap matrix elements. As benchmark for our method the fullerene molecule Ceo and the 
sodium tetramer Na4 have been choosen. They have respectively 240 and 4 valence elec- 
trons and represent some-ways the edge cases for electronic closed-shell clusters. The QP 
HOMO-LUMO gap for the former system results in good agreement with experiment, while 
for the second, the comparison with previous theoretical results and experiments turns out 
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HOMO-LUMO gap Ceo    present work    previous results 

DFT-LDA 1.79 1.87-2.18 
DFT-LDA (fullerite) 1.01 

HF 7.53 
GW (fullerite) 2.15 

I-A 4.70-5.20 
E(l) 5.21 
E(2) 5.30 

Table I: HOMO-LUMO gap values in eV of neutral Ceo cluster as determined in this paper by standard 
DFT-LDA calculations and according to Eqs. [E(l)] and (2) [E(2)] are compared with previous theoretical 
and experimental results. The two results referring to solid fullerite are shown for the sake of completeness. 
The experimental range for the difference between vertical ionization potential (I) and electron affinity (A) 
has been reported. Details concerning previous results are given in Ref.[6] 

to be less satisfactory. This difference can be ascribed to the different effects of the LDA 
in the two cases here considered. Calculations for Coo and Na., have been performed at the 
equilibrium geometry of the neutral clusters. The fullerene CG0 case will be considered in 
the following in more detail due to the great relevance gained by this system in the last 
years. 

I) The Buckminsterfullerene C6o 

The discovery of Ceo molecule, of its condensation into an insulating solid and of su- 
perconductivity in the alkali-metal-doped solids have generated enormous interest in the 
fullercnes and fullerrites. We refer for an extended discussion on the electronic structure 
of fullerencs and their screening properties to Refs.[5, 6] and references therein. In Tab(I) 
we report data from the literature and after the present work concerning CGO- The previ- 
ous theoretical and experimental results in the first five rows are referred and discussed in 
details in Ref.[6]. In the last two rows are the excitation energies determined after Eq.(l) 
-Eq.(3) in the present paper (see the following). As can be seen in this table the LDA 
HOMO-LUMO gap-values reported in the literature for the Ceo cluster, are more than 5.0 
eV smaller than the Hartree-Fock (HF) one. Thus in Coo the same band-gap problem occur- 
ring in bulk semiconductors and insulators takes place; while LDA underestimates on the 
other hand HF scheme overestimates the experimental band-gaps and electronic transition 
energies due to the different approximations used for the self-energy operator.[2, 3] 

In Tab.(I) are also reported DFT-LDA and GW gaps calculated for the solid phase Ceo 
fullerite using a plane-wave basis set. The DFT-LDA one is smaller by about leV with 
respect to the corresponding gap of the cluster due to the higher confinement experienced 
by the extra electron in the cluster with respect to the solid phase. Analogously also the 
QP HOMO-LUMO gap for the isolated Ceo molecule is expected to be larger than that of 
the fullerite. 

We calculate the QP HOMO-LUMO gap by using energy differences of charged and 
neutral Cßo clusters. The energy gap of a N electron system is rigorously defined within 
ASCF method as[l, 3] 

rr        —   pTOT   ,    rpTOT       n pTOT ,,\ 
Zgap - -fc/v+l   + ^A'-i   - ^A' (1) 

where EjfT is the ground-state energy. To apply usefully DVM to CGo a grid of 300 
diophantinc points has been chosen around each of the 60 equivalent atoms and a minimal 
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basis set has been chosen, made up of symmetrized combinations of 2s and 2p occupied 
carbon orbitals (Is frozen). Convergence with respect to integration-point number as well 
to additional unoccupied basis-orbitals has been checked here, and was also proved correct 
in previous calculations for similar materials. [4] Selfconsistency is achieved with respect to 
orbital occupation numbers. 

In (1) the ground-state total energies of the clusters with one extra electron in the 
LUMO (Cg0) and with a hole in the HOMO (CJ,) are needed. To determine Ejfg a 
calculation for the anionic Cgo has been performed with the added electron in the ti„ 
state. This configuration is achieved by adding 1/3 of the electron charge to each state of 
the 3-fold degenerate first empty state of the cluster. An analogous calculation has been 
performed to determine the total energy of the cationic Cg0: the h„ state has been filled 
with nine electrons distributed uniformly in the 5-fold degenerate states. For both cases 
the corresponding eigenvalues have been also considered, since an alternative expression for 

the energy gap reads [3] 
p       ~ CN+1       JV (n\ 
&gap — CjV+l — eAT> \L) 

where e^ is the M-th eigenvalue of a N-electrons system. Note that while (1) is exact, (2) 
is an approximate expression valid in the limit N—> oo . In Tab.(I) are reported the QP 
gap values obtained from (1) and (2). In both cases a HOMO-LUMO gap larger than the 
DFT-LDA one more than 3eV has been obtained, the 2nd being slightly larger than the first 
one. The calculated increase of the DFT-LDA energy difference between the h„ (occupied) 
and tiu(empty) molecule states could be with these values slightly overestimated. This 
seems to be especially valid when comparing with results for solid COO films combined from 
photoemission and inverse photoemission. The comparison of our data with experimental 
ones, namely the difference between vertical ionization potential(I) and electron affinity(A), 
to be taken with their error bars, is satisfactory. To summarize for Ceo, the DFT-LDA gap 
underestimates the experimental one (taken as the average value in the range reported in 
Tab.(I)) by more than 64% while that obtained from (1) reproduces it within 5%. The 
single-particle spectrum of the cluster can be been obtained from the DFT-LDA one by ap- 
plying the scissor operator rule with a 3.42eV calculated gap correction. This approximate 
rule to correct the band-gap problem, consisting in rigidly moving up in energy the empty 
states mantaining fixed the filled ones , has been widely used for QP spectrum calculations 
of bulk semiconductors. Its approximate validity has been recently demonstrated also in 
the sodium tetramer case. [7] 

Using the same approach we can give an estimate of the first excitonic transition energy 

using the expression 
E2p = ET

N
0T-ET

N
0T(*), (3) 

where, on the right-hand side, the difference between the ground-state energy of the neutral 
cluster and that of the excited neutral one appear. E2p corresponds to the energy difference 
between the first two peaks of the photodetachment spectrum of charged clusters (see 
Ref.[6] and references therein). E2p is indeed the energy gap between the ground and the 
first excited state of the two-particle spectrum (1AS —>* Tis) and should not be confused 
with the single-particle HOMO-LUMO gap of (1) and (2). The value of E2p appearing in 
(3) has been evaluated within the DFT-LDA scheme outlined previously in this work , by 
placing an electron in the tlu state and a hole in the hu; a value of 1.82eV results, in good 
agreement with the experimental ones of 1.9eV, and 1.81eV. The large energy difference 
between the single-particle gap (~ 5eV) and the two-particle one (~ 2eV) can be ascribed 
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HOMO-LUMO gap Na,)    present work    previous results 

DFT-LDA 
HF 
GW 

0.67                     0.55 
3.4 
3.0 

I-A 3.43-3.63 
E(l) 
E(2) 

3.98 
4.20 

Table II: HOMO-LUMO gap values in eV of neutral sodium tetramer Na., as determined in this paper by 
standard DFT-LDA calculations and according to Eqs.(l) [E(l)] and (2) [E(2)] are compared with previous 
theoretical results. An estimate for the experimental difference between vertical ionization potential and 
electron affinity is also reported. 

to strong excitonic effects (binding energies ~ 3eV) occouring in the cluster excited with 
an electron-hole pair. 

II) The Sodium Tetramer Na,, 

For the sodium tetramer the same calculation scheme has been followed as for the 
fullerenc cluster. In this case a full or ab inHio(so stressing that the full dielectric function 
and the one-electron Green function have been calculated from eigenvalues and eigenfunc- 
tions of the system in constrast to simplified approaches) GW result has been recently 
presented for the quasiparticle spectrum of the small sodium cluster.[7] A HOMO-LUMO 
gap of 3cV has been obtained with a self-energy correction of more than 2.5cV. In Tab.(II) 
the LDA gap as well as the QP ASCF gaps from (1) and (2) have been compared with 
previous results. We have assumed the same rhombic planar geometry, with D2j, symmetry 
obtained by all previous authors, and we have minimized cluster total energy in order to 
obtain equilibrium parameters. All-electron DVM calculations have been performed for 
Na,, with a basis set made up of atomic occupied orbitals plus 3p empty orbitals, in order 
to assure higher variational flexibility in the bond region. A 300-point grid has been tested 
to give full numerical stability to our matrix elements. At equilibrium we got the values 
5.757 a.u. and 11.901 a.u. for the two axes and of 0.G7 eV for the LDA HOMO-LUMO 
gap. In Tab.(II) we have also reported the HF and GW (see Ref.[7]) results for the gap as 
well as the experimental data. 

It is clear from the table that both our results overestimate the experimental and the 
GW ones. While DFT-LDA result underestimates the experiment of about 81% (and the 
GW one of 78%), by using (1) the overestimate turns out to be 13% with respect to the 
experiment and about 30% with respect to the GW one. This larger overestimate with 
respect to the fullerenc case can be ascribed to the well-known error in the long range 
behaviour of the DFT-LDA exchange-correlation energy functional. We expect that this 
error is less important in systems where the orbitals are more delocalized(in C60 than in 
Na,]). In other words, the electronic relaxation effects taken into account via (1) give 
larger contribution to the gap in the more localized system; therefore a larger LDA error is 
expected in Na„i than in the fullerenc molecule. Moreover, in Tab(II) the difference between 
E(l) and E(2) is almost twice as much as in the fullerenc case (Tab.(I)). This is actually 
the expected trend followed by the approximated expression for the gap (2) as the number 
of particles increases.[3] Finally, also in the Na,, case QP spectrum may be easily obtainable 
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from the DFT-LDA results using the scissor operator rule, as confirmed by more exact GW 
calculations!?]. Its comparison with the optical spectrum indicates also in this system the 
appearence of strong excitonic effects.In this case the energy E(3) is 0.89eV, thus in good 
accordance with the value of l.leV obtained subtracting to the GW HOMO-LUMO gap 
the optical absorption onset.[7] 

III) CONCLUSIONS 

In summary an efficient method to the calculation of the HOMO-LUMO gap and elec- 
tron single particle spectrum of clusters has been applied to the fullerene and to the sodium 
tetramer cases obtaining good agreement with available experimental and theoretical data, 
the results for the sodium cluster being less satisfactory due to the LDA limits. This method 
appears of order of magnitudes more efficient than schemes based on different hamiltonians 
(e.g. ab initio methods), since its computations have been performed on vax-class micro- 
computers. Therefore it may be very convenient to takle the problem of the QP spectra 
calculations of large-dimension clusters prior to their full solution by ab initio methods. 
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Semi—Empirical Tight Binding 



AB INITIO CALCULATION OF TIGHT-BINDING PARAMETERS 

A. K. MCMAHAN, J. E. KLEPEIS 
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 

ABSTRACT 

We calculate ab initio values of tight-binding parameters for the /-electron metal Ce 
and various phases of Si, from local-density functional one-electron Hamiltonian and over- 
lap matrix elements. Our approach allows us to unambiguously test the validity of the 
common minimal basis and two-center approximations as well as to determine the degree 
of transferability of both nonorthogonal and orthogonal hopping parameters in the cases 
considered. 

INTRODUCTION 

The success of local-density functional calculated total energies and forces and the syn- 
thesis of these techniques with molecular dynamics has opened up major new possibilities 
for atomistic simulation [1, 2]. The expense of such ab initio molecular dynamics calcu- 
lations, however, remains a drawback which has focused attention on the use of cheaper 
electronic calculations as in tight-binding molecular dynamics [3]. The tight-binding total- 
energy representations required for this application are typically developed by fitting large 
ab initio generated data bases of band structures, total energies, and possibly forces over 
the range of stoichiometry, coordination, and atomic volume which are of interest [4]—[10]. 
Unfortunately the nonlinear optimization required in such fits becomes more and more 
difficult as the number of chemical species increases, and the time required to generate the 
data bases can also become prohibitive. Ideally one would like to automate the process, 
perhaps with ab initio calculation of the representation itself. While this is a challenging 
goal, it may be useful to begin with an examination of what our local-density functional 
methods are actually doing from a tight-binding perspective. This approach enables direct 
tests of the accuracy and transferability of the resulting tight-binding parameters while 
at the same time providing insight into the general characteristics required for a robust 
parametrization. 

In a recent paper [11], we have shown that tight-binding parameters may be directly 
and simply calculated from the k-dependent one-electron Hamiltonian and overlap matrix 
elements generated by any band structure method which is formulated in or can be pro- 
jected onto a localized basis. After briefly reviewing these theoretical concepts and the 
FP-LMTO method [12] which we use to calculate these matrix elements, we extend such 
calculations here to include an /-electron metal, Ce. By a comparison of the ab initio bands 
and those reconstructed from the calculated tight-binding parameters we assess two major 
approximations customary in tight-binding: use of a minimal basis and the two-center 
expansion. We then report new results for a range of coordinations in Si, and discuss 
the issue of transferability in terms of the ab initio calculated nonorthogonal parameters. 
Finally we turn to the impact of orthogonalization on transferability, again for the case of 
Si, and then provide a summary. 
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THEORETICAL METHODS 

Tight-binding Parameters 

To facilitate subsequent discussion, it is useful to briefly review the formal relations 
between matrix elements of the one-electron Hamiltonian, H, or overlap, O, operators 
and Slater-Koster tight binding parameters. For simplicity, we consider only one atom per 
primitive cell, as more general expressions are given elsewhere [11]. In particular, let |R/nj) 
designate an orbital of angular and magnetic quantum numbers ( and m, respectively, at 
the lattice site R. Direct and k-space matrix elements of // are related as usual by 

(Obn\H\Rf'm>) = I £ e-kR Hlrm,, (1) 
n     k 

where the former are real as we consider m to represent the customary real linear combi- 
nations of orbitals for each t [13, 14] . 

The intersite (/?^0) matrix elements may be approximated by a two-center expansion 
in terms of Slater-Koster hopping parameters, tf/i^R). 

(Olm\H\Rl'm') « £ft,(*m,<W,R) <«.„(/?) (2) 

Here, gll(£m,('m',~R) arc (real) geometric factors [13, 14], // is the magnetic quantum num- 
ber about the bond axis R, ß = a, n, ■ ■ ■ ,m'm(f,C), and R = |R|, RsR/fl. Orthogonality 
relations [11] among the g,, give 

WÄ) = (2 " <W~' E <7,<(<W'™',R) (0Cm\H\Rf'm'), (3) 
m,m' 

which in conjunction with Eq.(l), uniquely defines the Slater-Koster hopping parameters in 
terms of the k-dependent one-electron Hamiltonian matrix elements. Hopping parameters, 
su'ii(R)-, are similarly defined from the overlap matrix elements. 

The essential nature of the two-center approximation in Eq.(2) is the use of the Slater- 
Koster geometric functions, gl,(tm,?'m','R), as a matrix basis for the m,m'-dependence of 
the (0£m\H[R.('m'). Equation (2) is approximate since this basis is in general incomplete. 
The tu',, are nonetheless precisely defined as the projections of {0(m\H\RC'm') onto the 
existing matrix basis functions. Three-center contributions to the matrix elements aris- 
ing from one-electron potential terms in H close to the bond axis, R, are likely also to 
have significant projections onto these basis functions. "Non-two-center" effects is there- 
fore perhaps a better description of the inadequacies of Eq.(2) than is three-center terms. 
Conversely, the extent to which three-center terms arc absorbed into the effective tcr,, is a 
source of non transferability as will be discussed subsequently. 

The intrasite matrix elements, (0£m\H\QC'm'), define site energy, e(, and Slater-Koster 
crystal field parameters, x«v(fi)- 

{Mm\H\M'm') « et6u.5mm. + £ g^im^m', R) X(e,<(R) (4) 

The latter arise from two-center expansion of one-electron potential terms in // at sites 
R. In contrast to the hopping parameters, the e( and Xwß{R) are undcrdetermincd by the 
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matrix elements of a single structure. The intrasite matrix elements behave as if they were 
characterized by generally a small number of effective site energies, ef, and crystal field 
interactions, Xu'p(R)i which can be determined. The former are given by 

1 
c°U   = 

2£- 
-£(0£m|#|0£m}, (5) 

1 m 

R#0 

=   ££+^TE(2-V)x«,(Ä), (6) 
R,/i 

showing that site energies extracted from either one-electron matrix elements or band struc- 
ture are intrinsically dependent on local environment. The similarity of Eq.(6) to a pair 
potential sum, moreover, provides justification [11] for using environmentally dependent 
site energies in place of interatomic potentials in tight-binding total-energy representations 
[7]. The remaining effective crystal field parameters are discussed elsewhere [11]. 

FP-LMTO Calculations 

We use the FP-LMTO method [12] to obtain the minimal basis matrix elements from 
which the tight binding parameters are calculated according to the above expressions. 
Details are given elsewhere [11]. In brief, the FP-LMTO method is first used in its most 
rigorous multiple-«; form to obtain self-consistent one electron potentials and accurate band 
structures for test comparisons. A linked or contracted minimal basis is then chosen by 
minimization of the occupied one-electron eigenvalue sum using the fixed self-consistent 
potentials. The variables optimized in this way include the relative coefficients of the two 
augmented spherical Hankel functions which form each minimal basis function. The de- 
cay energies, -re2, of the Hankel function tails correspond to K\ - 0.5 Ry with re2 also 
optimized in the range 1-1.5 Ry. The tight binding parameters are then calculated from 
the resultant minimal basis Hamiltonian and overlap matrices. When discussing issues of 
transferability between different structures, as here for Si, we also first perform a unitary 
transformation which "rotates" all Hamiltonian and overlap matrices so as to guarantee a 
perfectly transferable, two-center overlap while preserving the band structure. This allows 
all issues of non-two-center effects and transferability to be addressed solely in terms of 
the Hamiltonian hopping parameters. All muffin-tin radii in both multiple-re and minimal 
basis calculations were taken to be nearly (reduced by ~1%) touching, unless otherwise 

stated. 

APPROXIMATIONS 

Tight binding representations of the one electron Hamiltonian typically make two ap- 
proximations: (1) use of a minimal basis, and (2) the two-center approximation. We 
examine these approximations separately here for the case of fee Ce at the experimental 

volume of the a phase. 
Figure 1(a) compares our best multiple-K band structure (solid lines) to the linked 

minimal basis representation (dots). The former calculations included three (re2 =0.01, 1, 
2.3 Ry) augmented spherical Hankel basis functions of each £m type for s and p states, 
two (re2 =0.01, 1 Ry) for d states, and one (re2 =0.01 Ry) for / states. The dimension 
of the Hamiltonian and overlap matrices was therefore 29 = 3xl + 3x3 + 2x5 + lx 
7 at each k point.   Our linked minimal basis treatment used two augmented spherical 
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Figure 1: Band structure for fee Ce: (a) comparison of our best multiple-* bands (lines) 
to the results from the minimal basis (dots), and (b) comparison of the minimal basis 
bands (lines) to the tight-binding bands reconstructed from the tight-binding parameters 
calculated from the minimal basis matrix elements (dots). 

Hankel functions (K
2
 =0.5, 1.2 Ry) to represent each atomic orbital; however, the relative 

coefficients were fixed so that the linear combination for each im served as a single atomic 
orbital, leading to Hamiltonian and overlap matrices of dimension 16. The important 
distinction between multiple-« and linked calculations is that the relative coefficients of 
different augmented spherical Hankel functions corresponding to the same (m may vary 
with k-vector for different eigenfunctions in the first case, whereas they are fixed and k- 
independent in the latter. These coefficients come out of solving the one-electron eigenvalue 
problem in the first case, while they were obtained by optimization of the occupied one- 
electron eigenvalue sum, as noted above, in the latter case. 

The agreement between the two sets of bands in Fig. 1(a) is on the whole quite good. 
The rms differences are 0.17 and 0.02 eV for the two lowest bands, and 0.02±0.01 eV for the 
seven predominantly / bands between 0.2-1 eV, as determined at 145 points throughout 
the Brillouin zone. The only significant discrepancy is in the lowest band, primarily at 
and nearby the purc-s V point. We believe this is due to the minimal basis orbital being 
too localized, given analogous behavior for other materials where we have sometimes found 
unusually slow convergence at s-like T points as a function of shell cut-off in our ab inilio 
tight-binding representations. Moreover, since s-s contributions from different directions 
and shells should contribute constructively at the F point, a symptom of a too-localized s 
basis orbital should be a too-narrow s band with a bottom which is too high in energy as 
is seen. While we would expect smaller values of n2 to remedy this problem in the minimal 
basis treatment, this would also lead to longer ranged tight-binding representations. 

Figure 1(b) compares the minimal basis band structure for fee Ce (solid lines) to the 
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tight binding bands (dots) reconstructed using hopping parameters given by Eq.(3) and 
its overlap analog, the effective site energies given by Eq.(5), and four effective near- 
neighbor crystal field interactions (one pf, one dd, and two //) obtained as discussed in 
[11]. The cut-off for the tight binding parameters was dmSiX/a = 2.25, where a is the lattice 
constant. We verified convergence with <fmax by obtaining essentially identical bands using 
"max/" — z.yy. 

The rms differences between the two lowest bands in Fig. 1(b) are 0.24 and 0.10 eV, 
respectively, and 0.08±0.04 eV for the seven predominantly / bands. The most serious 
discrepancies occur for the lowest band, at and near the mostly d-\ike X (sd hybrid), W 
(pdf), and L points (sd). All differences between the two sets of bands in Fig. 1(b) are due 
entirely to non-two-center effects, i.e., to m, m' dependence of the matrix elements in Eq.(l) 
which can not be spanned by the two-center geometric functions. Since such dependence 
is likely to arise from three-center contributions to the matrix elements, and these should 
become less important for more localized bases, one would expect better agreement between 
the minimal basis and tight-binding bands for more localized bases. We find this to be the 
case in calculations where we have taken the minimal basis orbitals to be just the re2 = 0.5 
Ry augmented spherical Hankel functions. The near-neighbor overlap hopping parameters 
for this basis are smaller by 24, 47, and ~70% for the ssa, sda, and dd/j, parameters, 
respectively, compared to the linked basis. The corresponding rms agreement for the 
lowest band between minimal basis and tight binding results is improved for this basis by 
a factor of 4, to 0.06 eV, over the result using the linked minimum basis. Unfortunately, 
while there is improved agreement between the minimal basis and tight binding bands, 
both are in poor agreement with our rigorous multiple-«: bands. 

The rms agreement between minimal basis and tight binding 4/ bands in Fig. 1(b) 
is about 10% of the 4/ band width. One might have thought that the 4/ orbitals were 
already sufficiently localized even in the linked basis to be immune from non-two-center 
effects. Note, however, that the number of two-center geometric matrices goes up only as I 
while the size of the m,m' matrices which they are asked to represent increases by (2£+1)2. 
It would appear that non-two-center effects become worse with increasing I. 

TRANSFERABILITY 

In previous ab initio calculations of the hopping parameters for the silicon-boron sys- 
tem, we obtained relatively transferable parameters in so far as chemical and atomic-volume 
variation were concerned, however, there were indications of significant coordination de- 
pendence in the parameters [11]. We explore the coordination issue further here for the 
face centered cubic (fee), body centered cubic (bec), simple cubic (sc), and cubic diamond 
(cd) phases of Si, i.e., coordinations of 12, 8, 6, and 4, respectively. 

Figure 2 shows the ratios —twß(d)lsipß(d) for the sp subset of our calculated parameters 
for the four phases of Si. The calculated values are shown as the data points which appear 
in triples for each neighbor distance, corresponding to the theoretical equilibrium volume, 
Vo, and (1 ± 0.2)Vb. The lines connecting these points pass through the first neighbors for 
all three volumes, then the second, and so on. These parameters correspond to the rotated 
matrices described above, so that the swß are perfectly transferable by construction. A 
rigid shift of any band structure by Ae will change the corresponding tu'ß -> twß + Ae su>ß 

in the case of a nonorthogonal basis. We have therefore plotted the —twßhivß ratios in 
Fig. 2 on the same energy scale, so that such a rigid band shift for a given structure may 
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Figure 2: Negative ratios of the Hamiltonian and overlap hopping parameters, —r«',,/5«'»" 
for Si structures. 

be envisioned by moving all four Wfi curves for that structure up or down by the same 
amount. No such shifts have been performed; however, the results in Fig. 2 are as obtained 
directly from the minimal basis matrix elements. The full set of calculated spd parameters 
reproduce our best multiple-K band structures to within an rms of 0.1-0.2 eV for states 
up to 4 eV above the Fermi level, an energy range of 15-20 eV. Note that the actual 
magnitudes of the Vs change by factors of ~20 or more over the d range covered in Fig. 2, 
and that one could draw smooth curves through the calculated t(cß(d) for all volumes and 
neighbors of a given structure which would follow this variation to within about 5% or so. 

The essential conclusions to be drawn from Fig. 2 are that the high coordination fee and 
bcc parameters track each other fairly well while the lower coordination structures have 
systematically smaller fs. Even if rigid band shifts were used to align the near-neighbor 
parameters more closely for all structures, the latter comment would still apply to the 2nd 
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and 3rd neighbor values with spreads of 10-20% and 15-35%, respectively [15]. In the 
remainder of this section, we discuss these conclusions to see if they are consistent with 
intuitive expectations. 

Suppose that the self-consistent one-electron Hamiltonian can be approximated by 

# = ^V2 + £>R, (?) 
Im ^ 

where the vn(r) are spherically symmetric about R and 

(^-V2 + vR)\Mm) = et\Mm). (8) 
im 

It then follows from Eq.(3) and the gß orthogonality relations that 

+(2 - W1 E  E g^mJ'm',R) (0M\vR,\BI'm'), (9) 
R'   m,m' 

where AtU'ß{R) comes from the two-center expansion of (0lm\\(vQ + vR)\RI'm'). While 
the UR may of course be structure dependent, a more obvious source of environmental 
dependence of the twß will come from the three-center matrix elements in the last term of 
Eq.(9). This expression is particularly simple for the sscr case where ga{s, s, R) = 1. Since 
one might expect the UR to be negative, these three-center contributions to tSS!r should then 
all make positive contributions to the -tssa/s3S^ ratios plotted in Fig. 2. An examination 
of the fee, bec, cd, and sc structures shows that the closer packed phases tend to have more 
atoms closer to the shorter bond axes R than do the lower coordination structures, which 
is consistent at least on geometric grounds with the —tssa/sssa ordering in Fig. 2. 

Additional insight is provided by the canonical band theory of Andersen and coworkers 
[16]. For pure ^-bands, one may write the second-order one-electron eigenvalue problem in 
the form 

[Ct + (A* - leCe)Su]x = A(l - iiSa)x , (10) 

where A is the eigenvalue and S« = [SWm.iWm'] is the bare canonical structure constant 
matrix. Material dependent potential parameters are the band center, Ce, the band width 
or inverse mass, At, and a band distortion or nonorthogonality parameter, f(. Given the 
definition of the canonical structure constants [16], it can be shown that Eq. (10) is formally 
equivalent to the nonorthogonal tight-binding problem 

ee   =   Ct, (11) 

auM   =   7«/«^2(2/+l)(Äws/rf)2<+1, (12) 
tUß(d)-eiSUß(d)   =   -A</«f,2(2£ + l)(Äws/rf)2m, (13) 

where Äws is the Wigner-Seitz radius, fssa = 1, fpp(a,T) = —2,1, and fdd(a,ir,s) = 6, —4,1. 
One of the strengths of the LMTO-ASA method [16] has been its separation of material 

dependence (potential parameters) from structure dependence (structure constants). The 
tight-binding representation given by Eqs. (11-13) is explicitly transferable to the extent 
that the Ce, 7/, and A^ are independent of structure, which is known to be the case to a high 
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degree for the relatively close packed structures for which the LMTO-ASA method is most 
accurate. Moreover, there has been considerable success in the calculation of structural 
energy differences for relatively close packed materials using canonical band theory [17] as 
well as by the LMTO force-relation technique [18] which both embody these same ideas 
of using fixed potential parameters which we equate to transferable representations. All of 
this experience, as well as the success of new tight-binding total energy representations for 
the transition metals [7], suggest a rather high degree of transferability in the close packed 
limit, in agreement with Fig. 2. 

ORTHOGONAL BASES 

Here we consider the suitability of orthogonal bases by performing Löwdin transfor- 
mations [19], Hor = 0-1/2HO-1/2, to create (k-dependent) Hamiltonian matrix elements, 
Hor, in an orthogonal basis. Unfortunately, we find that the Löwdin transformation am- 
plifies non-two-center effects, as may be seen from the expansion in AO = O — 1. 

Hor = H-i(AOH + HAO)+-- (14) 

Terms which arc of first and higher order in AO involve products of the geometric matrices 
which, due to the incompleteness of the g,,^, £',R) = [gtl((m, ('in', R)], add non-two-ccnter 
contributions to the Hor matrix elements. We consistently find degraded agreement be- 
tween the orthogonal Hamiltonian matrix elements, {0Cm\HOT\R(m') and their tight bind- 
ing reconstructions, as well as between the corresponding band structures, in comparison 
to the nonorthogonal case. These non-two-center effects diminish for more localized bases. 
In order to focus solely on the effects of orthogonalization in this section, we use a basis 
which is sufficiently localized that the minimal basis, nonorthogonal tight binding, and 
orthogonal tight binding band structures are all three essentially identical. This agree- 
ment comes at the cost, however, of poor representation of the accurate multiple-*- band 
structure. 

Figure 3 shows calculations of nonorthogonal, t, and orthogonal, tor, hopping param- 
eters for the fee and cd phases of Si, with appropriate sign changes as required to plot 
positive numbers. As in Fig. 2, the calculated parameters appear in triples correspond- 
ing to Vö and (1 ± 0.2)Vf). They are connected by lines (solid, fee; dashed, cd) for visual 
convenience, and the nonorthogonal parameters have been multiplied by three ("3/") to 
separate the data. The minimal basis chosen corresponded to a single augmented spher- 
ical Hankel function (n2 = 0.5 Ry) for each atomic orbital. In addition, we used smaller, 
fixed muffin-tin radii (AMT = 1.7 Bohr) for all atoms in order to switch sooner from the 
numerically generated radial wave functions to the faster decaying Hankel function tails. 
For comparison, touching muffin-tins in V/Vo = 0.8 cd Si would have /?MT =2.05 Bohr. The 
present nonorthogona.l-ca.se overlap parameters, S((i,,(d), arc already so consistent among 
the two structures and three volumes, that there was no need to perform unitary trans- 
formations to guarantee this transferability. The sp subset of these S(c,,(d) are smaller 
by factors of 1.6-3.8 at the near-neighbor distance, and by factors of 2.2-6.9 at the third 
neighbor distance, in comparison with our optimum linked-basis parameters used in Fig. 2, 
which provided good agreement with the multiple-/? bands. 

The first feature to note in Fig. 3 is that the nonorthogonal tf's are in relatively close 
agreement between the two structures and for all three volumes. While the fee near- 
neighbor £«v's appear to be slightly lower than their cd counterparts, recall that a rigid- 
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Figure 3: Nonorthogonal hopping parameters multiplied by three (circles, 3<) and orthog- 
onal hopping parameters (squares, ior) for fee (filled symbols, solid lines) and cd Si (open 
symbols, dashed lines). Some fee tor for d>5 A have changed sign, which is indicated by 
plotting these points on the bottom axes of the three ££'a panels. 

band shift could have achieved the same result for Fig. 2. More significant is the slight rise 
here with increasing d of the fee i's relative to the cd values, a trend which was fully evident 
in Fig. 2. These are 10-20% effects, whereas the orthogonal basis hopping parameters, tor, 
in Fig. 3 are clearly much less transferable. The V/V0 = 1.2 cd and V/V0 = 0.8 fee near- 
neighbor distances are nearly the same, yet the cd for magnitudes here are larger by factors 
of 1.2-1.9 than the corresponding fee values. Similarly, the second neighbor distances are 
fairly close, and here the cd magnitudes are a factor of ~1.7 larger than the fee values. 

We have analyzed the effect of orthogonalization using the first order terms in AO 
shown in Eq.(14). To verify that this would reasonable, we first numerically calculated the 
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t°T{d) over the range 0<»?< 1, corresponding to the Löwdin orthogonalization of H using 
a scaled overlap, 1 + 77(0-1). The usual nonorthogonal, t, and orthogonal, ior, parameters 
correspond to the T? = 0 and 1 limits, respectively. We generally found that the first order 
corrections, (<ft°7<ir/)|,,=o, to the t's were of the same sign although significantly larger 
(factors of 2 or so) than the exact corrections, tOT—t. Given that the signs of the first order 
corrections tend to be right, we then used Eq.(14) to obtain analytic expressions for these 
terms for further investigation [20]. In the absence of crystal field, Eq.(14) implies 

<«v(Ä)   =   Ufß(R) - \(et + e(,)sWß(R) 

I *0,R 

£    £  g,(</,R)'g|1,(<1A1R')xgra(A/,R-R': 
2(2 -<W   a-  A,,,,,,,, 

x[*tt„1(fi')aAPW(|R-R,|) + Js«w(Ä')^„(|R--R'l)] + ••• •        (15) 

Here, gß(l, £',11) = [glt(lrn,t'm', R)], the x signifies regular matrix multiplication, and the 
dot product, J2m,m't so that the triple product of geometric matrices is a scalar. The 
bond atoms at 0 and R together with a neighboring atom at R' define triangles with 
angles 6\ and 62 adjacent to the bond, and 63 = n — 0j — 02 opposite to the bond. The 
triple product of geometric matrices depends only on these angles, and for the simplest 
t°r

s(, case is 1 and — cos03 for the A = s and p contributions, respectively. Both make the 
t°l„ more positive, i.e., reduce its magnitude, if 03 < 90°. More generally we find for an 
sp basis that most of the contributions tend to reduce the magnitudes of the ij£, if all 
angles are acute, 0< 61,62, 63< 90°. It is a characteristic of the more close packed phases 
that not only are there more neighbors closer to the shorter bond axes, implying larger 
contributions to Eq.(15), but the associated angles also tend to all be acute so that the 
tor are generally reduced in magnitude. For more open packed structures, on the other 
hand, there are fewer nearby neighbors, implying reduced impact of the orthogonalization, 
and for the cd structure, the smallest triangles have an obtuse angle, so there is greater 
possibility for cancellation amongst the terms in Eq.(15). These geometric considerations 
appear consistent with the results in Fig. 3. 

SUMMARY 

Current interest in tight-binding representations is driven by the need for fast yet 
still accurate calculation of interatomic forces for use in molecular statics and dynamics 
calculations. Given the success of local-density functional methods in the calculation of 
total energies and forces, it makes sense to analyze these methods from a tight-binding 
perspective both to obtain ab inifio values of the parameters as well as to gain insight 
into the validity of approximations and assumptions customarily made in tight-binding 
treatments. 

Two fundamental approximations arc made in typical tight-binding representation of 
one-electron matrices or band structures: use of a minimal basis and the two-center ap- 
proximation. Although there arc some instances where the former approximation could 
be improved, we find on the whole that the use of a minimal basis is quite satisfactory, 
as seen both here for fee Ce and in earlier work [11] for Si/B phases. The two center 
expansion is by far the more serious approximation. While we find this approximation to 
be quite good for relatively localized bases, we consistently find those minimal bases which 
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most accurately reproduce our best multiple-« bands to be also accompanied by noticeable 
non-two-center effects. This is particularly evident here in rf-like states at the bottom of 
the Ce conduction band, as well as in the conduction bands of four-fold coordinated Si/B 
structures [11]. Even the 4/ states in Ce which should be relatively localized are not im- 
mune. In this regard, we have noted that the two-center approximation is likely to become 
worse with increasing L 

We have also investigated the transferability of our ab initio calculated Slater-Koster 
parameters across a range of coordinations for the case of Si, in both nonorthogonal and 
orthogonal representations. In agreement with generally held expectations, we find the 
nonorthogonal parameters to have far better transferability. But even for the nonorthogo- 
nal parameters there is residual coordination dependence which probably originates from 
the three-center terms. It is interesting that three-center terms may well be the source of 
both of the problems discussed in this work. If one imagines separating each such term 
into a component orthogonal to and another spanned by the space of two-center geomet- 
ric matrices, then the former contribute to inadequacies of the two-center approximation, 
while the latter likely contribute to environmental dependence, i.e., non transferability, of 
the two-center Slater-Koster parameters. The use of environmentally dependent fitting 
procedures [9] for the hopping parameter addresses the second but not the first aspect of 
this compound three-center problem. 

It should be acknowledged that tight-binding total-energy representations do not re- 
quire the one-electron matrix elements themselves, which determine both band structure 
and eigenvectors, but only the former. The less demanding representational problem of the 
band structure alone provides more freedom for effective two-center parameters to incor- 
porate what are truly non-two-center effects. Given the fundamental goal of accurate total 
energies and forces, it may well be that such effective parameters are entirely adequate, 
and for that matter, that accurate representation of the ab initio local density functional 
bands is not critical. On the other hand, local density functional theory is itself a paradigm 
for accurate transferable forces, and clear suggestions for improved tight-binding represen- 
tations arise from its examination. One is to go beyond the two-center approximation 
by augmenting the current space of two-center geometric functions. A second point is 
to affirm the use [7] of environmentally dependent site energies as a more flexible format 
for incorporating the interatomic potential terms ususally incorporated in tight-binding 
total-energy representations. 
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ENVIRONMENT-DEPENDENT TIGHT-BINDING POTENTIAL MODEL 
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Ames Laboratory and Department of Physics, Iowa State University, Ames, IA 50011 

ABSTRACT 

We have developed a tight-binding model which goes beyond the traditional two-center 
approximation and allows the tight-binding parameters to scale according to the bonding 
environment. Our studies show that this environment-dependent tight-binding model im- 
proves remarkably the accuracy and transferability of the potential to describe the struc- 
tures and properties of higher coordinated metallic systems in addition to those of low 
coordinated covalent systems. 

INTRODUCTION 

Tight-binding molecular dynamics (TBMD) has recently emerged as a useful method 
for atomistic simulation study of structural, dynamical and electronic properties of realistic 
materials [1]. The method includes explicitly quantum mechanical calculations into molec- 
ular dynamics and provide a better description of interatomic interactions in the materials 
in comparison with the classical potentials. At the same time, the method is computa- 
tionally much faster than the ab initio methods because the tight-binding Hamiltonian 
matrix elements are described by a set of parametrized functions. The method becomes 
even more attractive and promising due to recent developments in order-N algorithms for 
electronic calculation and the use of parallel computers [2-5]. Nevertheless, generating an 
accurate and transferable tight-binding potentials for molecular dynamics simulation of 
realistic materials is an outstanding challenge. Although enormous effort has been devoted 
to developing transferable tight-binding potentials in the past years [6-14], the existing 
tight-binding potentials are successful in the studies of certain properties and materials, 
but has not always been very transferable to general structures and materials. 

We note that one of the major limitations in the transferability of the previous tight- 
binding potentials is the assumption of two-center approximation for the tight-binding 
hopping parameters. [15] While the two-center approximation greatly simplify the TB 
parametrization, neglecting multi-center interactions is justified only when the electrons 
are well localized in strong covalent bonds. For systems where metallic effects are significant 
in addition to the covalent bonds, the two-center approximation becomes inadequate. For 
example, let us consider the tight-binding hopping parameters of silicon in the diamond and 
in the fee structures. Each Si atom has four valence electrons which can form strong sp3 

hybrids in the diamond structure. But in the fee structure, the valence electrons are shared 
by twelve neighbours. These different bonding situations suggest that the interaction 
strength in the diamond structure should be stronger than that in the fee structure even 
when the interatomic distances are the same in the two structures. It is obvious that the 
two-center approximation failed to describe these different bonding situations for the two 
different structures. Another drawback of the two-center approximation is that it can't 
distinguish between the nearest neighbour and farther neighbour interactions since the 
interaction strength depends only on the distance between the two atoms. 

It seems that a key step to improve the transferability of the tight-binding model is to go 
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beyond the traditional two-center approximation and allow the tight-binding interactions 
to be dependent on the bonding environment. In the past several years, the importance of 
the environment-dependent interactions has received more and more attention. Sawada [8] 
and subsequently Mercer and Chou [11]. noted that incorporating three-body interactions 
into the repulsive energy term of the tight-binding potential can give a better description 
of the energy-volume curves for silicon and germanium in comparison with pure two-center 
models. Tight-binding models that allow the diagonal matrix elements to be dependent 
on the environment of the atoms have also been developed for silicon by Mercer and 
Chou [12] and for transition metals by Cohen ei al. [13]. They showed that allowing the 
diagonal matrix elements of the TB Hamiltonian to be environment dependent can simplify 
the expression for the repulsive energy term in the tight-binding models. Coordination- 
dependent hopping integrals between silicon and hydrogen atoms have been considered by 
Li and Biswas [16] in their Si-H tight-binding model. They found that an environment- 
dependent Si-H interaction is essential for a correct description of the properties of the 
interstitial hydrogen atom in the silicon lattice. A tight-binding model that considers the 
environment dependence of off-diagonal as well as diagonal matrix elements is the effective- 
medium tight-binding model recently developed by Stokbro et al. [14] In this model, a 
LMTO-TB Hamiltonian[l7] is used to describe the one-electron energy in the total energy 
model. Application of this model to the study of Si surfaces has produced some interesting 
results [18]. 

In this paper, we present a model which allows all tight-binding interaction parameters 
to be dependent on the bonding environment through two empirical rescaling functions. 
Based on this model, we have been generating tight-binding potentials for carbon, silicon, 
germanium, aluminum, niobium, and molybdenum. Our studies show that this new gener- 
ation of tight-binding model improves remarkably the accuracy and transferability of the 
potential to describe the structures and properties of higher coordinated metallic systems 
in addition to those of low coordinated covalent systems. 

THE MODEL 

In our model, the environment dependence of the tight-binding parameters are modeled 
through incorporating two empirical scaling functions into the traditional two-center inte- 
grals. The first one is a screening function which mimics the electronic screening effects in 
solid such that the interaction strength between two atoms in the solid becomes weaker if 
there are intervening atoms located between them. This new approach allows us to distin- 
guish between first and farther neighbor interactions within the same interaction potential 
without having to specify separate interactions for first and second neighbors. The second 
function scales the distance between two atoms according to their effective coordination 
numbers. Longer effective bond lengths are assumed for higher coordinated atoms. The 
strength of the hopping parameters between atoms i and j are therefore dependent on 
the coordination number of the atoms: weaker interaction strength for larger-coordinated 
structures. This new model preserves the two-center form of the tight-binding hopping 
integral while the multi-center effects are taking into account. 

To make the model as sample as possible, the potentials for carbon, silicon, germanium, 
and aluminum are constructed using an orthogonal sp3 basis while the d orbitlas are also 
considered for the transition metal elements. The interaction of two atoms at distance 
r are described by a function in a form similar to that in the two-center approximation. 
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The effects of nonorthogonality, multi-center interactions and the flexibility of the basis 
are taken into account through renormalizing the interaction strength according to the 
bonding environment. 

Specifically, the hopping parameters and the pairwise repulsive potential are expressed 

Ä(ry) = aiÄr<WerBp[-a3Ä»](l - Sy) (1) 

In this expression, hfa) denotes the possible types of interatomic hopping parameters 
VSSIJ, Vapa, Vpt„, Vppn etc. and pairwise repulsive potential <t>(rij) between atoms i and 
j. Tij is the real distance and fly is a scaled distance between atoms i and j. 5y is a 
screening function. The parameters on, a2, 0:3, and a4 and parameters for the bond-length 
scaling function fly and the screening function Sy can be different for different hopping 
parameters and pairwise repulsive potential. These parameters will be determined in the 
fitting procedure. Note that expression Eq.(l) reduces to the traditional two-center form 
if we set fly = ry and Sy=0. 

We model the screening function as 

s   = exP(Za) - exp(-tij) ,2s 
"     expfcj) + exp(-Zij) 

with 

fe=/S1£exp[-ft(I^*)A] (3) 
; ~y 

where ßi, /?2, and ßz are adjustable parameters. Note that £y depends not only on the 
distance between atoms i and j, but also on the positions of the neighbors of atoms i and j. 
Maximum screening effect occurs when the atom I is just sitting on the line connecting the 
atoms i and j (i.e., rn + ry is minimum). The screening function decays rapidly when the 
neighboring atoms move away from the line joining atoms i and j. By using the expression 
of Eq.(2), the screening function varies smoothly from 0 to near 1 as £ is increased. 

The scaling between the real and effective interatomic distance is given by 

fly = ry(l + <5iA + 52A
2 + 53A

3) (4) 

where A = |[("'~"°) + ("j~"0)] is the fractional coordination number relative to the coordi- 
nation number of the reference structure no, averaging between the coordination numbers 
n,- and ny of atoms i and j. Using a function in a form as the screening function describe 
above, the coordination number can be calculated smoothly, n* = Iy(l — 5y). Note that 
when i and j are nearest neighbour atoms, 5y is close to 0 and n* counts almost one 
neighbour. On the other hand, Sy is close to one if i and j are not nearest neighbour 
atoms, so that n; counts only a small fraction of a neighbour. By choosing the parameters 
for Sij as /?i=2.0, /?2=0.02895, and /?3=7.96284, m are calculated to be 2.08469, 3.13698, 
4.31114, 6.13943, 7.23413, 10.00215, and 11.93036 for the linear-chain, graphite, diamond, 
simple-cubic, /?-tin, bcc, and fee structures respectively. These values give a reasonable 
representation of the effective coordinations of these structures. 

Besides the hopping parameters, the diagonal matrix elements are also dependent on 
the bonding environments. The expression for the diagonal matrix elements is 
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e\,i = eyQ + Y^^ex{rlJ) (5) 
j 

where Ae^r^) takes the same expression as Eq.   (1), A denotes the possible types of 
Orbitals (s, p, or d). 

Finally, we express the repulsive energy term in a functional form as in the previous 
tight-binding model for carbon developed by Xu et al. [7], that is 

^ej, = E/(E^o-)). (6) 
•'        i 

where <f>(rij) is a pairwise potential between atoms i and j and / is a functional expressed 
as a 4"' order polynomial with argument x = £ ■ 4>(rij), '-e-> f(x) = X!^=o cnXn. 

The parameters in the model are determined by first fitting to the first-principles density 
functional calculations results of electronic band structures and then the cohesive energy 
versus volume curves of crystalline structures with various coordinations. Additional checks 
have also been made to ensure that the model gives reasonable results for the elastic 
constants and phonon frequencies in the low energy structures. The details of the fitting 
procedure and parameters obtained from such fitting are described elsewhere [19, 20, 21]. 

RESULTS 

Carbon. Silicon, and Germanium 

Based on the model described in the previous section, we have generated environment 
tight-binding potentials for the semiconducting materials of C, Si, and Ge. The cohe- 
sive energies as a function of nearest neighbour distance for carbon, silicon, germanium 
in different crystalline structures obtained from the present tight-binding potentials are 
plotted in Fig.l in comparison with the first-principles calculation results. The agree- 
ment between the present tight-binding calculation results and the LDA results is very 
good. These results demonstrate that the present environment-dependent tight-binding 
model has good transferability to describe not only the lower coordinated covalent struc- 
tures, but also the higher coordinated metallic structures in this material. In contrast, 
two-center tight-binding models fail to describe covalent structures and metallic structures 
simultaneously. [7] 

The present tight binding potentials also describe reasonably well the phonon frequen- 
cies and elastic constants of the materials. This can be seen from Tables I and II where the 
vibration frequencies of zone center and zone boundary modes and the elastic constants 
obtained by the present tight-binding potentials are compared with experimental data. 

In addition to the properties of the bulk crystalline structures, we have performed 
extensive tight-binding molecular dynamics simulation to evaluate the accuracy and trans- 
ferability of the new carbon and silicon potentials for describing more complex systems. 
Our studies show that these potentials also describe accurately the structures and energies 
of the diamond and silicon surfaces and silicon grain boundaries as well as those of the 
point defects in crystalline silicon. Details of these studies will be published in separate 
publications. 
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Figure 1: The cohesive energies as a function of nearest neighbour distance for carbon, 
silicon and germanium in different crystalline structures calculated using the present TB 
model are compared with the results from the first-principles LDA calculations. The solid 
curves are the TB results and the dashed curves are the LDA results. 
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Properties Carbon Silicon Germanium 
TB Experiment TB Experiment TB Experiment 

Lattice Constant (A) 3.585 3.567 5.445 5.430 5.561 5.567 
Bulk Modulus 4.19 4.42 0.902 0.978 0.774 0.772 
Cll - C12 9.25 9.51 0.993 1.012 0.703 0.801 
C44 5.55 5.76 0.716 0.796 0.602 0.666 
VLTO(T) 41.61 39.90 16.17 15.53 9.49 9.02 
VTA{X) 25.73 24.20 5.01 4.49 2.50 2.38 
VTO{X) 32.60 32.0 12.84 13.90 7.89 8.17 
VLA(X) 36.16 35.5 11.51 12.32 6.50 7.14 

Table 1: Elastic constants and phonon frequencies of diamond, silicon, and germanium 
calculated from the present TB model are compared with and experimental results [22], 
Elastic constants are in units of 1012dyn/cm2 and the phonon frequencies are in terahertz. 

Present Model Experiment 
Cll - C12 

E2g2 

A2u 

8.94 
48.99 
26.07 

8.80 
47.46 
26.04 

Table 2: Elastic constants and phonon frequencies of graphite calculated from the present 
TB model are compared with experimental results [23]. Elastic constants are in units of 
1012dyn/cm2 and the phonon frequencies are in terahertz. 
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Aluminum. Niobium, and Molybdenum 

We have also applied the model to generating tight-binding potentials for simple metal 
system (Al) and bcc transition metal systems (Nb and Mo). Although the work is still in 
progress, preliminary results seem to be very encouraging. 

£ 
O 
+-> 
Co 

> 

>^ 

CD 
c 

2.2 2.4 2.6 2.8 3.0 3.2 
Nearest Neighbor Distance (A) 

Figure 2: The cohesive energies as a function of nearest neighbour distance for aluminum 
in different crystalline structures calculated using the present TB model are compared with 
the results from the first-principles LDA calculations. The solid curves are the TB results 
and the dashed curves are the LDA results. 

In Fig. 2, we show the energy versus nearest neighbor distance for aluminum in fee, bcc, 
simple cubic, and 0-tin structures. The results obtained from the present tight-binding 
calculations (solid line) fit well to the ab initio calculation results (dashed line). The 
phonon frequencies and elastic constants from the tight-binding calculation are also in 
good agreement with experimental data. 

Our model can also describe the electronic band structures and energies of bcc transition 
metals with an orthogonal sp3d5 basis. Shown in Fig. 3 are the energies of Nb and Mo in 
different crystal structures as a function of lattice constant. Once again, the results from 
the present tight-binding model are found to be in very good agreement with the ab initio 
calculation results. More details about the tight-binding potential for molybdenum can be 
found in another report in this symposium. 
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Figure 3: The total energies as a function of atomic volume for niobium and molybdenum 
in different crystalline structures calculated using the present TB model are compared with 
results from the first-principles LDA calculations. The solid curves are the TB results and 
the dashed curves are the LDA results. 
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CONCLUDING REMARKS 

We outline in this paper a tight-binding model which goes beyond the traditional two- 
center approximation and allow the tight-biding parameters to change according to the 
bonding environment. We show that this model improves the transferability of the tight- 
binding potential to describe the structures and properties of metallic as well as covalent 
systems. For simplicity, our potentials are constructed using orthogonal minimal basis for 
C, Si, Ge, and Al and with additional five d-orbitals for the bcc transition metal elements. 
We argue that the effects of nonorthogonality, the effects of three-center integrals, and 
the effects of the elasticity of the basis can be, to some extent, taken into account by 
the environment-dependent scaling functions in our model. The environment-dependent 
scaling functions are introduced empirically in the present work. There is still room for 
improvement in the model if the form of these functions can be determined with the help 
of ab initio calculations. Another crucial issue in controlling the quality of the tight- 
binding parameters is the choice of fitting database. In the present work, our database 
involves mostly the properties of crystalline structures. It seems that the accuracy and 
transferability of the potentials would be further improved if an appropriate database which 
samples a variety of binding environments of the realistic materials is used to determine 
the parameters. 
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TIGHT-BINDING HAMILTONIANS FOR CARBON AND SILICON 
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PEDERSON 

Complex Systems Theory Branch, Naval Research Laboratory, Washington DC 
20375-5000 

ABSTRACT 

We demonstrate that our tight-binding method - which is based on fitting the energy 
bands and the total energy of first-principles calculations as a function of volume - can be 
easily extended to accurately describe carbon and silicon. We present equations of state 
that give the correct energy ordering between structures. We also show that quantities that 
were not fitted, such as elastic constants and the band structure of C60, can be reliably 
obtained from our scheme. 

INTRODUCTION 

Over the past decade, many authors have developed tight-binding parametrizations for 
carbon [1, 2] and silicon [3, 4, 5, 6, 7, 8]. Because these parametrizations lead to small size 
Hamiltonians, they are particularly useful for the study of large unit cell systems such as 
the fullerenes [1, 9]. 

We have developed another tight-binding total energy method [10, 11] wherein the 
parameters are chosen to reproduce both the first-principles total energy and electronic 
band structure of face-centered and body-centered cubic crystals at several volumes. This 
method has been shown to work quite well in transition metals, where it correctly predicts 
the correct ground state and lower lying crystal states for all of the non-ferromagnetic 
transition metals. This includes the hep metals and the a phase of manganese [12], even 
though these structures were not included in the fit. We also predict elastic constants, 
phonon frequencies, surface energies, and vacancy formation energies in agreement with 
experiment and first-principles results. The method has recently been extended to cover 
some of the sp bonded metals in column IIIA of the periodic table, aluminum, gallium, 
and indium [13]. For these elements the first-principles database had to be extended to 
include other than fee and bec crystals, but it did not include the body-centered tetragonal 
indium ground state or the complex aGa structure. Nevertheless, the method correctly 
predicts the ground state properties of all of these materials. The method also generates 
an electronic density of states for aGa which is very close to the results of first-principles 
calculations. [14] 

Can this method be extended even further to the right of the periodic table, specifi- 
cally to carbon and silicon? In this paper we develop a slightly modified version of the 
parametrization scheme developed in Ref. [11], applied to carbon and silicon. In the sec- 
tions below we introduce the method, and discuss the properties predicted by our param- 
eters. 

METHOD 

The tight-binding parametrization of Refs. [10, 11] consists of a prescription for spec- 
ifying the behavior of the on-site parameters as a function of the local environment, and 
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Table I: The Slater-Koster tight-binding parameters for carbon,  generated from the 
database described in the text. 

On-Sitc Parameters (Eqs. (1) and (2)) 
A 1.59901905594 

Orbital a (Ry)                   ß (Ry)                   7 (Ry) x (Ry) 
s 

P 
-0.102789972814   -1.62604640052     -178.884826119 
0.542619178314     2.73454062799       -67.139709883 

4516.11342028 
438.52883145 

Hopping Parameters (Eqs. (3)) 
Orbital a (Ry)              b (Ry/Bohr)        c (Ry/Bohr2) d (Bohr-'/2) 

74.0837449667   -18.3225697598     -12.5253007169    1.41100521808 
-7.9172955767      3.6163510241 1.0416715714    1.16878908431 
-5.7016933899       1.0450894823 1.5062731505    1.13627440135 

LlppTT 24.9104111573     -5.0603652530       -3.6844386855 1.36548919302 
Overlap Parameters (Eqs. (4)) 

Orbital p (Bohr"1)            q (Bohr"2)             r (Bohr"3) s (Bohr"'/2) 
0.18525064246 1.56010486948 
1.85250642463 -2.50183774417 

-1.29666913067 0.28270660019 
0.74092406925 -0.07310263856 

-0.308751658739 
0.178540723033 

-0.022234235553 
0.016694077196 

1.13700564649 
1.12900344616 
0.76177690688 
1.02148246334 

a parametrization of the hopping and overlap matrix elements. We begin by discussing 
the behavior of the on-site terms, which are allowed to vary depending upon the local 
environment of each atom. This environment is determined by defining a pseudo-atomic 
density for each atom, 

3 

where R/t is the position of the kth atom, the sum is over all neighbors of atom i, and 
where f(R) is a cutoff function as defined in Ref. [11]. In this paper we choose the cutoff 
so that f(R) vanishes when R > 10.5 atomic units for carbon, and when R > 12.5 atomic 
units for silicon. The on-site terms on each atom are given by a Birch-like equation 

hu = ae + ßtp2/3 + ytP*/3 + xtp] (2) 

In both carbon and silicon we naturally consider only ( = s,p, so, including the A in 
equation (1), there are a total of nine parameters which determine the on-site terms on 
each atom. 

The two-center Slater-Koster hopping terms for the Hamiltonian are simply polynomials 
times an exponential cutoff, 

HwniR) = (««<,, + 6«>« + c«vfl2) exp{-d2
((,flR)f(R) (3) 

where f(R) is the same cutoff as above. The overlap parameters have been modified from 
our previous work[10, 11] to exhibit the proper behavior as the atoms get close together. 
Thus we write 

Setß(R) = {Sie + Plt>ßR + g^R2 + r„v/?3) cxp(-s2
l(,flR)f(R) (4) 
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Table II: The Slater-Koster tight-binding parameters for silicon, generated from the 
database described in the text. 

On-Site Parameters (Eqs. (1) and (2)) 
A 1.10356625153 

Orbital a (Ry)                  ß (Ry)                 7 (Ry) x(Ry) 
s 
P 

-0.053233461902   -0.907642743185   -8.83084913674 
0.357859715265     0.303647693101     7.09222903560 

56.5661321469 
-77.4785508399 

Hopping Parameters (Eqs. (3)) 
Orbital a (Ry)              b (Ry/Bohr)        c (Ry/Bohr2) d (Bohr-1'2) 

H„ 

219.560813651 
10.127687621 

-22.959028107 
10.265449263 

-16.2132459618 
-4.4036811240 
1.7207707741 
4.6718241428 

-15.5048968097 
0.2266767834 
1.4191307713 

-2.2161562721 

1.26439940008 
0.92267194054 
1.03136916513 
1.11134828469 

Overlap Parameters (Eqs. (4)) 
Orbital        p (Bohr" q(Bohr r (Bohr'3) (Bohr- Tß\ 

5.157587186 
8.873646665 

11.250489009 
-692.184231145 

0.660009308 
-16.240770475 
-1.1701322929 
396.153248956 

-0.0815441307 
5.1822969049 

-1.0591485021 
-13.8172106270 

1.10814448800 
1.24065238343 
1.13762861032 
1.57248559510 

where <5«> is the Kronecker delta function. In this paper we use only s and p orbitals, so 
we need only consider the Slater-Koster parameters (Wß) = (ssa), {spa), {ppa) and (p?wr). 

The fitting procedure is described in [11]. Since we only consider s and p orbitals, we 
have the parameter A from eq. (1); eight parameters a^ßi^i and xi from eq. (2); sixteen 
parameters a«'^,ö«'M,c«'^ and dU'ß from eq. (3); and sixteen parameters pu'ß,<lu'ß,ruiß 

and Sa'» from eq. (4). This gives us a total of forty-one parameters. While this is a 
much larger number of parameters than used by some other methods [5, 7], this method 
is designed to map the electronic structure as well as the total energy information from 
a series of first-principles calculations onto the Slater-Koster parametrization, requiring a 
larger number of parameters for an accurate fit. 

For each element, a database of first-principles density functional calculations is con- 
structed. For carbon, this database contains the the one-electron eigenvalues as a function 
of k-point and volume, along with the total energy as a function of volume, for the dia- 
mond, graphite, and simple cubic lattice. In addition we include the eigenvalues and total 
energy of the Ci dimer as a function of atomic separation. For silicon we fit only to the 
diamond, simple cubic, fee, and bec structures. In each case we shift the eigenvalues by a 
structure-dependent and volume dependent constant V^, so that the total energy of a given 
structure S at a volume V is given by 

E(S,V) = J2{ei + V0(S,V)] = '£e'i (5) 

where the sums are over the occupied states. The tight-binding parameters are then 
chosen so as to reproduce both the total energies and the shifted eigenvalues z\ as closely 
as possible. A justification of this shift was recently proposed by McMahan and Klepeis.[8] 
The final tight-binding parameters of our scheme for carbon and silicon are listed in Tables I 
and II, respectively. 
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Figure 1:   Two center Slater-Koster hopping matrix elements for carbon, based on the 
fitting procedure described in the text. 

RESULTS 

Carbon 

We obtained our tight-binding parameters for carbon by fitting to a set of first-principles 
band structures and total energies, as outlined in Ref. [11]. Results for the bulk diamond, 
graphite, and the simple cubic structures were obtained using the full-potential Linearized 
Augmented Plane Wave (LAPW) method,[15, 16] and the Wigner form of the Local Density 
Approximation. We also found it desirable to include results for the C2 molecule in our 
database. These calculations used the all-electron density functional based NRLMOL 
codes [17, 18, 19]. In the dimcr there is a crossing between the TTU state and the 3CT9 state 
near the experimental equilibrium distance.[19] We dealt with this problem by fitting only 
in the regions where the ordering of the states is unambiguous.  Thus we fit to the fully 

3.0 3.5 4.0 
R (Bohr) 

Figure 2: Two center Slater-Koster overlap matrix elements for carbon, based on the fitting 
procedure described in the text. 
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7r-bonded molecule at short bondlengths, and to the partially (7r„,3cr9)-bonded state at 
large bondlengths. The final tight-binding parameters for carbon are shown in Table I. 

In Fig. 1 we show the two-center Slater-Koster hopping matrix elements ssa, spa, ppa 
and ppw derived from our parameters in Table I as a function of the interatomic distance 
R. It should be noted that these parameters decrease smoothly to zero for R > 10.5 Bohr 
and also follow the correct sign convention, that is, ssa and ppm are negative, while spa 
and ppa are positive. [20] In Fig. 2 we show the distance dependence of the corresponding 
overlap matrix elements. In the interaction region (R > 2 Bohr) each matrix element has 
the opposite sign from its respective hopping matrix element, as it should.[20] However, 
note that the overlap matrix element ppa must approach 1 as the distance approaches zero, 
as required by (4) and on physical grounds. Finally, note that the overlap matrix elements 
also approach zero at large distances. 

In Fig. 3 we show our TB results for the total energy of carbon as a function of the 
nearest-neighbor distance in several structures. It is clear that our tight-binding Hamil- 
tonian works very well; it shows the cubic diamond and graphitic plane structures with 
the lowest energy, and the hexagonal diamond structure nearly degenerate with cubic di- 
amond. It does not, however, predict the correct ground state of graphite. When we vary 
the volume and c/a ratio of the graphite structure to find the minimum energy configura- 
tion, we find that the structure stabilizes into a set of infinitely separated graphite planes 
with an in-plane lattice constant a = 2.472Ä. This occurs because our current fit does 
not adequately account for the interaction between the graphite planes. For reference, the 
experimental equilibrium lattice constant for graphite is a = 2.464Ä.[21] 

From various first-principles calculations we estimate that the energy of the COO molecule 
is about 0.4eV/atom above the energy of the diamond lattice. Using our TB parameters 
we find this energy to by 0.38eV/atom. It should be emphasized that we did not fit to the 

2.5 3.0 3.5 4.0 
Nearest Neighbor Distance (Bohr) 

Figure 3: Energy of carbon predicted by our tight-binding parameters. Several different 
structures are shown, with the relative energy per atom shown as a function of the nearest 
neighbor separation for that structure. All other internal and external parameters were 
allowed to relax to minimize the total energy. The structures marked by solid lines were 
used in the fit, while the structures marked by dotted lines are predictions of the method. 
The unlabeled curve for the hexagonal diamond structure is nearly degenerate with the 
cubic diamond curve. 
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Figure 4: The left graph shows TB band structure of fee C0o, compared to a the first- 
principles band structure of K3Cco determined in Ref. [22], The Fermi level in both pictures 
is set to correspond to a system with three electrons in the conduction band, as in K:tCCn. 
and is then set to zero. 

Ü6o molecule and that this result is an output of our TB method. We further investigated 
the behavior of C60 by calculating the energy bands of an fee crystal of Cco molecules, 
with an eye to studying the superconducting phase transition in KßCeo-^. 23] In Fig. 4 
we show the band structure of an fee crystal of CCo molecules calculated with our tight - 
binding parameters, and compare it to a first-principles calculation for K3C60- Our TB 
valence and conduction bands compare quite favorably with the LDA results, although 
the TB bands are slightly narrower. We note that the first band above the Fermi level is 
significantly narrower than the LDA, and the next band is somewhat lower in energy than 
the LDA. However, in superconductivity the important band is the threefold band crossing 
the Fermi level. These bands are well reproduced in TB which will allow us to carry out 
further studies of the electronic density of states in this system for different orient at ional 
phases of the COO molecules. 

We determined the elastic constants of diamond at the experimental lattice constant 
by imposing a finite strain on the crystal, calculating the total energy, and obtaining 
the corresponding elastic constant from the curvature of the energy-strain relation at zero 
strain.[25, 26] In calculating the bulk modulus (Cu +2Ci2)/3 and tetragonal shear Cn -Cn 
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Table III: The elastic constants of diamond structure carbon and silicon at the indicated 
room temperature lattice constants, using the TB parameters of Tables I and II. For 
comparison, we also show the results of the full-potential LAPW calculations described in 
the text, and the experimental values. [24] Since the LAPW calculations only give an upper 
bound for C44, we also give the upper bound found using our TB parameters. 

Carbon Silicon 
a = 3.567Ä a = 5.430Ä 

TB LAPW   Exp. TB LAPW   Exp. 
B 377 420     442 108 91        98 

Cn — C12 988 926     951 106 92      102 
Cn 1036 1037   1076 179 152     166 
C12 48 111      125 73 60       64 
C44 Upper Bound 601 555 135 101 
C44 Relaxed 601 576 95 80 

we can impose strains so that the diamond basis remains fixed by symmetry. In calculating 
the shear constant C44, however, we must allow the carbon atoms to move as we strain the 
lattice. For comparison, we also calculated the elastic moduli using the LAPW method 
with the Wigner parametrization of the local density approximation. In this case we did not 
allow the carbon atoms to move, so we can only calculate an upper bound on C44. When 
we calculated this upper bound from the TB parameters, however, we found that there is 
very little relaxation, as shown in Table III. Our results are shown in Table III. The TB 
parameters underestimate the bulk modulus by about 15% compared to experiment (10% 
compared to the LAPW result) and overestimate C\\ — Cu by 4% (7%). These combine to 
produce the very small result for C12, which is 60% lower than experiment (57% compared 
to LAPW). The shear modulus C44 is 4% above the experimental value (8% above LAPW). 

r x     w        L r K 

Figure 5: The electronic band structure of silicon at the experimental lattice constant, 
5.430Ä. The solid lines represent the results of the first-principles LAPW method. The 
dashed lines show the results obtained from the TB parameters in Table II. 
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Figure 6: The TB equation of state for several structures silicon, using the parameters 
given in Table II. The structures marked by solid lines were used in the fit. while the 
structures marked by dotted lines are predictions of the method. 

Silicon 

We performed similar first-principles calculations for silicon using the LAPW method 
and the Hedin-Lundqvist prescription for exchange and correlation. We fitted our TB 
Hamiltonian parameters to four structures (diamond, simple cubic, fee, and bcc) using 
a non-orthogonal sp basis. In Fig. 5 we show a comparison of TB and LAPW results 
for theband structure. It is evident that the valence bands fit very well. However, the 
conduction bands are poorly fit, and in TB the smallest gap is at the symmetry point L 
instead of on the A line near X. We have done further work using an spd representation 
which dramatically improves the conduction band. These results will be reported elsewhere. 
The present fit is still useful because by restricting the TB to s and p orbit als we have 
a more convenient model for use in molecular dynamics simulations. Results of similar 
quality were recently reported by Cohen et al.[6] using the same approach but with some 
differences in the form of the on-site terms. 

In Fig. 6 we plot the equation of state for various phases of silicon. In this plot the 
hexagonal diamond, /3Sn, and hep phases are predictions of the method. This plot should 
be compared to the first-principles results of Yin and Cohen.[27] We see that we have the 
correct ordering of all structures except the /5Sn state, which is too high in energy. 

In Table III we compare the calculated TB and first-principles elastic constants of 
silicon to experiment. Again, the first-principles value of Cu is only an upper bound. We 
see that in this case the elastic constants of silicon are nearly as accurate as the first- 
principles results. Note that there is a considerable change in C44 when we relax the 
internal parameters. 

SUMMARY 

We have proposed an extension of our parameterized tight-binding method - which 
was originally formulated for highly coordinated metals - to the more open structures 
of carbon and silicon. We are able to accurately describe the relative energies of several 
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different structural phases, the elastic constants of the ground state phase, and the occupied 
electronic band structure relative to first-principles methods. Future work will focus on 
the electronic structure and total energies for geometries far outside the fitting database, 
including silicon surface reconstructions and the Ceo orientational phase diagram. 
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ABSTRACT 

The mathematical theory of orthogonal polynomials and continued fractions provides efficient 
tools, via the recursion and related methods, for calculating diagonal elements of Green's function 
of tight-binding Hamiltonians. We present two recent generalizations of this formalism. The first 
one allows the calculation of conductivity and other linear response coefficients. The second one 
provides a new approach to the solution of mean-field theories of alloys. In particular it is shown 
that the self-consistent CPA equations can be easily solved, through a real-space calculation, for 
multi-component alloys based on periodic or non periodic lattices. 

INTRODUCTION 

It has long been recognized that structural order affects a majority of the physical properties 
exhibited by most alloys as functions of temperature, pressure and concentration. Models based 
on tight-binding Hamiltonians have been developed to calculate electronic structure and predict 
for example energetic or transport properties. However, in many cases the periodicity of an 
underlying lattice is assumed. In the context of quasicrystahme or amorphous alloys, and in par- 
ticular recently synthetized bulk amorphous alloys, there is a need to develop efficient electronic 
structure methods, entirely solvable in real space, and thus applicable to systems with reduced 
or no symmetry. 

The aim of this paper is to review recent progress in that field. The developments presented 
here are all based on the mathematical theory of orthogonal polynomials and continued fraction 
expansions, which are related to the recursion method [1]. In a first part we recall some basic 
results concerning the recursion method. Then we show how one can derive a useful expression 
for the projector of states of energy E for a tight-binding Hamiltonian H. This expression allows 
the calculation of various quantities like dc or ac conductivity, or forces acting on an atom in a 
molecular dynamics simulation. In the last section we show on a simple example that the recursion 
method provides a new real-space solution to mean-field theories of alloys. Application to the 
Coherent Potential Approximation (CPA) is given which proves the interest of this approach 
in particular in solving the inhomogeneous CPA problem in the case of multi-component alloys 
based on non periodic lattices. 

THE RECURSION BASIS AND SOME USEFUL RELATIONS 

The recursion basis in tight-binding models 

We consider a system described by a tight-binding Hamiltonian H. To a given normalized 
state |$i > we can always associate a recursion basis which is constructed as follows. If we 
consider /f|$i > we can decompose it in a component parallel to |$i > and a component 
orthogonal to |*i >. Thus we write 

231 

Mat. Res. Soc. Symp. Proc. Vol. 491 ® 1998 Materials Research Society 



#|*1 >=<2i|*i > +&l|*2 > 

where < *i|*2 >= 0 and < *2|*2 >= 1- If the coefficient 6i is chosen real and positive then 
|*2 > is defined in a unique way. Consider then H\92 >, this vector can be decomposed in a 
component parallel to the space spanned by |*i >, |*2 > and a component orthogonal to this 
space. We get 

ff|*2 >= «2l*2 > +&i|*i > +62|*3 > 
with < *i|*3 >= 0 < *2|*3 >= 0, and < *3|*3 >= 1. Furthermore since H is a hermitian 

operator we deduce that b\ - b\. If the coefficient b2 is chosen real and positive then |*3 > is 
defined in a unique way. 

The process can be repeated and leads to the construction of a set of states |*n > which are 
orthonormal and satisfy : 

H\9n >= on|*n > +6n_,|*„_i > +6n|*„+, > 

In the basis of |*„ > the Hamiltonian H is tridiagonal. This means that the Hamiltonian is 
that of a semi-linear chain as shown in Figure 1. 

a,/\  a*/\ a3/-\  a. 

/1X^/2X^W3>^^/£>V^/5> 
bi        b2       b3       b, 

Figure 1: Representation of 
the semi-infinite linear chain 
of the recursion basis. The 
coefficients a, are the on-site 
energies of sites i and the 
coefficients 6, are the hop- 
ping terms between nearest- 
neighbor sites i and • + 1. 

An important property of the states |*n > is that they spread progressively from the initial 
state. For example if |*i > is located on an atomic orbital then the state |*n > can have non-zero 
components only on orbitals that are reached by n - 1 applications of the Hamiltonian H. This is 
illustrated in Figure 2 for the simple case of a single s-band model applied to a two dimensional 
lattice with nearest neighbor hopping. 

Figure 2: Extension of the 
wavefunctions of the recursion 
basis for a square lattice (s- 
band with nearest neighbor 
hopping). The initial orbital 
is one of the s-orbitals of the 
lattice. 
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The interest of the recursion basis is that if we want to calculate vectors like f(H)\^i > where 
f(H) is any operator that is a function of the Hamiltonian H then this vector can be decomposed 
in the basis of the states \9n > : 

/(ff)l»i >= En I«- >< *»|/(2r)|*=i > 

Hence we have to calculate < *„|/(/T)|*i > for a one dimensional Hamiltonian H with 
known matrix elements a„ and b„. 

When applied to the resolvent f(H) = (z - H)'1 one can show in particular that 

<»i|;jgl»i>= \*     - 
 $2± 1~-—r*— 

This continued fraction expansion of the diagonal element of the resolvent provides an efficient 
way of reconstructing the density of states [1]. 

The recursion basis in functional space 

Consider a function n(E) positive definite such that / dEn(E) = 1, and which is non-zero 
only in a finite interval. Prom n(E) one can define a scalar product in the space of functions of 
E. Namely 

<f\g>=fdEn(E)r(E)g(E) 

One can also define an operator that we note H. The action of this linear operator is to 
multiply a function f(E) by E. This operator is hermitian. One can show also that : 

n(£)=<*i|«(£-«)|*i> 

where |*i >= 1, that is, the function associated with this state is a constant equal to 1. This 
vector is normalized due to the normalization condition of the function n(E). In the vectorial 
space spanned by the functions f(E) one can apply the recursion procedure described above 
starting from l^i >= 1. 

The recursion procedure applied to this initial vector will generate a set of functions which 
are polynomials of E. The vector |*„ > is a polynomial of degree re - 1 that we note Pn(E). It 
can be shown that these polynomials are a basis for the functions of the energy E in the energy 
interval where n(E) is non-zero. Thus for any, sufficiently regular, function f(E) we have : 

l/>=E„ I*» ><*«!/> 
that is 

/(£) = En Pn(E) <*„|/> 

The polynomials Pn{E) obey a three-term recurrence relation analogous to that of the recur- 
sion vector in the case of tight-binding models. In particular one can show that the recursion 
vectors |\P„ > for the tight-binding case is equal to Pn(H)|\Pi >, and the Pn(E) are the orthogonal 
polynomials associated with the density of states n(E) and the state |^i >. 

CALCULATION OF LINEAR RESPONSE COEFFICIENTS 

Linear response theory provides a suitable formalism for determining important character- 
istics of a system, such as conductivity, Hall effect etc....   The force applied to an atom in a 
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molecular dynamics simulation is also a linear response (the derivative of the energy with respect 
to the displacement). Many of these quantities can be expressed in terms of Green's function or 
equivalently in term of the operator S(E-H). We show here that one can get, through the theory 
of orthogonal polynomials, a useful expression for the operator 6(E - H) [2]. This expression can 
serve as a starting point for evaluating the linear response of a system. 

Consider the function of energy f(E) given by 

where the electronic density of states n(E) is non-zero on the spectrum of H, and |o > and 
|/3 > are two wavefunctions. From the previous section, we know that f(E) can be developed 
on the basis of the orthogonal polynomials associated with the density n(E). If we apply the 
decomposition formula we get : 

f(E) = En Pn(E) < ¥„|/ >= £„ Pn(E) < a\Pn(H)\ß > 

Since this equality holds for any pair of states |Q > and \ß >, we can write formally : 

6(E-H) = n(E)j:nPn(E)Pn(H) 

This expression has been used to calculate the time evolution of a wavepacket and the dc 
conductivity in quasiperiodic systems [3]. One uses the Chebyshcv polynomials of the first kind : 

e-'^\j>    =    ,£hn(fdEn(E)Qn(E)e-^) Qn(H)\j > 

n 

where ho = 1 and hn = 1/2 for n > 0. As usually done with orthogonal polynomials the 

Qn(H)\J > are evaluated via the recurrence property [1]. Amplitudes of e s~ |j > in this basis 
have a rather simple form connected to Bessel functions. The consequent interest of this approach 
is that one obtains well conditioned asymptotic behaviors for these coefficients which converge 
very quickly as n —► oo, given that lim,,-,«, Jn(

z) ~ "Tj—( fj )"• It ls this development that 
makes the calculation fast and accurate. 

This method is very efficient for studying problems related to quantum diffusion or conduc- 
tivity. Its application allowed us to show the specificity of electronic transport in quasicrystals 
and to exhibit the different type of plausible conduction mechanisms. The method is particularly 
efficient for calculating the dc conductivity even in systems with long mean-free paths of the order 
of several tens of interatomic distances. The above development has also been used in a different 
way to calculate the ac and dc conductivity in disordered systems [2]. 

It would be interesting to compare our method to the one used by Bose [4] for computing 
the dc conductivity. We note that in his method Bose calculates the conductivity for each Fermi 
energy whereas in our method we obtain the conductivity at all energies in one run. 

Finally we mention that the efficient tight-binding molecular dynamic method proposed by 
Goedecker and Colombo [5] can be viewed as a direct application of the spectral decomposition 
of S(E — H) on the basis of the orthogonal polynomials. Indeed for a component (say along the 
x-direction) of the force acting on an atom : 

/. = Eao„upitd < a|g|a >= Tr[f J dE6(E - H)] 
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where the integral is over energies less than the Fermi energy. Using the decomposition of 
S(E - H) we get : 

/* = £„C„TV[fQ„(iO] 

and 

Cn = JdEn(E)Qn(E) 

where again the integral is over energies less than the Fermi energy. If we take for Qn{E) the 
Chebyshev polynomials we recover the method of Goedecker and Colombo [5]. 

NEW APPROACH TO MEAN FIELD THEORIES OF ALLOYS 

A simple case. Principle of the approach 

Let us consider a s-band model applied to the case of an alloy based on a square lattice with 
nearest neighbor hopping only. In order to illustrate the approach we consider an approximation 
in which the infinite square lattice is replaced by a cluster which is a 3x3 square [6] .This is a 
simple approximation to describe the environment of the central atom of the cluster. We take into 
account the fact that the eight surface atoms of the cluster are coupled to the rest of the lattice 
in the following way. To the "i" atom we attribute a self-energy <r,(z) which is <7;(z) = c{z) for 
an atom of the surface which is coupled to one atom of the rest of the lattice, and <7j(z) = 2cr(z) 
for an atom of the surface which is coupled to two atoms of the rest of the lattice (i.e., atoms at 
the corners of the 3x3 square). 

In the spirit of a self-consistent model we can relate a(z) simply to the self-energy A(z) of 
the atom at the center of the cluster. We choose the relation 

A{z) = 4<x(z) 

since A(z) describes the coupling of the central atom to four neighbors. 
The resulting set of equations is defined as follows.   The Hamiltonian H(o{z)) of the 3x3 

cluster depends on the self-energy <r(z) . One has with |1 > meaning the central orbital 

z-A(z) =< 1IZ-«(<7(2))I1 > 

This equation (I) gives an expression for A(z) as function of c(z) due to the form of the 
effective medium (here a cluster with surface atoms carrying a self-energy <r(z)). We call this 
equation (I) the effective medium equation. The other equation (equation (II)) A(z) = 4a(z) 
stems from the self-consistency condition that we have chosen. We call equation (II) the self- 
consistency equation. 

Usually one would solve these equations by iteration for a given value of z. One starts, for 
example, from a value of <r(z) then one calculates the diagonal element of the resolvent and 
deduces A(z) from equation (I). From equation (II) one deduces a new value for <r{z). This 
new value is used as a starting point for the next iteration. One reiterates the procedure until 
convergence is reached within some given accuracy . 

Within this new approach, we proceed in a completely different way. Since a(z) represents 
the coupling to the rest of the medium it must be a Herglotz function which can be represented 
by a continued fraction, 

*(*)= ^  
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Thus it is strictly equivalent to give a self-energy Na(z) (N = 1 or N = 2) to a surface atom 
or to couple it with a semi-linear chain with coefficients y/Nb0, at, bi, a?, 62, 03 ...This newly 
defined effective medium is equivalent to the system represented in Figure 3. 

Hence the principle for solving the set of equations in a self-consistent way follows. Because 
of equation (II) (the self-consistency equation) we get a simple relation between the continued 
fraction coefficients of A(z) and the continued fraction coefficients of a{z). They are identical 
except that 60 for ^(^) is replaced by 260 for A(z). Thus one makes a recursion calculation 
starting from the central orbital |1 >. The essential point stems from the extension of the 
successive recursion vectors as represented in Figure 3. 

Indeed, if we consider |2 > we see that it is entirely in the 3x3 square and thus can be 
calculated without any knowledge of the chains coefficients. From this calculation one deduces 
the first two coefficients of the continued fraction coefficients of A(z) : that is, one calculates 
60 and oj. Once these two coefficients are known we see from the extension of |3 > that the 
knowledge of the Hamiltonian represented in Figure 3 is sufficient for defining this vector. From 
this calculation we deduce 61 and 02 and so on. 

Application to the CPA 

Figure 3: Representation of the ef- 
fective Hamiltonian for the cluster 
embedded in an effective medium. 
The coupling to the semi-linear 
chains is equivalent to the effect 
of the self-energy attibuted to each 
atom of the surface of the clus- 
ter. The extension of the succes- 
sive recursion vectors |1 >, |2 >, 
|3 > starting from the central or- 
bital |1 > is represented. 

In the case of the CPA the principle is the same as above but the details are more intricate 
[7]. In the CPA it is well known that the chemical disorder is simulated by attibuting a self- 
energy a(z) to each atom of the medium surrounding an A or a B atom (for a binary alloy). As 
illustrated in Figure 4, one can attach semi-linear chains to the atoms of the medium. These 
semi-linear chains will simulate exactly the self-energy <r(z) provided that the coefficients of the 
Hamiltonian of the chains are the coefficients of the continued fraction expansion of <x(z). Note 
that this expansion exists since a(z) is Herglotz. 
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Figure 4: Equivalent representa- 
tions of the effective Hamiltonian 
describing chemical disorder, within 
the CPA, here for a binary alloy 
based on an infinite linear chain 
(thick solid lines). 

a(z)        0(2)   e.ore     o(z)       a(z) 

One can also define the self-energy A(z) of an orbital centered on an A or a B atom due 
to the coupling with the effective medium. This self-energy A(z) is thus a function of c(z). 
This corresponds to the effective medium equation (I). The equation corresponding to the self- 
consistency condition (equation (II)) results from the condition that the T-matrix of an A or a B 
atom embedded in the effective medium is zero on average. It can be shown that this condition 
gives a relation between the continued fraction coefficients of a(z) and A(z). This relation is 
more complex than in the above example and is given in reference [8]. The main point is that, as 
in the above example, it allows one to perform a recursion starting from an orbital centered on 
an A or a B atom in the effective medium. One calculates progressively the recursion vectors and 
the coefficients of the semi-linear chains as illustrated in Figure 4. At each step of the recursion 
procedure one knows enough coefficients to calculate the next recursion vector, and so on. The 
extension of the first recursion vectors starting from an orbital is represented in Figure 5. 

This procedure to solve the CPA equations appears to be quick and furthermore it does not 
require a periodic lattice. It can be easily generalized to several orbitals per atom and several 
inequivalent sites as in the case of a surface or a topologically disordered lattice. Also, since one 

3        ,2 

3        [2 

>   Ö 
1 i2 

2-<!>THh-<V 

x-r-O 1  w 2 w 3 

Figure 5: Equivalent repre- 
sentations of Geff(z) by a lat- 
tice, here an infinite linear 
chain with each site "dressed" 
by a semi-linear chain repre- 
senting cr(z) (top part), and 
by a semi-linear chain in the 
recursion basis (bottom part). 
The extension of the recur- 
sion vector at each step, here 
1 - 3, is represented by solid, 
dashed, and double solid lines, 
respectively. 
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has now an effective, energy independent Hamiltonian, it is possible to use formalisms developed in 
particular for tight-binding Hamiltonians. This allowed us to calculate effective pair interactions 
between atoms with the orbital peeling method of Burke [9]. This also allows us also to calculate 
for example transport properties in chemically and topologically disordered systems with the 
real-space techniques described above [10]. 

The finite electronic lifetime, that results from chemical disorder, leads also to another in- 
teresting aspect of the method. Indeed, let us consider a wavevector in the effective, energy 
independent Hamiltonian (see Figure 4), and suppose that this wavevector has initially non-zero 
components only on sites of the real system (not on sites of the chains). It is easy to show that 
during its evolution in time this state will spread on the chains and its total weight on the sites 
of the real system will decrease exponentially with a characteristic time r equal to the electronic 
finite lifetime induced by disorder. Consequently if the state is initially located in a small region 
of space (an atomic orbital for example) it will have time to travel at most on a distance of a 
few mean free-path 1, and then will spread into the chains attached to the atoms of this region. 
The same will happen for the recursion vectors calculated from an atomic orbital. In other words 
a recursion calculation requires the knowledge of the local environment of an orbital only on a 
distance of a few times the mean-free path 1. This is illustrated in Figure 6 where, in the case of 
a chemically disordered alloy, we show that results obtained by simulating exactly only the first 
three shells of neighbors of an atom are close to the exact results. 

CONCLUSION 

To conclude we stress that the new methods presented here are all real-space methods; conse- 
quently they are applicable to any system, periodic or not, and perfectly suited for implementa- 
tion on massively parallel computers. They provide a consistent set of techniques for calculating 
electronic structure and transport properties of non periodic systems. 

E 
o 

cr 
«5 
0) *-* 
(0 
u>_ 

CO 
o 
D 

0.8 

Figure 6: Illustration of the 
fact that the recursion pro- 
cedure requires a description 
of the local environment on 
a distance of the order of 
the electronic mean-free path. 
Density of states of bcc-bascd 
Zrfth disordered alloy; (i) Ob- 
tained with 17 levels of con- 
tinued fraction on both the 
real crystal and the semi- 
linear chain (solid line). (Note 
that this calculation is essen- 
tially exact); (ii) Obtained 
with three levels of continued 
fraction on the real crystal 
and ten levels along the semi- 
linear chains. 
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ABSTRACT 

Empirical tight-binding theory is generalized to incorporate time-dependent 
electromagnetic fields in a systematic and gauge-invariant manner that does not 
introduce any extra adjustable parameters. It is shown that this approach successfully 
predicts a wide range of solid state properties that have not been accessible within 
the tight binding method so far. We present applications such as optical constants, 
luminescence in heterostructures, properties in ultra-high magnetic fields and lattice 
dynamics in polar materials. 

INTRODUCTION 

Empirical tight-binding theory has become an indispensable tool for obtaining 
both physical insight as well as semi-quantitative predictions for a variety of elec- 
tronic or structural properties of solids. Since the pioneering work of Harrison [1], 
empirical tight-binding method has been widely used in many different areas such 
as bulk band structures [2-4], surfaces [5], transition metals [6], cohesive properties 
[7,8], lattice dynamics [9], molecular dynamics [10]. So far, the vast majority of appli- 
cations of tight-binding theory has focused on the spectrum of the electronic Hamil- 
tonian in the absence of any external fields. Relatively few attempts have been made 
to incorporate electromagnetic fields into the theory in a systematic fashion [11-14]. 

In this paper, we first discuss a sum rule that provides a link between tight- 
binding theory and the linear response formalism [15]. We then show that time- 
dependent electromagnetic fields *(r,t), A(r,t) can be incorporated in empirical tight 
binding theory in a way that is gauge invariant, charge conserving, and, most impor- 
tantly, does not introduce any extra free parameters [15]. This scheme significantly 
widens the scope of tight binding theory and the range of problems it can be success- 
fully applied to. We illustrate this novel scheme by applying it to optical dielectric 
functions, optical properties of heterostructure devices, magnetic band structures, 
dynamical effective charges, and phonon spectra in polar materials. 

THEORY 

Notation 

In the empirical tight binding scheme [1], the Hamiltonian matrix is represented 
in terms of an orthogonal basis set of atomic-like orbitals I a,R> that can be character- 
ized by a site index R and a symmetry-related index a that specifies the angular- 
momentum and spin quantum numbers of the atomic orbitals on that site. The 
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intra- and inter-atomic Hamiltonian matrix elements are denoted by, respectively, 

EaR =  <a,RI H I a,R> , (1) 

ta, a(R' - R) =   < a',R' I H I a,R > . (2) 

In all applications of this paper, we will invoke the two-center approximation 
and restrict the range of interactions to nearest neighbors. Tight binding models of 
this kind have the major advantage of (i) requiring a minimal number of adjustable 
parameters that can be determined largely by physical considerations and (ii) being 
easily transferable in the sense that parameters for compounds AB and AC suffice to 
calculate, e.g., heterostructures AB:AC or alloys ABxCi-x. Spin-orbit interaction can 
be taken into account in tight binding by adding intra-atomic Hamiltonian matrix 
elements [16] of the form ta'a(0) ^ < o^R I LS I a,R > but we will not discuss rela- 
tivistic effects here. 

In a periodic solid, one can construct Bloch basis functions loc,k> from a linear 
combination of all atomic orbitals of type a in the crystal. The Bloch eigenfunctions 
of the Hamiltonian H are denoted by lnk>, where the index n labels the energy 
bands. The expansion coefficients of the eigenstates in terms of the Bloch basis 
functions I a,k> define the coefficient vector C(nk), 

Haa,(k)= < a',k IHI a,k> (3) 

lnk> = XCa(nk) la,k>. (4) 
a 

Effective mass sum rule 

In standard kp theory, one expresses the matrix elements <n'klHln k> in 
terms of matrix elements made up entirely of eigenstates and eigenvalues at some 
reference wave vector k , using the completeness of the Kohn-Luttinger basis. Even 
though the Wannier-type basis used in tight binding theory is incomplete, one can 
still derive an exact result for <n'klHln k> that resembles the well-known kp 
result [15]. To this end, we expand Eq. (3) in powers of (k - k ). This gives, in matrix 
notation, 

H(k) =   H(k*) + Vk,H(k*)(k-k*) + \ (k-k*)Vk, Vk,H(k*)(k-k*) + 0(k-k*)3 .        (5) 

By defining an effective momentum operator p and an effective kinetic energy 
operator T (mo is the free electron mass), 

Pnn1**) = l2 C+(nk*) V H(k*) C(n'k*) < (6) 

Tnn'(k*) = W C+<nk*) V Vk* H(k*) C(n'k*) ■ PO 
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it is easy to see that the matrix elements of H(k) in the Bloch basis In k*> can be 
written as [15] 

Hnn'(k) = En(k*) 5n/n, + ~ Pnn.(k*)-(k-k*) + ^ (k-k*)Tnn,(k*).(k-k*) 

+ n,   !,*>   **      v     Pnm(k>) Pmn'(k*) „ 

mo  m#n,n'    fcrAk )~hmVk ) 
(8) 

This result has a similar form as the standard expression for Hnn'(k) in kp-theory. 
Recently, it has been rederived in a more general framework [17]. Note that the 
intra-band term Tnn' equals the unity operator Snn' in the Kohn-Luttinger basis. For a 
nondegenerate band edge En(k*), Eq. (8) yields the identity 

l a2En(k*)      i 
n    9k: 3ki 

T mg    nn (k*: 
J_ P^(k>) PUP**) +P]nm(k*) Kjtf) 
mo  m#n,n' En(k*)-Em(k*) 

(9) 

This result not only gives the effective mass but actually constitutes a finite-basis 
analogue of the optical f-sum rule [15]. For degenerate bands, Eq. (8) yields expres- 
sions for the Luttinger parameters that differ from the standard ones through the 
operator Tniy. For simple tight binding models, these band edge parameters and 
effective masses can be evaluated analytically [18]. 

Electromagnetic fields 

We turn to the incorporation of electromagnetic potentials into the tight- 
binding approach. It is certainly plausible to assume that an electrostatic potential 
4>(R,t) produces a rigid shift of all on-site valence orbital energies at position R and 
does not - or not significantly - affect the off-site matrix elements. Indeed, this 
approximation has been widely used [1,11,19]. It is less obvious, however, how to 
incorporate a vector potential in a localized basis approach and how to ensure gauge 
invariance. 

Given a general Hamiltonian H(r, p) that is a function of the position and mo- 
mentum operator, minimal coupling to a vector potential A(r,t) can be achieved by 
the Peierls-transformation 

exP[-^f A(s,t)ds] H(r,p) exp[^JrA(s,t)ds] = H(r,p + \A(r,t))   . (10) 

It turns out that a discrete variant of this expression - together with the approxi- 
mation for <t>(R,t) that we just mentioned - yields a gauge invariant and charge con- 
serving [15] tight binding Hamiltonian matrix. It reads 

WR'' R) = ta',a(R' - R) exp { -^ (R'-R)-[ A(R',t)+A(R,t) ] }  , 

(11) 

(12) 
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where the field-free matrix elements are e° and t°. The electrostatic potential only 
enters the on-site matrix elements, whereas the vector potential enters only the off- 
site elements. We note that Eqs. (11), (12) neglect intra-atomic excitations that 
become relevant for very high excitation energies in molecules or solids and in 
isolated atoms. 

Within one-band or kp-models, external fields are sometimes incorporated by 
the Luttinger-Kohn approximation [20]. In this approach, the wave vector k in the 
Hamitonian matrix Hnn'(k) is replaced by an operator k -» -iV + e A(r,t)/fi c. This 
approximation breaks down whenever the external fields induce significant band 
mixing. Most of the examples that we present in the following subsections belong to 
this category. 

APPLICATIONS AND RESULTS 

Magnetic band structure 

As a first demonstration for Eqs. (11), (12) to yield intuitively correct results, we 
study the spectrum of a two-dimensional square lattice (lattice constant a) with 1 
single s-state per site in a magnetic field perpendicular to the two-dimensional 
plane. In this case, Eqs. (11), (12) yield the so-called Harper equation [21] that shows 
pronounced commensurability effects between the periodic potential and the cyclo- 
tron motion [15]. Whenever the flux 0> = Ba2 through the unit cell is a rational 
multiple of the flux quantum *o = hc/e, the Hamiltonian becomes periodic and its 
spectrum consists of energy bands of finite width. Figure 1 shows this spectrum for 
<P/<D0 = p/qwithq<30. 

In fact, any crystal Hamiltonian in a magnetic field becomes periodic whenever 

the ratio of magnetic flux through the unit and *o is a rational number [22]. How- 
ever, the periodicity cell is extremely large for realistic fields, The corresponding 
spectrum has been termed magnetic band structure [22]. Except in the one-band case, 
it can neither be obtained within the Kohn-Luttinger approach nor is it accessible via 
perturbation theory. Therefore, only few attempts have been made so far to calculate 
the magnetic band structure of real materials [23]. For a magnetic field of = 630 T 
along the [001] direction, the magnetic supercell of bulk GaAs contains 160 primitive 
cells perpendicular to the magnetic field. Consequently, the resulting magnetic 

Figure 1: Energy bands of two- 
dimensional square lattice as a 
function of magnetic flux ("Hof- 
stadter butterfly" [21]), as calcu- 
lated from the Hamiltonian matrix 
elements Eqs. (11), (12). 
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Z k-vector 
Figure 2: Calculated magnetic band structure of bulk GaAs in ultrahigh magnetic fields B. 
The inset shows the magnetic Brillouin zone (thick line) within the fcc-zone. (a) Lowest 
conduction bands from the T-point to Z; the lowest bands at Z originate from zero-field In- 
states, (b) Top valence band states. 

Brillouin zone reduces practically to a line when plotted on the same scale as the 
Brillouin zone of the bulk lattice (see Fig. 2) and leads to a highly degenerate folded 
band structure along the [001]-direction. 

We have calculated the magnetic band structure of bulk GaAs within the 
approach outlined above, i. e. Eqs. (11), (12). Figure2a shows the calculated magnetic 
energy band structure of GaAs for the lowest conduction bands at a very high 
magnetic field, the top of the valence band (at B=0) representing the zero of energy 
[15]. The minimum of the conduction band at the Z point in the magnetic Brillouin 
zone originates in the L point of the underlying bulk zone. Since the effective mass 
at r is much smaller than at L, the magnetic field-induced zero point energy hac/2 
becomes so large at B=630 T that it raises the conduction band minimum at the T 
point above the L-minimum, leading to an indirect band gap material. Consequent- 
ly, these calculations predict that GaAs becomes indirect at a magnetic field around 
500 Tesla. It should be mentioned that such ultrahigh magnetic field pulses are 
actually attainable nowadays [in the high magnetic field laboratory of the University 
of Tokyo, see [24]]. 

Figure 2b depicts the same magnetic energy band structure of GaAs for the top 
valence band states. In this and the previous picture, we have employed a relativistic 
sp3s* tight binding model [25]. For energies below 0.3 eV of the valence band top, the 
constant energy surfaces are no longer spherical. This strong nonparabolicity effect, 
together with band mixing effects, causes the cyclotron energy to change non-mono- 
tonically with wave vector and leads to negative effective masses for some hole 
bands. The magnetic field induced spin-orbit splitting becomes so large at these high 
fields that the J=3/2 and J=l/2 band states no longer interact with one another. This 
leads to a fourfold degeneracy of the highest lying hole bands that is also indicated in 
the figure. 

Transverse dielectric function 

Once we know the change of the Hamiltonian matrix upon application of a 
vector potential, as given in Eqs. (11), (12), we can calculate the transverse dielectric 
tensor £ij(co) as a function of frequency oo, invoking the standard procedures of linear 
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response theory. The indices i, j denote the cartesian components. In [15] it has been 
shown that Eqs. (11), (12) lead to the following expression, 

D        ^       i      4ne2v*n^    J    A        4Ke2,^    [fn(k)-fm(k)]  p^m(k)p'mn(k) 

Im V"' = Äfe I lf"(k> - Wk» FWW P
1™*) s ('»>- »uu) ■ 

"    nmk 
(14) 

Here, fn(k) is the Fermi distribution function of the Bloch eigenstates I nk>. The 
momentum operator p has been defined in Eq. (6). P denotes the principal value, we 
have set Äcomn(k)=Em(k)-En(k), Q. is the crystal volume, and m0 the free electron mass. 
The effective mass tensor [l/mn(k)]jj can be deduced from Eq. (9). Interestingly, this 
expression for the transverse dielectric function is formally identical to the standard 
random phase expression [26], provided we interpret the operator p(k) as momen- 
tum operator. Note that the second term on the right hand side of Eq. (13) vanishes 
for an insulator with full valence bands. As we have pointed out before, however, 
this analogy does not hold in general due to the appearance of the kinetic energy 
operator T in Eq. (7) that differs from unity in any finite basis. In fact, the effective 
mass in Eqs. (9) and (13) is numerically dominated by the T-matrix element for most 
energy bands in GaAs. 

In Fig. 3, we show the calculated real and imaginary part of the dielectric 
function for intrinsic GaAs. We have used a set of sp*d5s* nearest neighbor tight- 
binding parameters that have been very carefully determined recently [27] and give 
excellent band gaps and effective masses. As one can see, agreement between theory 
and experiment [28] is very good, apart from a small shift in the peak positions. Fig. 3 
also shows the joined density of states that equals - up to an arbitrary normalization 
factor - the expression Eq. (14) with p set equal to unity. This comparison shows that 
the momentum matrix elements determine the relative weight of the two peaks of 
£2 at 3 and 5 eV and the high energy tail of £2, all in excellent accord with experiment. 

\ 
4 6 

Energy [eV] 
2 4 6 

Energy [eV] 

Figure 3: Left: Calculated imaginary part of dielectric function (full line) with tight binding 
parameters from Ref. [27]. Experimental data (dotted line) are from Ref. [28]. Right: Full line is 
same as on left side, the dashed line shows the joined density of states in arbitrary units. 
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Optical properties and charge self-consistency in heterostructures 

We now turn to electronic and optical properties of semiconductor nanostruc- 
tures. Specifically, we consider a lattice matched heterostructure on GaAs, consisting 
of an undoped GaAs buffer, a 26.5 nm wide strained layer Ino.15Gao.85As quantum 
well, and a 38 nm wide n-doped Al0.2Ga0.sAs cap layer (n=1018 cm-3) the first 2 nm 
of which are undoped. This layer sequence is typical for a high electron mobility 
transistor (HEMT). The incorporation of electromagnetic fields into the tight binding 
approach as outlined above allows one to calculate the self-consistent charge distri- 
bution in this structure as a function of an applied (gate) voltage, the confined 
electronic states within the quantum well, as well as the luminescence spectrum [29]. 

Computationally, it is adequate in this case to take open boundary conditions 
well outside the Ino.15Gao.85As channel since there is no current flow in growth 
direction. By introducing layer Bloch functions IE k/> with in-plane wave vector kf> 
the secular equation H IE \//> = E IE k/> becomes effectively one-dimensional along 
the growth axis z. Here, H = Ho + VH, where Ho is the tight-binding Hamiltonian of 
the intrinsic structure and VH(Z) is the self-consistent Hartree potential that enters 
only in the on-site matrix elements of H, according to Eq. (11). The influence of elec- 
tronic charge rearrangement can be included by solving Poisson's equation 
d(e(z) dVn/dz)/dz = - 47tp(z), where the charge density is 

P(z) (2*)' ̂
jdk/Xl<nk/lz>|2f(En) (15) 

self-consistently with the secular equation for H. The index n labels all energy levels 
for given k/. In Fig. 4, we show the resulting band profiles and quantized subband 
states for zero bias and for a gate voltage of -0.6 V across the 200 monolayer hetero- 
structure. Strain effects in the InGaAs region which are taken into account by 
properly scaling the matrix elements of H [25] split the heavy hole (HH) and light 
hole (LH) states. Note that the quantum well becomes almost flat for a bias of -0.6 V. 

Since Bloch symmetry is lost in z-direction, the expression Eq. (13), (14) for the 
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Figure 4: (a) Self-consistent band edge profile (thick lines for HH, dashed lines for LH), and 
bound states (thin lines) of pseudomorphic Alg <£*&§ 8^s"^n0 15^a0 85-As-GaAs HEMT 
structure at zero bias gate voltage V„. The layer width is measured in monolayers [ML], (b) 
Calculated photoluminescence spectra as a function of V . 
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transverse dielectric function is no longer adequate but has been properly genera- 
lized in [29]. Figure 5 shows the calculated luminescence emission rate as a function 
of applied bias. The change from 2 peaks to 4 peaks is a consequence of the break- 
down of optical selection rules due to band mixing that is induced by the band 
bending within the quantum well for small bias. 

Lattice dynamics and self-consistent tight-binding 

In order to study cohesive properties, lattice dynamics, and longitudinal res- 
ponse functions in empirical tight binding theory, one needs to establish a relation 
between the net charges in the crystal and the potential these charges generate 
[7,11,25,30} In the present paper, we have employed a self-consistent sps model that 
was developed in [7,31]. We first briefly summarize this model and then apply it to 
lattice dynamics. 

To simplify notation, we lump together the symmetry and site index into a 
single index I = (oc,R). A quite general Hartree ansatz for the on-site energies is [7] 

£T=  WT -I 
r 

(Zr - Q.) U(R, - R,.) + f. (16) 

where Zie is the core charge of the ion at site Ri and wi are the orbital energies of the 
neutral atoms. The electronic orbital occupancy on site Ri is given by 

Ql = i?Xfn(k)l<Ilnk>|2 (17) 
nkl 

so that QI=ZI for neutral atoms within the solid. The potential U reflects the on-site 
Coulomb repulsion for Ri=Ri' and tends to a Coulomb potential for long distances 
and has also been given in [7]. Finally, the term fi=-(SH + HS )i/i/2 is a non- 
orthogonality correction term that contains orbital overlap factors Sij'. Again, we 
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Figure 5: Photoluminescence of HEMT structure  Figure 6: Calculated phonon spectra across 
in Fig. 4 as a function of bias voltage V„. The  the Brillouin zone of bulk GaAs, compared to 
numbers label the two electron (c) and hole (v)  experiment [32]. 
bound states. The dashed lines mark corres- 
ponding transitions. 
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have used the expressions in [7], where Sy °= dyr3 and di,r is the distance between 
neighboring atoms I and T. Since the orbital energies in Eq. (16) depend, via Eq. (17), 
implicitly on the eigenstates I nk>, they must be determined self-consistently. It has 
been shown [7,31] that Eq. (16) leads to the following expression for the cohesive 
energy of the crystal, 

Ecoh = Ecov + Eovl + Etransf' (18) 

Ecov= X fnk Enk ~ -Z Ql eI , 
nk I 

Eovl=lQlfI, 
I 

Etransf = "X (ZI " Ql >WI + I E (ZI " Ql XZr " Or ) U(Rj - %)  • 
i ir 

The three contributions to the cohesive energy have a simple physical interpre- 
tation. The first term, called covalent energy, is the lowering of the electronic energy 
due to the formation of bonds. The second contribution takes into account the in- 
crease of the total energy of the solid upon compression and has been termed over- 
lap energy. The third term, called charge transfer contribution, contains all electro- 
static terms and vanishes if there are no charged ions in the crystal. 

This model allows one to study the response of the crystal to any static potential, 
in particular the one that is induced by ionic displacements of the form 

™I = V expöq-Rj), (19) 

where the index x denotes the sublattice associated with site I. Employing linear 
response theory [33], the force constants 

<tyVlq)=ä 92EcohK>J (20) 

can be calculated explicitly but the expressions are too lengthy to be given here. In 
Fig. 6, we show some numerical results for GaAs. Comparison with experiment 
reveals that the present theory fits the data amazingly well, considering the fact that 
no parameter in the tight-binding model of [7] was adjusted. 

An elucidating side result of the calculation of the dynamical matrix is the 
transverse effective charge tensor Z*. It is defined as the macroscopic dipole moment 
P induced by homogeneous sublattice displacements ut for zero macroscopic electric 
field [33], 

ii"iq-p(q)lF=±XqizijW<- <21) q_»0 E=0        0 T^j 

In the present tight binding approach, we obtain the following analytical expression, 
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y       fnk" 

nmk (Enk~ 

"fmk 

Emk)2 Pnm« <mk 1 —p 1 nk> , (22) 

that closely resembles a corresponding general expression that has been derived 
within pseudopotential theory [34] The so-called acoustic sum rule, 

XzVT>=0 

T 

(23) 

is obeyed individually by the first term and the second term on the right hand side of 
Eq. (22). The first term vanishes due to charge conservation in the crystal and the 
second due to the fact that the Hamiltonian is invariant under a rigid shift of the 
crystal. Numerically, we find Z* = 1.53 in GaAs which underestimates the experi- 
mental value of 2.07 somewhat. 

We note that dynamical effective charges can alternatively be calculated using 
the Berry phase approach which has recently also been applied to tight binding [35]. It 
does not give analytical expressions for Z* but yields numerically very similar results 
[35]. 
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ORDERING EFFECTS IN DISORDERED METALLIC ALLOYS 

A. PASTUREL 
Laboratoire de Physique et Moderation des Milieux Condenses. Maison des Magisteres, BP 
166 CNRS, 38042 Grenoble-Cedex, FRANCE. 

ABSTRACT 

This paper reviews recent progress in the theory of the atomic and electronic structure of 
disordered metallic alloys containing transition metals (TM). Realistic structural models are 
obtained using molecular dynamics simulations based on pair interatomic forces derived from 
a tight-binding-bond method. This approach describes quantitatively compositional trends in 
chemical and topological short-range order in agreement with diffraction experiments. 

INTRODUCTION: 

It has been known for a long time that order-disorder phenomena affect a majority of 
the physical properties that most alloys exhibit as a function of temperature, composition and 
pressure [1]. Depending on the force of the interatomic interactions, the alloys, ordered at low 
temperature, may or may not disorder before melting. In all cases, if the high temperature 
phase ( solid or liquid) no longer exhibits any long-range order, there still exists a local short- 
range order that is very important in understanding the properties of these systems. From the 
point of view of the fundamental theory, there are several aspects of the ordering effect to be 
studied. The first point is that the interatomic interactions between the atoms depend on the 
type (A or B) of atom concerned. The problem then arises of knowing how to compute these 
interactions. In the case of metallic alloys, the characteristics of the bonds involved can be 
understood by studying their electronic structure. Once the interactions are calculated, there 
remains the task of determining the thermodynamic functions of alloys. In the past decade, it 
has been a goal to combine at a high level of accuracy both quantum-mechanical and 
statistical-thermodynamical contributions to obtain such a theoretical determination of order- 
disorder phenomena. The main results reported in the literature concern the ordering effects in 
alloys having a given crystalline structure ( see [1] and [2] for a review). In this case, one of 
the most efficient statistical-mechanics techniques is the cluster-variational method (CVM) 
which provides a good description of the free energy as a function of the short-range order. 
Based on a cluster expansion of the configurational free energy, it has been essentially used to 
deal with solid solutions or ordered phases presenting an extended concentration range. To 
calculate these cluster interactions from quantum mechanics, two types of approaches have 
been proposed. The first one is the so-called Connolly-Williams and the closely related 
renormalized interaction method [3]. These methods use standard ab initio or tight-binding 
band-structure techniques whose total energies are mapped on to a generalized Ising-like 
Hamiltonian [2]. In the second approach, the energy of a configurationally disordered state 
(with no short-range order) as calculated by means of the coherent potential approximation 
(CPA) is the starting point. The cluster interactions are then calculated using the embedded 
cluster method [4] or the generalized perturbation method [1]. Either ab initio or tight-binding 
(TB) Hamiltonians have been used in these approaches [2]. 

A microscopic theory of the short-range order in topologically disordered alloys like 
liquid or amorphous alloys seems to be a harder challenge for theoreticians in so far as the 
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topology of these systems is not known. However it is true that most of the trends in the 
crystalline structures persist in the liquid state. For instance, in the binary systems, the 
formation of strictly ordered intermctallic compound is paralleled by similar ordering 
phenomena in the liquid state which are well-described in terms of the Bhatia-Thornton 
number-concentration structure factors SNN(q), SNc(q) and Scc(q) ( and their Fourier- 
transforms, the number-concentration correlation functions gNw(r), gNc(r) and gcc(r)). In an 
ordered liquid mixture ( which is often called ' compound-forming') the concentration- 
fluctuation structure factor Scc(q) has a peak at small momentum transfers which is very 
similar to the superlattice peak observed in the diffraction pattern of the corresponding solid 
alloy [6]. This close analogy suggests that the trends in the liquid structure are driven by 
electronic effects in a way quite similar to the trends in the crystalline structures. 

Thus the study of the short-range order in the liquid or amorphous structures is clearly 
divided into two distinct parts: (1) the derivation of appropriate expressions for the interatomic 
forces based on an electronic theory of the chemical bond and (2) the calculation therefrom of 
the pair correlation functions and of the thermodynamic properties using computer-simulation 
algorithms like molecular dynamics or more conveniently using some approximate analytical 
techniques. 

This review is organized as to follow this strategy very tightly. First we present a tight- 
binding bond approach to interatomic forces and describe the calculation of the bond order for 
the d-d and p(or s)-d interactions. The following section is devoted to the discussion of the 
short-range order calculated in liquid and amorphous transition metal-based alloys. 

TIGHT-BINDING-BOND APPROACH TO INTERATOMIC FORCES: 

Bond order: 

Here we present only a brief sketch of the basic ingredients for calculating interatomic 
forces in disordered transition metal (TM) -based alloys. For details we refer to Rcf. [7]. 
Within the tight-binding- bond approach, it has been shown [8] that the variational property of 
the ground-state energy in the local-density approximation allows a decomposition of the 
binding energy into a repulsive pair-potential term containing the electrostatic, exchange- 
correlation, and non-orthogonality contributions to the total energy, and a covalcnt bond 
energy measuring the energy gain resulting from the formation of a band with the local density 

of states (DOS) nia(E). 

Ebond=lfF(E-Eiff)nio(E)dE (1) 

The bond energy may be broken down in term of contributions from individual pairs of bonds 
by writing equation (1) as: 

Ebond = 2kl   I^bondO.J) (2) 

where Obond(i,j) = I cj>^       = 2 I Hlffj/?0j/? la (3) 
a,ß a,ß 

Hjajß is the Slater-Koster bond integral matrix linking the orbitals a, ß on site i and j together. 
0 is the corresponding bond-order matrix whose elements give the difference between the 

number   of   electrons   in   the   bonding    WQ) = -4=|ior + j/?}    and   antibonding   states 
V21 

|fo) = ^|i«-JA)- 
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Bond-order potentials are similar to the embedding potentials in that the bond in a 
given pair of atoms is considered as embedded in and depending on the local atomic 
environment. Thus Eq. (3) represents only formally a pair interaction and depends via the 
bond-order on many-atom effects. This dependence can be explicitly shown by using the 
recursion method to write the bond-order as an integral over the imaginary part of the 
difference of two continued fractions [9]: 

®ia,iß =^lmjEF[G^(E)-GÖ0{E)]dE (4) 

with G±(E) = (,4|(£-H)-11y,%) 

The continued-fraction representation leads to an expansion of the bond-order in terms of 
many-body cluster interactions. In their study of structural stability in crystalline transition 
metals, Pettifor and Aoki [10] have shown that the cubic (bcc) versus cubic (fee) stability 
depends on the four-body interactions while the cubic (fee) versus hexagonal (hep) stability 
depends on the six-body interactions. For a disordered system however, the detailed structure 
in the electronic density of states which is the origin of the characteristic variations of the 
higher moments ( and hence of the many-body interactions) is smeared out. The higher 
moments decay more rapidly and -even more important- we expect the difference in bonding 
and antibonding moments to be much smaller than in the crystalline states. Hence it should be 
possible to obtain a much more rapid convergence of the many-body expansion. However, the 
recursion expansion which is the cornerstone of the bond-order approach to crystalline metals 
requires the atomic positions to be known whereas in our case the liquid structure is just what 
we want to derive from the interatomic forces. 

Bethe lattice approximation: 

To calculate ©iajß and the local DOS nja(E), we have introduced a Bethe lattice approach 
which accounts in a realistic way for the shape and variation of the TB-DOS relating to 
different alloys. In the Bethe lattice reference system, the dependence on the local 
environment of the bond energy is determined only by the coordination number and the bond 
length. In this case the bond order can be written as: 

®ia,jß = -lna*ß ^!EF{Ta(i),ßU)Ga(i)Gß(J)]dE <5> 

2 
where na, nß are the degeneracy of subspaces a, ß respectively, T a(i),ß(j)ls me mean square 
of the matrix element between a state of subspace a of atom i and a state of subspace ß of 

atom j. Ga(i) is the Green's function of atom i in the subspace a as given by the Bethe lattice 
formalism [11]. 

Ga(,)(z) = l>-£a(0 -Z £ PijHßT^ß^Gß^iz)] (6) 
ßU) 

Z is the coordination number and pij, the pair probability. The advantage of Eq.(6) is that it 
allows us to estimate the different orbital contributions in the bond energy, in particular to 
treat the effect of hybridization explicitly. Assuming that the bond order is slowly varying 
function of the bond length [9] we obtain: 

<tßU)=h-ß(r'J)@^Jß (7) 
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Alloy effects: 

The advantage of the Bethe lattice reference system is that the bond orders in an AB 
alloy depend very sensitively on the partial DOS's in the alloy. For an alloy with a small 
difference in the group number of the constituents, the system is close to the common-band 
limit with only small differences in the partial DOS's. This will lead to bond orders of about 
equal magnitude, ©AA~©An~®nn, comparable strength of the interatomic interactions and 
finally a random distribution of the two atomic species in the melt. For an alloy with a large 
difference in the group numbers the electronic DOS is close to the split-band limit, with the 
two partial DOS's concentrated in the lower and upper parts of the band. This results in strong 
attractive interactions in AB forces and in the liquid and glassy structure this is reflected in a 
strong chemical and topological short-range order. 

In principle the partial DOS's and the bond order depend on the degree of chemical 
order assumed to exist on a Bethe lattice. This influence can be seen from Eq. (6). Indeed the 
pair probabilities PKL are related to the Cowley short-range-order parameter a through (xA and 
xu are the concentrations of A and B atoms): 

PAA=XA+XB(T pAn=xij(l-a) 
PUA=XA(1-O") pnn=Xu+xAo- (8) 

o- > 0 corresponds to clustering of unlike atoms, cr < 0 to a tendency to hetcrocoordination. 
An ordering bond energy is then defined as the energy relative to the random configuration: 

A£W(CT) = EbonA°) - EbondW) (9) 

On the other hand, in terms of pair interactions, AEQ°j (er) is given by using the pair 

probabilities PKI =XKPKI.: 

^» = ^11    ZPKLiriiWbondM'ij) <10) 
K,L i j(j*i) 

= JW(0) + iff2    Z    \xA^Wb„ndM^ + ^bond,BB^-1,X,bondAB^j)\ (") 
ij(J*iV L " 

We find that in a nearest-neighbor approximation, the bond contribution to the ordering energy 
is given, to first order in a, by the ordering potential: 

<&cc(r) = xAxB{<bbmdtAA(r) + <&bo„dM(r)-2<&hond AB(r)] (12) 

evaluated in the random reference configuration. 
A first requirement is that the pair potentials derived from the random configuration yield a 
reasonably accurate description of ordering phenomena, that means the ordering energies 
calculated via (9) and (11) display similar values. This condition gives the capacity of the 
bond-order potentials to describe the short-range order in a disordered structure if they arc 
coupled with molecular dynamics simulations or with thcrmodynamic variational techniques. 
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SHORT-RANGE ORDER IN TM-BASED ALLOYS: 

Tight-binding Hamiltonian: 

The calculation of the bond energies of the TM-based alloys include the five d-like and 
one s-like orbitals for TM and the three p-like and one s-like orbitals for p-metals (like Al or 
B). The hopping energies hjajß between like species were evaluated from Harrison's solid- 
state table [12]. The distance dependence of the hopping integrals is evaluated according to 

Harrison's power law ( haß{rtj) = "&  /n ), n=2 for s and p orbitals, n=5 for d orbitals. For 

the on-site energies, we use the atomic on-site energies given by Herman and Skillman [13]; 
for transition metals, the values were calculated for a transition atom with the dn+1s 
configuration. 
The repulsive part of the binding energy is assumed to be given by a sum over pair potentials: 

Erep^H   T^iry) (13) 

a 
For   s-s   and   p-p   interactions,   the   repulsive pair   interactions   may  be   modeled   as 

c c 
Q>aPa(rij)=   "f   while for d-d interactions, a stronger power-law dependence     "'^    is 

rij r'J 

chosen . Ca a (cc=s, p, or d orbitals) are the only parameters of the model; they are 
determined from the knowledge of the experimental atomic value and bulk modulus of the 
pure metals. This usual dependence for both hopping integrals and repulsive terms has been 
modified using the rescaling method proposed by Goodwin et al. [14]. This method is known 
for generating improved TB parameters which are both transferable and suitable for extensive 
molecular dynamics simulations. 
To treat the alloying effect, i.e. the AB interactions, we use geometrical average for hopping 
integrals as well as for the parameters entering the repulsive part. Consequently, no parameters 
are introduced to describe the alloy properties. The shift between the on-site energies of the 
two metals is determined self-consistently by imposing local charge neutrality, a reasonable 
approximation for TM based alloys, where charge transfers are known to be small. 
Table I shows all the parameters entering the interatomic forces for the alloys which are 
discussed in the present paper. 

A possible question concerns the validity of the Bethe lattice approach to generate a 
correct short-range order. Therefore we have calculated effective pair interactions between 
first nearest neighbors, i.e. Vi, for the fee Ni5oTi5o alloy and we have compared this result 
with the ones obtained from the generalized perturbation method (GPM) using the same tight 
binding hamiltonian or with first-principles based results. The Bethe lattice gives a value of 
3.7 mRy/atom very close to the one obtained from GPM, i.e. 4.0 mRy/atom; it is also in fair 
agreement with the one derived using Connolly-Williams inversion scheme with FPLMTO 
calculations [15], 4.4 mRy/atom or with the one obtained from KKR-GPM-CPA approach 
[16], 1.86 mRy/atom. Another instructive comparison can be done for the bec AlsoNiso alloy. 
The Bethe lattice value is 5.1 mRy/atom compared to 7.6 mRy/atom extracted from FPLMTO 
calculations or to 6.2 mRy/atom obtained from KKR-GPM-CPA approach. 
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Table I: Tight-binding and repulsive parameters for Al and TM (in eV) 

ssa dda ddTt dd8 sder ppa ppx Spt7 Css Cdd cpp 
Al -0.52 1.20 -0.31 0.71 0.30 0.30 
Cu -1.32 -0.42 0.21 0 -0.92 0.08 0.23 
Ni -1.42 -0.56 0.28 0 -1.11 0.53 0.27 
Co -1.36 -0.60 0.30 0 -1.15 0.78 0.30 
Fe -1.30 -0.66 0.33 0 -1.15 1.18 0.32 
Mn -1.33 -0.65 0.32 0 -1.22 1.60 0.14 
Ti -0.99 -0.84 0.42 0 -1.13 0.33 0.32 
Y -0.67 -0.96 0.48 0 -0.99 1.15 0.22 

Thermodynamic variational methods versus Molecular Dynamics simulations: 

For many liquid alloys, a reasonably accurate description of the structures and the 
thermodynamic properties may be derived from the thermodynamic variational approach 
based on the Gibbs-Bogoljubov inequality, provided that a sufficiently realistic system is 
available , as the Hard-Sphere Yukawa (HSY) reference system [17], Within this model, the 
structural manifestations of ordering are modeled by a mixture of hard spheres all having the 
same diameter but opposite charge ( while respecting the overall charge neutrality condition) 
which interact by a screened Coulomb (Yukawa) potential. In this system, the description of 
the atomic configuration requires three parameters which arc the diameter of the hard sphere d, 
the strength of the ordering potential at hard contact 6, and a screening constant K. The 
reference system provides expressions for the excess entropy and the partial pair correlation 
functions. The three parameters are then obtained by minimizing the free energy given by: 

FXd,£,K) = ±kBT+Ebi„,,(d,e,K)- 7lS„s(d) + Sord((i,e,K)] (14) 

Ebind (d,s,K) means that the pair probabilities entering the expression of the binding energies ( 
as in Eq. (10)) are replaced by the partial pair correlation functions as given by the HSY 
reference system. 
The weakness of this approach is the assumption of equal diameter for all hard spheres which 
means that this reference system is not able to treat the influence of size effects on short-range 
order. To check the results of this variational procedure it is then important to perform 
molecular dynamics simulations. We have performed microcanonical molecular dynamics 
(MD) simulations based on integrating the equations of motion in a velocity form of the Verlet 
algorithm with a time increment of 10" s. A 1332-particle cluster with periodic boundary 
conditions and the lattice parameter of the MD cell is expanded to the required liquid density. 
The liquid is 'heated' by raising the initial temperature and subsequently scaling it down to the 
required value. Typical simulations run up to 3-4 10 steps. Pair correlation functions arc 
based on averages over 40 independent configurations taken at intervals of 100 time steps. For 
a production of the glassy phase, the liquid alloy was compressed isothermally to the density 
of the glass and reequilibrated. Subsequently, the liquid is quenched to room temperature ( 

14       -1 
quenching rate 10 Ks ) at constant volume. After quenching, the system is equilibrated for 
2000 time steps, and finally 4000 time steps and 40 independent configurations are used for 
calculating pair correlation functions. 
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Short-range order in TM-TM alloys: 

TM-TM glasses can be made over a wide range of compositions and for systems with a 
strong ( ex Ni-Y) to weak ( Fe-Y) chemical short-range order. Diffraction studies indicate a 
strongly varying degree of chemical as well as topological order [18]. Ni-based metallic 
glasses are particularly interesting because only for the Ni-alloys accurate partial correlation 
functions and structure factors are available from isotope-substitution experiments. 
We first present some results for amorphous Ni^Tißo alloy. This system is characterized by 
large differences in the number of d-electrons and in the atomic d-electron eigenvalues. The 
electronic density of states is close to the split-band limit as seen in Fig. la and strongly non 
additive pair potentials ( Fig. lb) are expected. 

Figure 1: (a) DOS for the Ni40Ti6o alloy: ( -—) total; ( ) Ni-DOS; 
( ) Ti-DOS. (b) Tight-binding-bond potentials (eV): ( ) Ni-Ni interaction; 
( ) Ni-Ti interaction; ( ) Ti-Ti interaction. 
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Fig. 2 displays the partial concentration structure factor Scc(q)- Ni^Tiöo alloy shows a strong 
CSRO as indicated by the significant oscillations of Scc(q) up to 10 A" . Due to the weak size 
effects, the thermodynamic variational method and the molecular dynamics simulations give 
similar results. 
In Fig. 3 we present the calculated ordering energies and ordering entropies for the Ni-Ti 
alloys as a function of the composition. We can see that these evolutions are very peculiar, the 
two quantities display a minimum around x>ji=0.8. 
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Figure 2 : Comparison between the Scc(q) curves calculated by :(a) molecular dynamics 
simulation; (b) variational procedure. 

Figure 3: Ordering energies and ordering entropies of amorphous 
NixTi|.x alloys. 
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As already mentioned, the calculated DOS of the NiTi alloys is characterized by a two-peaked 
structure and in each peak the DOS is largely dominated by the contribution of one species 
since the mixing is weak between the two bands. On the contrary, between the two peaks, the 
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since the mixing is weak between the two bands. On the contrary, between the two peaks, the 
heteroatomic coupling is important. The effect of CSRO is to diminish the number of 
homoatomic pairs and to increase the number of heteroatomic pairs. The consequences on the 
shape of the alloy DOS is that the CSRO diminishes the bandwidths of the two subbands but 
increases their coupling, which is important between the two peaks. Thus, if the band filling is 
such that the Fermi level is in one of the two peaks of the DOS, the ordered state is 
energetically unfavorable since the bandwidths are reduced. In contrast, if the Fermi level 
resides between the two peaks, the bond energy is sensitive to the increase in the coupling 
between the two subbands and CSRO is energetically more favorable. This simple argument 
allows us to understand why Eor(j presents a minimum at the Ni-rich end, the electronic 
configuration being the most favorable one for the occurrence of CSRO. 

In a second step we present results for a series of Y35TM65 alloys with TM=Mn, Fe, Co, 
Ni, Cu. With a decreasing difference in the group number, the electronic DOS of the alloys 
gradually moves from a split-band regime in YNi alloy to a nearly common-band DOS in YMn 
alloy. 

Figure 4: Tight-binding-bond potentials (eV); ( ) TM-TM interaction; 
( )Y-TM interaction; ( ) Y-Y interaction (a) Y35Ni65; (b) Y35Fe65. 

1   - 

0   " 

'   ' 1 
1 

• 

-r—l—|—1— '—r—i—j—.  

(a) ; 

; 
: 
: 
i 
• 

l '■ /? 
1 f: 

• 

A 
V '/ 

.    ...    1    . 

-e- 

- 

|,;    ,     |     ,     1     ,      1     |     , 

1!                   (b) • 
1 ': 
1 : 
1 i 
1 ! 
1; 
1 : 
1 ': 
1 ': 
l ': 
l • 

\F ■ 

.  1  . 

5„ 
r(A) 

10 
■(A) 

10 

As for the NiTi alloy, the interaction for YNi pairs is larger than the interactions for NiNi and 
YY pairs while for the YMn alloy, all three pair interactions are of comparable of magnitude 
(see Fig. 4) .The consequences on the CSRO can be seen from the calculated Cowley short- 
range-order parameter: its value is continuously decreasing from 0.005 to -0.14 when the 
number of d electrons of TM increases. 

The analysis of these results demonstrates a clear trend from strong to moderate 
chemical order with decreasing difference in the group number and with decreasing Ni- 
content within a given system. Using molecular dynamics simulations allows also to analyze 
the topological short-range order in liquid or glassy TM-TM alloys. Even if this discussion is 
beyond the scope of this paper it is important to emphasize that the bond-order approach 
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predicts a gradual change from a trigonal-prismatic to a polyhedral topological short-range 
order within the series Y-Cu, Y-Ni, Y-Co, Y-Fe, Y-Mn as investigated from the total and 
partial bond-angle distribution functions [19]. This change may be traced back to the variation 
of the interatomic forces and of the electronic structure. A pronounced non-additivity of the 
pair interactions and a strong short-range interaction between unlike atoms lead to the 
formation of trigonal-prismatic clusters. As the non-additivity is reduced, icosahedral clusters 
are preferred. 

Short range order in TM-A1 alloys: 

Alloys formed between transition metals and elements with only s and p electrons in 
their valence shells display high negative formation energies. Such a behavior can be 
understood from a strong mixing between the d states of the transition metal and the sp states 
of the polyvalent metal: the resulting formation of bonding and antibonding hybridization 
states is the dominant factor with the occurrence of a pseudogap at the top of the d band [11]. 
The occurrence of CSRO is then related to the occurrence of this pseudogap and the location 
of the Fermi level in it. It is then interesting to know if such a behavior persists in the liquid 
TM-A1 alloys. During the last few years, short-range order in TM-A1 liquid alloys has been 
extensively studied through an accurate determination of the partial pair correlation functions 
by neutron diffraction [20, 21]. In this contribution, I have focused attention on the study of 
topological and chemical SRO in Al8oMn2o and Al80Ni2o. The first distances in both Al-Al and 
TM-TM distributions differ significantly in the two alloys, pointing out distinct topological 
ordering. Then it is important to know if the bond-order potentials are able to reproduce such 
differences. 

Figure 5: Tight-binding-bond potentials (eV): ( )TM-TM 
interaction; ( )TM-A1 interaction; ( )A1-A1 interaction, (a) Al80Ni2o; (b) Al8oMn2o. 
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Fig. 5 shows a strong interaction between pairs of unlike atoms at short-bond distances. This is 
the consequence of a strong hybrization between p states of Al and d states of TM. The Mn- 
Mn interaction is found to be very small in comparison with Ni-Ni interaction and explains the 
two different topologies obtained for both alloys. Indeed we find that TM-TM distance is equal 
to 2.55 A in AlgoNi2o while it is equal to 2.86 A in AlgoM^o- This difference cannot be 
attributed to the very small atomic size difference between Ni and Mn atoms and suggests 
different local arrangements. This is also supported by the first Al-Al distances significantly 
shorter than Mn-Mn contacts in AlgoM^o and greater than Ni-Ni contacts in AlgoNi2o- 
Experimental data give 2.82 and 2.75 A for Algo^o and AlsoMn2o respectively, while 
theoretical analysis gives 2.80 and 2.76 A. The distributions of the first heteroatomic pairs are 
centered at the same position (2.54 A for experiments and 2.55 A for calculations), which 
corresponds to short distances in comparison with TM-TM and Al-Al contacts. The fact that 
these interatomic forces are able to reproduce so different topological short-range orders in 
both alloys lead us to believe that the dependence of the pair interactions on the bond order 
determined by the strenght of the pd hybridization is a major improvement to understand the 
structure of the liquid transition metal-aluminum alloys. 

CONCLUSION: 

We have shown that it is now possible to present a coherent microscopic theory of the 
structural and electronic properties of disordered transition metal alloys based on quantum- 
mechanically derived interatomic forces. The pronounced non additivity of the pair 
interactions and a strong short-range interaction between unlike atoms is due to the strong 
covalent forces characteristic for alloys with strong d-d or p-d hybridization. This strong 
hybridization can be related to the occurrence of a pseudogap in the DOS alloy and the 
location of the Fermi level in it. There are certain indications in the measured correlation 
functions that the local topology is somewhat more sharply defined in the real material than in 
our models. To eliminate these remaining small differences it will be necessary to go beyond 
the pair-potential approximation. However, both the quantum-mechanical calculation of 
angular-dependent forces by a moment expansion of the bond order and their use in MD 
simulations constitute a considerable complication. 
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ABSTRACT 

Until recently, tight-binding has been applied to either covalent or metallic solid state sys- 
tems, or charge transfer treated in a simple point charge framework. We present a self- 
consistent tight-binding model which, for the first time, includes electrostatic ion polar- 
isability and crystal field splitting. The tight-binding eigenvectors are used to construct 
multipole moments of the ionic charges which are used to obtain angular momentum com- 
ponents of the electrostatic potential in structure constant expansions. Our first test of the 
model is to study the phase stability in zirconia; in particular the instability of the fluorite 
phase to a spontaneous symmetry breaking, and its interpretation in terms of band effects 
and ion polarisability. This new formalism opens up the way to apply the tight-binding ap- 
proximation to problems in which polarisation of atomic charges is important, for example 
oxides and other ceramic materials and surfaces of metals. 

INTRODUCTION 

Although the tight-binding approximation was originally conceived to deal with homopolar 
covalently bonded solids, an extension to include charge transfer in alloys and heteropolar 
semiconductors was proposed by Falicov and by Harrison some 15-20 years ago [1,2]. This 
self-consistent solution was extended and used very effectively by Majewski and Vogl to 
describe the energetics of ionically sp-bonded compounds [3]. A self-consistent scheme for 
metals has also been used [4], which in its simplest form assumes local charge neutrality [5] 
and leads to the tight-binding bond model [6]. Recently some questions have arisen that have 
motivated us to extend the self-consistent tight-binding approximation with charge transfer 
to include the effects of polarisation of the atomic charges. Such observations include, 
1. The electronic structure of a low coverage of Nb on the (0001) a-Al2Ü3 surface has 

been observed to have the character of a single non degenerate d-orbital. We found it 
impossible to describe this with conventional orthogonal or non orthogonal tight-binding, 
in which the on site hamiltonian matrix elements are constrained to be the same for each 
angular momentum (ie, crystal field splitting is ignored). 

2. There is a question whether surface dipole barriers and hence work functions could be 
calculated in the tight-binding approximation. 

3. It is thought that the spontaneous distortion of cubic zirconia into the tetragonal struc- 
ture is driven by the quadrupole polarisability of the oxygen atoms [7]. 

4. One would like to include crystal field terms as a natural consequence of the non spheri- 
cal Madelung potential, rather than by direct parameterisation as has been done previ- 
ously [8]. 
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THEORY 

Traditional self-consistent tight-binding 

In order to make our new approach clear we begin with a brief reminder of Harrison's 
scheme which will also serve to establish our notation. In non self-consistent tight-binding, 
one supposes the existence of a hamiltonian ftp whose matrix elements between localised (not 
necessarily orthogonal) basis functions are (R'L' |ft0|RL). Although the basis functions are 
never specified, without loss of generality one may write them as a radial part times an 
angular part: 

|R£> = /iw(|r-R|)^(r-R). (!) 

Here we use R, R' to denote the position of atomic sites with respect to some origin. To 
simplify the equations, we will frequently suppress the site index, in which case one can take 
it that we are referring to an atom at the origin and r is a small vector in its neighbourhood. 
L is a composite angular momentum index L = {Ira} and Y^ is a real spherical harmonic [9]. 

In the traditional self-consistent approach, having solved Schrödinger's equation, the eigen- 
vectors are used to determine to what extent charge has been redistributed among the atoms. 
There will be a charge 

I 

on each site, where Q0 is the monopole moment of the charge, Ne is the Mulliken population 
of angular momentum I (s, p and d) and e is the charge on the electron. The hamiltonian is 
adjusted self-consistently to become ft = ftp + ft' where ft' is diagonal in RL: 

nRLKL = eVR0 + URI
N

R(- (2) 

Here, VJ>Q is the 1 = 0 component of the electrostatic potential at site R due to the charges 
at all other sites, and Uj^, sometimes called the "Hubbard U" is a positive energy which 
resists the accumulation of charge. The physical meaning of U in this context is discussed 
in detail by Harrison [2]. The benefit of this model which goes beyond non self-consistent 
tight-binding is that one can treat mixed ionic-covalent solids with real success [3]. 

Self-consistent tight-binding with multipoles 

What is missing, and what is added in our new formulation here, is any adjustment of the 
off-diagonal on-site matrix elements of ft'. These matrix elements couple orbitals of different 
angular momenta, I and m, on the same site. One effect this can have is to break the 
degeneracy of the s, p and d orbital energies, and thereby induce effects such as crystal field 
splitting or phenomena such as that mentioned as item 1 in the introduction. Furthermore, 
these new matrix elements lead to polarisability of the ionic valence electrons. One could 
then study, for example, polarisable anion theories of oxide structure and lattice dynamics, 
or phenomena such as lattice instability and ferroelectricity. What couple these orbitals on 
the same site are the higher angular momentum components of the electrostatic potential. 
In fact we may regard V0 in (2) as just the coefficient of the first term in an expansion in 
spherical waves of the electrostatic potential at a point r near an atom at the origin: 

V(v) = Y:VLr(YL(r). (3) 
L 
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For I = 1 and t = 2 respectively, VL are proportional to the electric fields and field gradients 
at the nucleus [9]. It is the I = 4 components of VL that are responsible for the splitting of 
the d levels by cubic, octahedral or tetrahedral crystal fields in transition metal oxides [10]. 

In a similar vein we would expect the charge on each atom to have not only / = 0 components 
as in (2), but higher multipole moments, which would be 

QL = eJdrp(r)riYL(r) + q<Y08L0 (4) 

= Ql + Qcho 
if we knew the electronic charge density ep(r) associated with each atom. We have included 
here Qc = qcY0 which is the monopole moment of the core charge qc, and in the second line 
have separated the total charge into a part from the valence electrons and a part from the 
ion cores. If we assume the charges are sufficiently localised about their atomic sites, we 
can find a relation for the components of the electrostatic potential VRL on one site, due 
the multipole moments of the charges on all other sites. Using Poisson's equation and an 
expansion in the structure constants of LMTO-ASA theory, we find 

^R£=4T   £   £S££.(R'-R)QR.£- 

The structure constants are [11,12] 

(with the sum over L" restricted to values for which I" = £ + £') and 

CL..L.L = JdnYL,.YL.YL (5) 

are Gaunt coefficients for real spherical harmonics. The sum over R' is done by the Ewald 
method. 

From eigenvectors to total energy, and some new parameters 

Although the charge density is not calculated in an empirical tight-binding model, we can 
nevertheless obtain the multipole moments (4) in the following way. Equation (4) demon- 
strates that Qe

L is the expectation value of a certain function of the position operator f, 
namely [9] 

frL = er*YL(i). (6) 

Now, a tight binding calculation normally provides eigenvectors for each band index n and 
wavevector k, cgk-, from which one obtains the charges on each site. We can use these to 

obtain also the multipole moments as the expectation value of the operator Qe
T: 

Ql=   £ E~
C
LM^(

L
'\QI\L")- (7a) 

T i r it occ. L h     nk 

We can now use (1), (5) and (6) to express the matrix elements of Q% as 

(L,\Ql\L")=eAmCl,L„L. (7b) 
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Included in (7) are important quantities A^..^ which will be introduced as new parameters 
of the empirical tight binding model: 

Am = Jr2drfe,(r)fe„( r)r . 

In the case that I' = t" these are parameters (r') already familiar from crystal field the- 

ory [10]. 

There is only a limited number of new " A-parameters" due to selection rules and symmetries 
of the CTITHT and the A^..£. Also A^.g = A^QS^I and is determined by the normalisation 
of (1). The new parameters that will have to be determined (for a tight binding basis up to 

1-2) are 
A011 = AJOJ = Aspp 

A112 = Appd 

A022 = A202 = A3(M 

A12i = A2n = Apdp 

A222 = &ddd 
A123 = A213 = &pdf 

A224 = k-ddg- 

The physical meaning of these parameters in the context of equation (7) is as follows. Occu- 
pied orbitals of angular momentum (s, p or d-type) (' and I" combine to produce a multipole 
moment on the same site of angular momentum I. The strength of the multipole is propor- 
tional to the size of Appn and the Gaunt coefficients dictate the selection rules. 

The next step is to construct matrix elements of W'. This is done in much the same way as 
in making matrix elements of Q% since V(r) is also expanded in r*. (Compare equations (3) 
and (6).) We therefore obtain 

H
'RL'RL" = e £ VRL 

Ae'te CVVL + UR? 
NRt h-v (8) 

L 

in analogy with equation (2), in which, perhaps not surprisingly, the A^..^ appear for a 
second time. In this context their physical interpretation is that multipoles on all other 
sites have induced a potential on a particular site. The ^-component of that potential 
then causes a coupling in %' between £' and I" orbitals on that site. The quantity A^..^ 
describes the strength of that coupling. This is essentially the same explanation as in the 
previous paragraph but viewed from different standpoint. Drawing again on the example 
of crystal field splitting in transition metal oxides, the £ = 4 component of the potential on 
the transition metal nucleus, due to the surrounding oxygen neighbours, causes a coupling 
between the d-orbitals which breaks their degeneracy. The strength of this coupling (called 
the cubic field splitting, A [10]) is proportional to the integral Addg = (r4). 

We can complete our model, finally, by working out the total energy. In conventional non self- 
consistent tight-binding, the total energy, £T, contains two terms: the sum of one electron 
eigenvalues, jBban(j and a repulsive pair-wise potential energy Ep;^t [13]. In our case since we 

are including the total (core plus valence) charge, and since the electron-electron interaction 
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FIG 1: Atomic positions in the fluorite and 
tetragonal modifications of Zr(?2 ■ Large cir- 
cles are Zr atoms and small circles oxygen. 
Arrows represent the displacements of the 
columns of oxygen atoms that cause the spon- 
taneous transition from cubic to tetragonal 
Zr02- A broken line outlines a unit cell of 
tetragonal ZrO^- In the present model calcu- 
lations we retain the cubic lattice constant so 
that the axial ratio of the tetragonal phase is 
constrained at V2. 

FIG 2: Atomic structure of the rutile phase. 
Here the small atoms are Zr. Note how 
whereas in fluorite (as seen on the right of 
fig 1) the transition metal atom is in the cen- 
tre of a cube of anions, in rutile the transi- 
tion metal atom is in an octahedral crystal 
field, which reverses the order of the t<i and 
e sub band energy levels (see fig 4)- 

will be double counted in -Bi,an(j, we will need to add two further terms, the ion-ion repulsive 
electrostatic energy, E^, and the double counting correction -E^Q. We find 

^DC 
ET ~ -^band+^paii + E]i-E] 

= <H)+Epah + hZ Q%VR0 - le£ QRLVRL -1 £ ff. Ri 
R 

Nie- 
RL Hi 

Using {• • ■) we have written the usual band energy as the expectation value with respect to 
the self consistent one electron eigenvectors of the hamiltonian "H. We may obtain an exact 
derivative of E^ in order to calculate the interatomic forces. This is a generalisation of the 
expression due to Sutton et ol. [6] since we include a finite U. Omitting small dipole-dipole 
and dipole-higher-multipole terms (which can be written down explicitly) we find, for the 
z-component of the force on an atom at the origin, 

Fz = -2 
(%)■ 

dE, pair 
■4,-GoVio. 

Note the first two terms are exactly the force used in non self consistent tight-binding [6,13], 
except the eigenvectors are self consistent. The final term accounts for the double counting 
(the "[/" terms cancel) and V10 as in (3) is the 1 = 1 component of the potential (m = 0 for 
the ^-component of the force) and QQ is the total charge as in (4). 
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APPLICATION TO PHASE STABILITY IN ZIRCONIA 

In order to demonstrate the model in an example, we address the question mentioned in 
item 3 in the introduction, namely the phase stability in zirconia, Zr02. The zero tempera- 
ture, ground state structure is a complex monoclinic phase. Below the melting point Zr02 
has the fluorite structure, illustrated in fig 1; but at intermediate temperatures this struc- 
ture transforms to a tetragonal phase in a spontaneous symmetry breaking also illustrated 
in fig 1. We will concern ourselves here with model calculations aimed at predicting this 
symmetry breaking. Therefore, while the phase transition is accompanied by a change in the 
tetragonal axial ratio, we will consider only the distortion illustrated in fig 1 and keep the 
lattice constant fixed at the cubic value which we choose to be 5.18A. We are able to compare 
our results with ab initio density-functional calculations using a new, high precision, band- 
structure program in a basis of smooth Hankel functions augmented in atomic spheres, with 
plane wave expansions of the potential and charge density in interstitial regions [14]. For 
Zr02 we use nine 2s2pZd oxygen basis functions at kinetic energy K

2
 = -0.2Ry and a further 

s function at K
2
 = -0.5, augmented in spheres of radius 1.8 a.u. Zr basis functions are 5.5 

at K2 = -0.01,-0.5,-2, 4p at K
2
 = -0.01,-0.4,-2 and Ad at K

2
 = -0.1,-0.4. The Zr 5p are 

too high in energy to contribute significantly to the energy bands and the Zr 4s dispersion 
is treated in a frozen, overlapping core approximation. The radius of the Zr atomic spheres 

is 2.1 a.u. 

l—i—i—'—i- 

180    200    220    240    260    280    300 
Volume (a.u. / Zr02) 

FIG 3: Energy volume curves for fluorite and rutile Zr02 calcu- 
lated in the local density approximation (open circles) and in the 
new tight-binding model (filled circles). All electronic structure pa- 
rameters were adjusted to reproduce the energy bands (fig J{) and so 
only the two parameters in the Born-Mayer repulsive potential were 
available to fit to the minima and curvature of the ab initio data. 

We have attempted to make our tight-binding model for Zr02 as simple as possible. There- 
fore we employ a minimal basis of only id orbitals on Zr and 2p and 3s on oxygen. In this 
way we are describing only the 2p and not the 2s valence bands of oxygen and using the 
0-3s states to describe the higher lying bands and also to mix with the 2p to provide the 
polarisability of the oxygen ion. Relative to the energy of the 0-2p level, the 0-3.s atomic 
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level is at 0.35Ry, and the Zr-4<2 at O.lRy. We use a value of U = lRy on all orbitals. We 
allow only nearest neighbour matrix elements between oxygen atoms, namely sscr, spa, ppa, 
ppir and have used length scaling adjusted to reproduce the volume dependence of the 0-2p 
band width in an ab initio calculation. The only other inter-site matrix elements are those 
connecting Zr and oxygen, namely sda, pdcr and pd/K. These scale in the usual canonical 
way [11]. Only in the case of the rutile structure, shown in fig 2 do we also allow Zi-d-Zi-d 
matrix elements (between the two-fold coordinated Zr ions along the c-axis) and these are 
also chosen canonically. The magnitudes of the hopping matrix elements are chosen to ap- 
proximately reproduce the ab initio band widths. The pair potential we employ is of the 
Born-Mayer form: <f>(r) = Ae~^r, between oxygen and Zr nearest neighbours only, and we 
have chosen A and A to reproduce approximately the ab initio energy volume curves of ZrC>2 
in the fiuorite and rutile structures. These are shown in fig 3. Comparison between the 
tight-binding and ab initio energy bands are shown in fig 4. We can discuss our choices of 
the A£n£i£ parameters in terms of these. 

First we mention those pertaining to the Zr sites. The most important is A^„ and this is 

the integral denoted (r4) in crystal field theory of transition metal ions [10]. In an environ- 
ment with cubic point symmetry, the first non vanishing component of the potential in the 
expansion (3) is for I = 4 and it is this which breaks the degeneracy of the five d-orbitals and 
splits them into the £2 

and e manifolds. In an octahedral or tetrahedral environment the t2 

states are split below the e and vice versa in a cubic field. Our approach incorporates this 
feature very naturally for a single value of A^_ as seen in fig 4, where in fiuorite the t2 bands 
are higher and in rutile they are lower than the e bands. A value of Add = 65 a.u. achieves 
proper agreement between tight-binding and ab initio bands. The only other A-parameter 
needed is A^^ and we find the bands quite insensitive to its choice. We set Arf(^ « J^ddq- 

On the oxygen sites, in the minimal basis there are also two A-parameters. These are Aspp 

and A „;. In fiuorite, there are no dipole or quadrupole moments on the oxygen ions and 
these integrals do not contribute to the bandstructure. The 0-2p bandwidth is controlled by 
the magnitude of the hopping integrals. However rutile is necessarily distorted in the sense 
that the space group symmetry is tetragonal, while the oxygen octahedra are imperfect. 
Therefore there are both dipole and quadrupole moments on the oxygen sites. Whereas the 
bands are found to be insensitive to the value of Aspp, we find that it is A rf that controls 
the width of the 0-2p band due to the splitting of the O-p levels by the field gradients. This 
exposes an essential difference between the fiuorite and rutile modifications of ZrÜ2 which 
emphasises the value of our model used in combination with ab initio band calculations. We 
will defer attaching a value to ASpp until the next paragraph. 

The next and final question we will address is the role of the electronic structure in the spon- 
taneous distortion of the fiuorite structure to the tetragonal phase—modelled in the present 
work as the change in total energy along the one dimensional path as the oxygen atomic 
columns move alternately up and down as shown in fig 1, while keeping the lattice constants 
fixed. The total energy calculated ab initio is shown in fig 5, and this calculation predicts the 
same minimum as an earlier density-functional calculation using full potential LAPW [15]. 
Since the dipole moment arising from the symmetry breaking contributes to the amount of 
force on the oxygen ions, we now adjust the final A-parameter, ASpp on the oxygen sites to 
obtain as close agreement as we can with the ab initio energy. We see that the model correctly 
predicts the symmetry breaking phase transition from fiuorite to the tetragonal modification. 
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Fluoritc (LDA) Fluoritc (TB) 

Rutilc (LDA) Rutilc (TB) 

r   Z     R     A   M r    x r   z     R     AM r    z 

FIG 4: Energy bands in fluorite and rutilc Zr02 using local density approximation (left) and 
the new tight-binding model (right). The energy zeros are arbitrary. In all four figures, the 
lowest lying set of bands are the occupied oxygen 2p valence bands. Unoccupied Zr id and 
oxygen 3s bands are separated from these by a band gap. Features to note are (i) the good 
reproduction of the fluorite LDA bands in the minimal basis tight-binding approximation. 
The free-electron-like parabola at V above and hybridised with the t2 manifold is the oxygen 
3s band; (ii) again, in fluorite, the cubic symmetry demands that the only relevant A- 
parameters are A^^ and A^ on Zr. The former has little effect on the bands but it is 

AJJ that produces the large crystal field splitting of the 4d bands; (iii) in rutile the sign 
of the cubic splitting is reversed, and this effect is reproduced naturally in our structure 
constant expansion without explicit fitting; (iv) whereas the width of the 2p bands in fluorite 
is determined by the size of the pp and pd hopping integrals, in rutilc the width is largely 
determined by the size of App^ which we adjust to reproduce the LDA bandwidth. 
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—i ' 1 1 1 1 r 
-LDA 

--'rB:ASI,p=0,Appd=
0 

-TB:Aspp=0.75,App,p3 

FIG 5: Energy as a function of the displacement 5 of oxygen atoms in units of the tetragonal 
c lattice parameter (in our case equal to the fluorite lattice constant)—see fig 1. Open circles 
are the ab initio LDA data. We show two sets of data from the new tight-binding model. 
The thin full line are data employing ^-parameters (in a.u.) as shown. App(j has already 
been fixed to obtain the correct width of the valence band in rutile. Aspp which produces 
the dipole moment on the oxygen atom has been adjusted to get agreement with the LDA 
data here. The broken line shows the energy in the point charge self-consistent tight-binding 
approximation, where the ^.-parameters are set to zero. The distortion persists in this limit 
although the energy gain is less. This demonstrates that the distortion is not a consequence 
of the polarisablility of the oxygen ions alone, but that this does play a major role. 

DISCUSSION AND CONCLUSIONS 

As far as we know, this is the first time that tight-binding theory has been extended to in- 
clude polarisability and crystal field splitting by direct calculation of the charge and potential 
expanded in angular momentum components. With only a small number of physically moti- 
vated parameters, one may now include these effects in order to address topics such as those 
mentioned in the introduction. We expect there to be many more potential applications. 

In the example we have chosen, we have shown firstly how a very small set of basis functions, 
properly chosen, is adequate to obtain the bandstructure of fluorite Zr02 in agreement with 
ab initio bands. By including the parameterised crystal field A-integrals, the Zr-4<Z bands 
split naturally into t^ and e sub bands, and this splitting is reversed in rutile simply as a 
consequence of using a structure constant expansion for the potential, without the need of 
explicit parameterisation. Futhermore in rutile we see the importance of crystal field effects 
upon the width of the 0-2p band, a fact that would be hard to deduce without working 
within a model such as ours to interpret ab initio bands. By choosing just two parameters in 
a simple pair potential, our model is able to reproduce the fact that the rutile structure is less 
stable than fluorite; consistent with rutile never being observed as a pseudomorph of ZrÜ2 
despite this being the stable phase of Ti02- This competition between rutile and fluorite is 
problematic in many atomistic descriptions in terms of purely classical electrostatic terms, 
and this is a consequence of the ionic radius of Zr4+ placing Zr02 on the border between 
prefering six or eight-fold coordination by oxygen if one uses the usual radius ratio rules [7]. 

273 



Finally the model correctly predicts the spontaneous symmetry breaking in the fluorite 
structure. 

We can also use the results of our calculations to address the question of the origin of the 
symmetry breaking. In a non quantum mechanical description [7], the symmetry breaking 
introduces extra degrees of freedom, particularly the quadrupole polarisation of the oxygen 
ion and this allows the crystal to lower its energy. We can test this hypotheses by calculating 
the energy path after setting the A-parameters to zero (ie, returning to the point charge self- 
consistent tight-binding approximation). As seen in fig 5, the symmetry breaking persists in 
this limit indicating bandstructure effects at work in addition to classical electrostatic forces. 
However, the effect is weakened indicating the role of the ionic polarisability in the phase 
transition. 

We expect this preliminary investigation to lead to further applications of our new formal- 
ism. Including polarisation of atomic charges in the tight-binding approximation will allow 
calculations of lattice dynamics and defect structure in oxides and other ceramic materials. 
We anticipate also applications to surface structure and defects as well as work functions in 
metals. A combined approach to metals and ceramics will assist in our understanding of the 
metal ceramic interface and the nature of bonding in such heterogeneous solid state systems. 
New applications in molecular physics may also be realised. 
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ABSTRACT 

Modelling in a realistic way both equilibrium and dynamical processes on bimetallic 
surfaces requires the availability of interatomic potentials sufficiently simple (i.e. analytical) 
although derived from the electronic structure. This is possible in the framework of Tight- 
Binding formalism. We present here a review of the applications of such potentials, together 
with some reflexions about their limitations. 

INTRODUCTION 

The aim of this lecture is to give tools allowing to model surface processes in bimetallic 
systems from their electronic structure. They include both atomic (reconstructions, 
relaxations, superstructures) and chemical (segregation, incorporation, interdiffusion) 
rearrangements, occuring not only at but also out of equilibrium. This requires to couple 
analytical models (Mean Field) and numerical simulations (Molecular Dynamics, Monte 
Carlo) with interatomic potentials both simple (i.e. analytical) and realistic (which means 
grounded on electronic structure). This is possible within Tight-Binding (TB) formalism, 
provided one can develop simultaneously ab initio approaches giving "exact" references to 
validate (or modify) the underlying assumptions of semi-empirical models, which is the most 
crucial as the complexity of the system increases (bimetallic surfaces). 

In the following, we will first illustrate the ability of many-body TB-potentials, 
derived in the Second Moment Approximation (TBSMA), to model the atomic structure of 
pure metal sytems with low dimentionality (surface relaxation and reconstruction, cluster 
shapes). Then, we will show how a second type of potentials, Ising-like (TBIM: Tight- 
Binding Ising Model), can be derived to describe the chemical structure of alloy surfaces 
(competition between surface segregation and bulk tendency to ordering or phase separation) 
at thermodynamical equilibrium. We will then extend these two approaches to study 
dynamical processes involved during the growth (homo and hetero epitaxy), such as diffusion 
(near steps and on terraces), incorporation, interdiffusion and surface alloy formation. 
Finally, we will show the limits of these approaches, both from the point of view of their 
consistency and from the comparison with ab initio calculations. 

TB-POTENTIALS FOR SURFACE ATOMIC STRUCTURE 

Tight-binding Second Moment Approximation (TBSMA) 

Let us start from the usual tight-binding Hamiltonian which, in the basis of atomic 
orbitals X at site n \n,X), can be written [1]: 

H=l|nA>(eJi+ax)(n,Ä.|+    2|n,^(m,ji| (1) 
n,X n,m,X.,|x 
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in which eat , a and ßn|^ are respectively the atomic level, crystal field and hopping 
integrals, the latter being rapidly damped (after 1st or 2nd neighbours). An essential advantage 
of this formalism is to define in a simple way the local density of states at a given site no. 

n    (E)=   lim 
n->o+ 

■Y^(no^|G(E + iTl)|n0A) (2) 

without resorting to any periodicity condition (no can be a defect site), from the projection of 
the Green function: G(z)=(z-H)_1. G(z) writes as a continued fraction [2], the coefficients of 
which are derived either from the knowledge of the p first moments |ip of nn  (E): 

up(n0) = J EPnno(E)dE = l(n0A|HP|n0.Jl) (3) 
—oo A 

obtained by counting paths on the latticc[2], or directly by constructing a new basis 
tridiagonalising H within the so-called recursion method [3]. The continued fraction is then 
terminated by the asymptotic values of the coefficients, which are related to band (and/or 
gap) edges and fitted to the band structure [4]. Obviously, np(E) is the most precise as the 
number of exact coefficients is large. It is worth noticing that for elements at the end of the 
transition series, it is necessary to take into account the s and p valence electrons and their 
hybridization with the d ones (X=\,9) to get a density of states in good agreement with that 
derived from ab initio calculations [5]. Then, the cohesive energy of the system writes [6]: 

ECoh= IJEF(E-^t)n£(E)dE + i  I JJdrdr'Q"(r)Q';;(r,) (4) 
n.X 2n*m lr"r I 

where nn(E) and Nn(= J F nn(E)dE] are respectively the local density and the charge at site 

n. Assuming charge neutrality implies that Nn = Zn (ionic charge). The first term in the r.h.s. 
member is the band energy (Eband) and the second one the pair interaction (Ercp) between 
neutral atoms with charge density: Qn(r)=Zn 5(r-n)-Nn(r-n). Unfortunately, Erep is not 
sufficient to account for the repulsive part of the energy. Actually, the tight-binding 
approximation fails to reproduce repulsions at short distances since it does not account for 
the non orthogonality of wave functions on different sites and for the compression of sp 
electrons which play an important role before that the Coulomb repulsion (1/R) becomes 
really efficient. To go beyond this dificulty, the idea is to build a semi-phcnomcnological 
tight-binding model in which the band part, coming from the electronic structure, has a many- 
body character whereas the repulsive one is a pairwise potential fitted to some physical 
properties. The equation (4) then reduces to: 

^coh = ^band "*" ^rcp (■>) 
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Since the integral does not depend on details of n(E), the band term can be calculated from a 
schematic rectangular density of states under the single assumption that it has the same 
second moment (TBSMA) as the exact one, which leads to [7]: 

-2q(£-l) -P(|--l) 
ECoh=-ßlXe       R°      +AXe     R« (6) 

VR R 

where ß is an "effective" hopping integral, corresponding to the 1st neighbour distance Ro. In 
practice, we will consider the four parameters on the same footing, and determine them, for a 
given metal, to fit experimental quantities such as the cohesive energy, lattice parameter and 
elastic constants or the so-called universal equation [8]. Note that this TBSMA-potential is 
very similar to those derived elsewhere within the Embedded Atom Model (EAM [9]) or 
within the Glue Model [10]. Its main advantage compared to the latter is its physical 
transparency which clearly shows its limitations... and then its possible improvements 
(increasing the number of exact moments). However some features are wrong. Thus, the shear 
elastic constants depend significantly on the number of moments used. In the TBSMA, it is 
found too weak for bcc metals with Ne=4 (V, Nb et Ta) and too large for fee ones around 
Ne=8 [6]. 

Application to surfaces: 

Due to the broken bonds, the surface atoms can undergo displacements with respect 
to their bulk positions. In all cases, there is at least a vertical relaxation, which is 
experimentally known to be inwards (contraction of the first interlayer distance) for 
transition metals. This is a first success of TBSMA-potential to reproduce this contraction, 
which is found of a few percents and proportional to the number of broken bonds, contrary 
to simple pair potential models which predict an outwards relaxation [11]. This comes from 
the stronger decrease with coordination Z of the repulsive term compared to the attractive 
one (~VZ). One has then to use such many body potentials if one aims to study surface 
atomic rearrangements. 

In some cases, not only vertical but also lateral atomic rearrangements can occur, 
changing the two-dimensional periodicity and leading to so-called surface reconstructions. 
Unfortunately, it is less easy to analyze in a simple way the possible lateral atomic 
rearrangements since they involve both increasing and decreasing distances. Nevertheless, one 
can get some trends which can be either along the transition series (zig-zag reconstruction of 
the (100) face of bcc crystals occuring for column Via but not for Va) or along a column 
(missing row reconstruction of fee (110) ones which is observed for the 5d series only). Both 
trends are well interpreted in the framework of tight-binding calculations. However, although 
the missing row reconstruction of the (110) surface is well reproduced by Quenched 
Molecular Dynamics within TBSMA potentials [12], due to the element dependence of the q 
parameter which drives the distance dependence of the hopping integrals (qcu <qAg <qAu), 
understanding the zig-zag reconstruction requires to go beyond second moment arguments. 
Indeed, it is due to the broadening of the quasi-atomic surface peak of the local bcc (100) 
density of states under the lattice distortion, which leads to an energy gain for d band filling 
around 5 (middle of the series) [13]. 
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Application to clusters 

Due to the tremendous interest of clusters of late transition and noble metal elements 
for the reactivity rates in heterogeneous catalysis, a lot of experimental and theoretical works 
have been performed on these systems, in particular concerning their atomic structure. All the 
theoretical studies using geometrical optimisation procedures to relax the structure find that 
the icosahedron is more stable than the structures based on the fee lattice (cuboctahedron and 
Wulff polyhedron) in a more or less large size range. From the experimental point of view, the 
critical size varies between some tens (Au) and some thousands (Ag). These results arc 
consistent with Quenched Molecular Dynamics calculations performed within the TBSMA 
model since Ag clusters are found to have their energy minimum with the icosahcdral shape 
until 309 atoms size while Au clusters arc stabilized with the fee Wulff polyhedron 
morphology for all sizes apart from the 13 atoms size for which the icosahcdral structure is 
preferred relatively to the cuboctahedral one [14]. 

Moreover, TBSMA calculations show that this critical size strongly depends on the 
local relaxation, especially concerning the icosahedron. Indeed the relaxation profile differs 
remarkably between fec-type and icosahcdral clusters which are found to adopt a very 
inhomogeneous atomic relaxation. The first ones are characterized by a contraction of the 
outer intershell distance only, whereas this contraction is present both for the outer and the 
inner shells in icosahedron. More precisely, a considerable core contraction is found in the 
icosahedron case, which increases as a function of the cluster size, whereas it is quite negligible 
in the cuboctahedron case [14]. 

A spectacular consequence of this contraction of the inner shells for the icosahcdral 
structure is the existence of a strong comprcssivc pressure in the core which can be relaxed by 
pulling out one or more atoni(s), i.e. by introducing constitutive vacancies. Indeed, for noble 
metals, one finds that the formation energy of a single vacancy at the center of an icosahcdral 
structure decreases as the size increases, up to becoming negative(for N > 309 atoms in Cu), 
which means that the cluster with a central vacancy is more stable than the full one. At the 
opposite, such an effect is not found for fec-type clusters (cuboctahedron as Wulff 
polyhedron) for which it tends monotonously to its value in the bulk. Since the stability of 
the vacancy increases with the cluster size, one can wonder to what extent a cavity of many 
atoms could be stabilized for larger sizes. In fact, a fourfold tctrahcdral shaped cavity becomes 
even more stable than the single one when the size increases, but beyond the morphological 
transition to fec-type structures. Finally, let us mention that one finds a tendency along the 
noble metal column: the vacancy formation energy becomes negative more and more early 
(that means towards the small sizes) from Cu to Au for one vacancy as for a larger cavity. 
Taking into account the stability domain of the icosahedron relatively to fee structure (namely 
the Wulff polyhedron), one concludes that there is a stability range of size for Cu and Ag 
icosahedra with a central constitutional vacancy but not for Au ones [14]. 

TB-POTENTIALS FOR BIMETALLIC ALLOY SURFACES 

Tight-Binding Isinp Model (TBIM) 

For a bimetallic system AcBi_c, the tight-binding hamiltonian depends on the chemical 

configuration jp'n |, where p„ = l if site n is occupied by atom i (= A, B) and p|,=0 if not. If 

one neglects any possible "off-diagonal disorder" due to the difference in band width or 
atomic radius between the two constituents (i.e. the ij-depcndcncc of the hopping integrals), 
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with respect to the (most important) "diagonal disorder" coming from the variation of the 
atomic level e' as a function of the element, it writes [6]: 

H = XX|n,X)pj1e?>,X| +    X|n,X)ß^(m,u.| (7) 
i n,X n,m,X,|i 

Introducing a surface is now more complicated since not only atomic but also chemical 
rearrangements can occur. Unfortunately, accounting for "diagonal disorder" requires to go 
beyond second moment (at least four) [6]. It is then necessary to develop an other type of 
approximation, which will only be suited to study the effect of chemical ordering on a rigid 
lattice. As for pure metals the total energy of the alloy, for a given configuration, cannot be 
described as a sum of pair interactions. Nevertheless, the (small) part of the energy which 
depends explicitly on configuration (essential in ordering problems) can be written in an 
Ising-like form by developing the energy in a pertubative way [15] with respect to that of the 
disordered state (E(c)), described within the Coherent Potential Approximation (CPA [16]). 
In presence of a surface, assuming a local charge neutrality condition, one obtains the so- 
called Tight-Binding Ising Model (TBIM) [17]: 

Ecohffp'n^EW + H^lfpi,}) (8) 

HmiX({p'n})=IP'nhn4    IP.nP^'l (9) 2 n,m,i,j 

in which a linear term and a quadratic one appear: 

ImEF 
h'n =— J dEIlogfl-fe1 -an(E))G^(E)| (10) 

It X      L J 

VL =-^jEFdEti1(E)tJn(E)XGn^(E)G^n(E) (11) _ - 'm*   '"    nm1 

It Xu 

in which G^(E) = (nX,|G(E)|mu) are interatomic average Green functions, calculated from 

the electronic structure of the disordered state in the CPA approximation, and a(z) the 
effective potential (replacing e1) determined from the self-consistency CPA condition [16]: 

Xcit'n(E) = 0 with    t'n(E)= E'~giE)-u (12) 

A 

Due to broken bonds, the equilibrium concentration at the surface has no reason to be 
the same as in the bulk, which leads to the phenomenon of surface segregation [18]. For an 

AcBi_c binary alloy, a single configuration parameter pn = pn is required since: pn + pn = 1. 
The concentration profile {cp}, where cp=<pn> (for any site n in the pth plane parallel to the 
surface: p=0), is assumed to be homogeneous and determined as the one which minimises the 
free energy, for instance in the mean-field approximation. Let us define the chemical potential 
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A        R 
as (i = (X   -|i   and denote Np the number of atoms in the p-plane, each one having Zp 

(=Zto1 in the bulk) first neighbours among which Zp(. in the q-planc. One can then write: 

F = (Hmix)-TS-INp(cp-c)n (13) 
P 

TRIM ^ 

(14) W           dF      n                            CP            c                AEP Vc„, = 0      ====>         K-. = exp L_ 
p     3c l-cp     1-c      I kT 

where the segregation energy, which accounts for the exchange of a A bulk atom with a B 
surface one, is defined as: 

AE™IM = Ahp + (1 - 2c)Z,(" V - P "l(7- 2cp+p. )Zp.p+p. Vp,p+p. 
p'=~q-p 

with: (15) 
(VAA     VBR_2VAB\ 

,.         /UA     .Bv     ,.A          LB     s              j                        \    nm          nm            n»i Ahp=(h£-h£)-(h£u|k-h£u|k)       and        Vnm=-^ '- 

Vpq is the value of the "effective" alloy pair interaction Vnm for sites n and m 
belonging to planes p and q respectively. It is worth noticing that Vnrn can be used to 
calculate the mixing or ordering energies of the system under study, but not its cohesive 
energy ! Its sign indicates the tendency to order (V>0) or phase-separate (V<0). V,lm 

decreases rapidly with the distance (n-m) (Vj » V2 , V3 , V4 » V5 , ... for fee structure 
[19]). Moreover it depends on bulk concentration (which could change the tendency to order 

or phase separate in a system) and on the average d band filling Nc = cN^ +(1 -c)N^. In 
fact, alloys with a nearly half-filled band tend to order whereas those with a nearly filled or 
empty bands tend to phase separate [4,6,15,19]. At the surface, these effective pair 
interactions arc enhanced with respect to the bulk, 1.5V < V] < 2V [17]. 

In what concerns the local term Ahp, it vanishes in the bulk (p»0), except for 
complex unit cells for which, nevertheless, it is quite negligible [20]. At the surface (p=0), it 
is almost identical to the difference in surface energies (T

A
 - xB) [17,21]. In fact, Ahrj is the 

main driving force which leads to the segregation of the element with the lowest surface 
energy. Finally, let us note that, up to now, the derivation of TBIM has been 
performed on a rigid lattice, which is probably too crude in the case of large size mismatch 
between the constituents. However, it is possible to introduce this effect by adding a third 
contribution to the segregation energy: 

AEp=AE™M+AEp
bc(c) (16) 

with AEpZC(c) *0 if p=0 (and 1 for open surfaces). AEo'zc(c) is calculated in both dilute 

limits (c—»0,1) in the framework of TBSMA, by determining the four mixed A-B parameters 
in order that A and B only differ by their size [21,22]. This leads to a contribution which 
significantly differs from the one derived from elasticity theory since the latter leads in both 
limits to the segregation of the impurity, whatever its size. On the contrary, the tight-binding 
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term is found strongly asymmetric, leading to a segregation of the impurity when it is the 
largest only (at least for close-packed surfaces). This comes from the anharmonicity of the 
potential which exhibits a strong asymmetry between tensile and compressive pressures. 

Equilibrium segregation at alloy surfaces 

Determining the concentration profile then requires to solve the non linear coupled 

equations (14), in which AE™M has to be replace by the complete segregation energy AEp 

(16). An essential problem comes from the non linearity which allows many solutions to 
exist, so that one has not only to be sure to get the one with the lowest energy 
(thermodynamic equilibrium) but also to find the metastable ones which could be stabilized 
under variation of external parameters (pressure, temperature), leading to phase transitions. 
This can be done in the framework of phase portrait or local field methods [21]. 

At high temperature, the segregation leads to an enrichment of the surface plane by the 
element for which the surface driving forces (surface energy and size mismatch) are the most 
favourable, the nature of the profile being determined by the sign of the ordering bulk term 
(V). Thus, for ordering systems (V>0) the first underlayer is depleted with respect to the 
segregating species (oscillating profile), whereas it is still enriched but to a lesser extent 
(monotonous profile) for phase separating ones. Then the profile is damped on a few layer 
up to bulk concentration [21]. At low temperature for V<0 ( below the critical temperature of 
phase separation), surface segregation is replaced by preferential surface precipitation. For 
V>0, if the ordered phase can be analysed as an alternate stacking of inequivalent planes 
parallel to the surface (e.g. .../A/B/A/B/ ... for c=0.5), it determines the nature of the most 
favourable termination ... the other possible terminations being found metastable. 

The most interesting situation is found for intermediate temperatures, namely slightly 
above bulk critical temperatures. Thus, for V<0 with a strong tendency to solute segregation 
(e.g. Cui_cAgc for c->0), layering transitions occur in which the initially almost pure Cu 
surface layers become successively almost Ag pure when approaching the solubility limit, 
leading to a complete wetting of the surface, i.e. a "pre-phase separation" [23]. Note that the 
first layering transition has indeed been observed experimentally [24]. 

For ordering systems, the situation differs according to the respective contributions 
of surface and bulk driving forces. If the former are not too high (PtNi, for which Aho~0), the 
competition between the asymmetric size effect and the ordering one leads to "profile phase 
transitions" between pure Ni or Pt terminated surface sandwiches, as a function of surface 
orientation, concentration and temperature [25], which have indeed been experimentally 
observed [18]. If they are predominent, one observes blocking of surface concentration on 
some "magic" values (co=l/4, 1/3, 1/2,...), characteristic of two-dimensional ordering [26]. 

Surface superstructure 

Let us recall that in the above description, the atomic relaxation has only be taken into 
account by means of the dilute size-effect in segregation energy. However, for strong size- 
mismatch and surface enrichments, one could expect some important atomic rearrangements. 
Thus, for V<0 and a strong segregation of the A element at the surface of a dilute B(A) alloy, 
one can expect reconstructions of the surface plane when the size-mismatch is large. The 
corresponding superstructures can be found by using Molecular Dynamics simulations with 
TBSMA potentials, in which the four mixed A-B parameters are now derived from alloy 
thermodynamic quantities such as mixing or solution energies. This means that, being unable 
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to account properly for diagonal chemical order, wc simulate it by an effective off-diagonal 
one. Thus, one finds for Cu(Ag) (111) a large surface undulation [27], which is confirmed by 
recent STM experiments [28]. 

For V>0, another competition between chemical and geometrical order can occur in 
presence of steps at the surface. Indeed, for vicinal surfaces with single steps, an alternate 
stacking of pure planes, .../A/B/A/B/..., in the ordered bulk will present simultaneously stable 
and mctastable terminations at the surface. Then, depending on the relative forces of bulk and 
surface forces, the surface could present cither single steps and some unfavourable 
terminations or double steps and then a single favourable termination ... the price to pay 
being to break more bonds! This problem does not arise at high temperature since the 
disordered alloy has not to preserve the stacking. Indeed, a transition from double to single 
steps, associated to the order-disorder transition, has been experimentally evidenced in CuPd 
[29]. 

Bimetallic clusters 

The coupling between segregation and reconstruction should be particularly important 
in bimetallic clusters. First, for small sizes, a finite matter effect occurs which means that, for 
dilute systems, the available quantity of segregant matter could be lower than the quantity of 
surface sites. In addition, geometrical frustrations can appear, due to the coexistence of facets 
with different orientations. This imposes to mix concentration profiles which could be not 
compatible (due to ordering tendency), leading to antiphases boundaries. As a result the local 
order at the surface could be different from that of semi-infinite systems. Finally, one expects 
the segregating species to enrich progressively the low coordination sites (vertices, edges, ...). 

In practice, coupling between chemical and atomic structure is now too strong to allow 
us to separate them. Therefore, the energetic model has to combine both TBIM (segregation 
and ordering) and TBSMA (distance dependence of the interatomic potential) in order to be 
able to treat various morphologies (fee polyhedra, bec dodecahedra, icosahedra) and to study 
the competition or synergy between bulk ordering and surface segregation. Thus, in the CuPd 
system [30], besides the confirmation of the above statements, the coupling between atomic 
relaxations and chemical arrangements in the icosahedral structure has been evidenced. In 
particular, for small sizes, if the usual sequence of relative stabilities (icosahedron, fee, and 
-well above- bee dodecahedron) are recovered in the disordered state, chemical ordering at low 
temperature drives a spectacular reversal in which the bec structure is stabilized with respect 
to fee by chemistry, the icosahedron being destabilized by chemical order. Moerover, the 
order of the transition varies at the surface: starting from ordered particles at low 
temperature, one observes a surface induced disorder with respect to inner sites. The 
transition is less abrupt for the latter than for bulk sites when the size decreases, which 
means that a first order bulk transition can evolve towards second order in small cluster cores. 

TB-POTENTIALS FOR GROWTH DYNAMICS AND DISSOLUTION KINETICS 

Surface diffusion: influence of steps 

Understanding growth mechanisms implies the knowledge of migration processes of 
adatoms on stepped surfaces and islands. Thus, a layer-by-layer growth is only possible if 
adatoms of an upper terrace can go down sufficiently fast not to be trapped by other 
adatoms, which depends on the relative heights of the barriers for terrace diffusion and step 
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descent (Schwöbel barrier). Moreover, the shape of two-dimensional islands during growth is 
driven by diffusion along its step edges since, for facets with different orientations, a slower 
diffusion along one type of edge will lead to an accumulation of atoms which will make it 
disappear. This is the case for fee (111) surfaces for which two kinds of high-symmetry 
straight steps exist, labelled A (square microfacet on the step riser) and B (triangular 
microfacet). The spectacular experimental transitions with temperature between different 
island shapes and growth modes [31] can then be attributed to the hierarchy between the 
different barriers for diffusion of adatoms: on the terrace, along and across step edges. 

In general, these barriers are obtained from static calculations in which the total energy 
of the system is minimized along some diffusion paths. Using Quenched Molecular 
Dynamics with TBSMA-potentials for Au/Au and Ag/Ag (111) one finds that the two 
possible descent mechanisms (exchange and hopping) indeed present barriers which are 
significantly enhanced with respect to the one for diffusion on the terrace (Schwöbel effect). 
It turns out that in gold the barriers are very similar for both steps, the exchange one being 
slightly lower than that for hopping. In silver, there is a large anisotropy between the steps: 
the descent at step B is much easier than at step A, because of the low barrier of the exchange 
process at step B [32], 

In fact, one can wonder if such static barriers are relevant to interpret experiments at 
finite temperature. Indeed, it is possible to calculate dynamic barriers, using Molecular 
Dynamics now at high temperature and drawing the rates of the various events (exchange, 
hopping, repulsion by the step) in an Arrhenius plot. One finds that the dynamic barrier for 
diffusion on the terrace is unchanged relative to the static one, whereas the one for descending 
steps by the exchange mechanism is significantly lowered [32]. This dynamic lowering of the 
Schwöbel barrier definitively favors the exchange mechanism with respect to the hopping one. 

Adatom incorporation 

Steps not only play an important role during homoepitaxy but also in heteroepitaxy. 
In the latter case, a new process may occur, namely the incorporation of some deposited 
adatoms into the substrate, for instance during annealing. Identifying the elementary 
processes responsible of such an incorporation is essential since it is the first step of 
interdiffusion (see below). From STM experiments performed on Mn/Cu (100) system, it is 
clear that steps play a major role for incorporation, in relation with the preferential formation 
of vacancies at the kinks. This can be modelled by calculating the activation energies for the 
various processes relevant to the production of vacancies at steps on the Cu(100) surface 
within TBSMA and then the production rates for vacancies both analytically and by means 
of Monte Carlo simulations. One finds that Mn is indeed incorporated at step edges, due 
either to the step fluctuations or to exchange processes. Then the migration of incorporated 
Mn away from step is mediated by the vacancies produced at the steps, which is sufficient to 
reproduce the asymmetry of the spatial distribution of incorporated Mn between the upper 
and lower terrace observed by STM [33]. 

Surface alloy formation: the Kinetic Tight-Binding Model (KTBIM'l 

Modelling the interdiffusion phenomena during growth and annealing of a deposit 
requires to take into account simultaneously kinetic (diffusion) and thermodynamical 
(segregation) effects. This is possible within the KTBIM (Kinetic Tight-Binding Ising Model 
[34]), which is a simple one dimensional model, consistent with the (TBIM) equilibrium 
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State, i.e. the steady state concentration profile corresponds to the equilibrium profile given 
by (14). Assuming homogeneous concentrations per planes parallel to the surface, their time 
dependence cp(t) results from a detailed balance between the incoming and outcoming fluxes: 

dCp 

dt 
:Cp-l(1_cP)rp-l->p_cp'1-cp-l)rp^p-l (17) 

+cD+lO-cD)r "P+l p'1 p+1—>p -Cn(l-CD+t)r p+1 •" p—>p + l 

the exchange frequencies rp^q between the planes p and q being related to the segregation 

energies AEp and AEq, given by (16), through: 

rp<->P+l =zp,p+ivcxP- 

( + (AEp+,-AEp) 

kT 
(18) 

in which the sign (+) corresponds to Tp^p+i (+) and rp+1_>p (-) respectively, v is a 

characteristic vibration frequency and Q the bulk diffusion activation energy. Obviously, 
Zp,q=0 for p<0 or q<0 (i.e. above the surface layer). Therefore, one takes into account the 
three segregation driving forces, which allows us to predict the different behaviours which can 
be observed if one deposits N A-layers onto a B-substrate (cp(t=0)=l for p<N and cp(t=0)=0 
for p>N). They completely differ depending on the ordering bulk term (V sign), and on the 

surface terms (Ahn and AEgze) which can favour either A or B segregation [35]: 

- Systems with tendency to phase separation (V<0): 

When one deposits the element which tends to segregate (Ag/Ni ; Ag/Cu), it stays at 
the surface before dissolving into the substrate within an clearly non Fickian "laycr-by-laycr" 
mode [36]. On the contrary, if the substrate atoms tend to segregate (Ni/Ag, Cu/Ag, Fe/Cu), 
one observes, for a thin deposit, a "surfactant effect" leading to deposited clusters buried 
under one or two floating substrate layers. The time evolution of these buried clusters is 
governed by a competition between Ostwald rippening and dissolution into the substrate 
[37]. For thicker deposits, depending on segregation forces, one observes a transition from 
the "surfactant effect" to the "laycr-by-laycr" dissolution. All these behaviours can be 
understood in terms of local equilibrium linking dissolution kinetics to the equilibrium 
profiles in alloy thin films [35]. 

- Systems with tendency to chemical ordering (V>0): 
The most spectacular effect is the formation of superficial compounds of type ABn in 

the surface selvedge, under dissolution of A/B. If the deposited element is the one which 
tends to segregate, these so-called surface alloys correspond to ABn ordered compounds of 

the bulk phase diagram. On the contrary, when the substrate atoms want to segregate, some 
new compounds appear which correspond to metastable terminations of bulk phases. The 
sequence of surface alloys which appear during dissolution as a function of time and film 
thickness is also characterized in terms of local equilibrium [35]. Experimentally, they arc 
evidenced from kinetic blockings of dissolution in AES, LEED or photodiffraction [38]. 
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TB-POTENTIALS: HOW FAR ? 

Once granted the ability of TB-potentials, it is worth pointing out that one has to take 
some caution before using them. First of all, let us recall that derivation of the above TB- 
potentials requires drastic assumptions concerning charge neutrality near the defects (surface, 
impurities). For pure metal surfaces, it is now admitted that, at least for d electrons, the 
charge self consistency indeed reduces to a local neutrality condition which determines a 
modification of the level 5EO. This d level shift is almost rigidly followed by the core levels, 
as experimentally confirmed by core level spectroscopy [39]. Unfortunately, for fee elements 
at the end of the transition series, it is necessary to introduce sp-d hybridization. This is 
possible in the tight-binding framework, but the results strongly depend on the charge 
neutrality assumption. Ab initio (FP-LMTO) calculations in the surface selvedge indicate that 
charge neutrality has to be achieved, not only per inequivalent site but also per orbital, which 
means that almost no charge redistribution occurs between sp and d orbitals [5]. The 
situation at the surface of the alloy is still more complicated since charge transfers are 
involved not only between geometrical inequivalent sites but also between A and B species. 
At least in the bulk, it has ben shown that the main role of charge transfers on the effective 
pair interactions (11) is to reduce the chemical diagonal parameter, leading to the same results 
as without charge self-consistency [40]. Moreover, the ability of TBIM (which assumes 
charge neutrality) to reproduce experimental segregation trends, whereas not self-consistent 
calculations fail to do it, seems to confirm the underlying charge assumptions of the former. 

Another drawback of TB-potentials is that they are better justified when atomic and 
chemical structure rearrangements can be separated. Concerning the rather ad hoc treatment 
of the size effect term in TBIM, comparison with calculations of the segregation energy, 
using either complete TBSMA or LMTO in the dilute limit, confirm that the approximation 
used is quite justified. The situation is less clear with respect to the overall consistency 
between TBIM and TBSMA, particularly in what concerns the effective off-diagonal 
disorder introduced in the latter to describe ordering problems. In particular, fitting the mixed 
parameters on solute solution energies does not insure that more local ordering properties are 
preserved. This is illustrated by calculating V (in the TBIM spirit) either from the energy of 
dissolution of a single impurity, or by moving two isolated impurities toxards first neighbour 
positions. This has been simulated alternatively by TBSMA and FP LMTO approaches, for 
two systems presenting a significant size mismatch and tendency to order (CuPd) and to 
phase separate (CuAg) respectively. For V>0 (CuPd), one indeed recovers the same effective 
V interaction as from solution energy. Moreover, performing the calculation for surface sites 
indeed leads to an enhancement of the pair interaction Vo~l .5V. On the contrary, for V<0, 
one finds a sign reversal both within TB and ab initio calculations. Even though relaxation 
around the impurity brings some improvement, it does not rule out the whole discrepancy. 

ACKNOWLEDGEMENTS 

The present contribution is a review of results obtained by different persons that we would 
like to gratefully acknowledge, namely: F. Ducastelle, M. Guillope and V. Rosato for tight- 
binding modelling, C. Mottet and A. Khoutami for cluster studies, A. Saül, J.M. Roussel, C. 
Gallis, S. Delage and A. Senhaji for kinetics ones, J. Goniakowski and S. Sawaya for ab initio 
calculations, and finally R. Ferrando for surface dynamics. We are indebted to all of them: 
without their works, this paper would not exist. 

285 



REFERENCES 

[I] Fricdel J., Physics of Metals 1, Cambridge University Press, 1978. 
[2] Gaspard J.P. and Cyrot-Lackmann F., J. Phys. C 6, 3077 (1973). 

Cyrot-Lackmann F. and Ducastelle F., Phys. Rev. Lett. 27, 429 (1971). 
[3] Haydock R., Heine V. and Kelly M.J., J. Phys. C 5, 2845 (1972); 8, 2591 (1975). 
[4] Turchi P., Ducastelle F. and Treglia G., J. Phys. C 15, 2891 (1982). 
[5] Sawaya S., Goniakowski J., Mottet C, Saul S., Treglia G., Phys   Rev  B 56   12161 
(1997) 
[6] Ducastelle F., Order and Phase Stability in Alloys, North-Holland, 1991. 
[7] Rosato V., Guillope M. and Legrand B., Philos. Mag. A 59, 321 (1989). 
[8] D. Spanjaard and M.C. Dcsjonquercs, Phys. Rev. B 30, 4822 (1984). 
[9] Foiles S.M., Baskes M.I. and Daw M.S., Phys. Rev. B 33, 7983 (1986). 
[10] Garofalo M., Tosatti E. and Ercolessi F., Surf. Sei. 188, 321 (1987). 
[II] Dcsjonquercs M.C. and Spanjaard D., Concepts in Surface Physics, Springer, 1995. 
[12] Guillope M. and Legrand B., Surf. Sei. 215, 577 (1989). 
[13] Legrand B., Treglia G., Dcsjonquercs M.C. and Spanjaard D., J. Phys  C 19, 4463 
(1986) 
[14] Mottet C, Treglia G. and Legrand B., Surf. Sei. Lett. 383, L719 (1997). 
[15] Ducastelle F. and Gauticr F., J. Phys. F 6, 2039 (1976). 
[16] Velicky B., Kirkpatrick S. and Ehrenreich H., Phys. Rev. 175, 747 (1968). 
[17] Treglia G., Legrand B. and Ducastelle F., Europys. Lett. 7, 575 (1988). 
[18] Gauthier Y., Baudoing R., Surface Segregation & Related Phenomena, Boca Raton, 1990 
[19] Bieber A., Gauticr F., Treglia G. and Ducastelle F., Solid State Comm. 39, 149 (1981). 
[20] Turchi P., Treglia G. and Ducastelle F., J. Phys. F 13, 2543 (1983). 
[21] Ducastelle F., Legrand B. and Treglia G, Progr. Thcor. Phys. Sup. 101, 159 (1990). 
[22] Tomanck D., Aligia A.A. and Balseiro CA., Phys. Rev. B 32, 5051 (1985). 
[23] Saul A., Legrand B. and Treglia G., Phys. Rev. B 50, 1912 (1994). 
[24] Eugene J., Aufray B. and Cabane F., Surf. Sei. 273, 372 (1992). 
[25] Legrand B., Treglia G. and Ducastelle F., Phys. Rev. B 41, 4422 (1990). 
[26] Gallis C, thesis, Orsay, 1997. 
[27] Mottet C, Treglia G. and Legrand B., Phys. Rev. B 46, 16018 (1992). 
[28] Aufray B., Göthelid M., Gay J.M., Mottet C, Landemark E., Surf. Sei. Lett, in press 
[29] Barbier L., Salanon B. and Loiseau A., Phys. Rev. B 50, 4929 (1994). 
[30] Mottet C, Treglia G. and Legrand B., to he published 
[31] Bott M., Michcly T. and Comsa G., Surf. Sei. 272, 161 (1992). 
[32] Ferrando G., Treglia G., Phys. Rev. B 50 12104 (1994); Phys. Rev. Lett  76 2109 
(1996) 
[33] Ibach H., Gicscn M., Flores T., Wuttig M. and Treglia G, Surf. Sei. 364, 453 (1996). 
[34] Senhaji A, Treglia G, Legrand B, Barrett N, Guillot C, Villette B, Surf Sei 274 297 
(1992) 
[35] Legrand B., Saül A. and Treglia G, Mat. Sei. Forum 155-156, 165 (1994). 

Treglia G, Legrand B. and Saul A., II Vuoto XXV, 32 N4 (1996). 
[36] Saül A, Mat. Sei. Forum 155-156, 233 (1994). 
[37] Roussel IM., Saül A.,Treglia G. and Legrand B., Phys. Rev. B 55, 10931 (1997). 
[38] Bardi U., Rep. Prog. Phys. 57, 939 (1994). 
[39] Spanjaard D, Guillot C, Dcsjonquercs MC, Treglia G, Lecante J, Surf Sei Rep 5 1 (1985) 
[40] Treglia G., Ducastelle F. and Gauticr F., J. Phys. F 8, 1437 (1978). 

286 



TIGHT-BINDING CALCULATIONS OF COMPLEX DEFECTS IN SEMICON- 
DUCTORS: COMPARISON WITH AB INITIO RESULTS 

M. KOHYAMA, N. ARAI* and S. TAKEDA* 
Department of Material Physics, Osaka National Research Institute, AIST, 1-8-31, Midori- 
gaoka, Ikeda, Osaka 563, Japan, kohyama@onri.go.jp 
* Department of Physics, Graduate School of Science, Osaka Univeristy, 1-16 Machikane- 

yama, Toyonaka, Osaka 560, Japan 

ABSTRACT 

Complex defects in Si and SiC such as coincidence tilt boundaries, planar defects and 
self-interstitial clusters were dealt with by using the transferable tight-binding method for 
Si and the self-consistent tight-binding method for SiC. These results have been compared 
with ab initio calculations of similar configurations. Essential features of the tight-binding 
results have been supported by the ab initio results. Especially, the agreement on stable 
atomic configurations is good, although there exits a tendency that energy increases are 
somewhat overestimated by the tight-binding methods. Serious faults have been found for 
the electronic structure by the tight-binding method for SiC. 

1. INTRODUCTION 

It is of much importance to clarify the structure and properties of complex or extended 
defects in semiconductors, such as planar defects, grain boundaries, and aggregates of inter- 
stitials, vacancies and impurities. By using the transferable tight-binding (TB) method and 
related methods [1-6], it is possible to deal with such complex defects more accurately than 
using previous TB methods [7] or empirical potentials [8]. However, one should be prudent 
about the quantitative accuracy of such semi-empirical methods applied to complex systems, 
because usually the accuracy of such methods has been examined only by comparison with 
ab initio results of several crystal phases or simple defects. It is desirable to compare TB 
calculations of complex defects directly with ab initio calculations. Nowadays, it is not so 
difficult to perform ab initio calculations based on the density-functional theory [9] about 
various defects in semiconductors if the number of atoms in the supercell is less than one or 
two hundred. This is owing to the development of the first-principles molecular dynamics 
(FPMD) method originated by Car and Parrinello [10,11]. In this paper, TB calculations 
of complex or extended defects such as coincidence boundaries in Si and SiC, {113} planar 
interstitial defects in Si, and self-interstitial clusters in Si, using the transferable TB method 
of Si [2,3] and the self-consistent TB (SCTB) method of SiC [12], are compared with ab 
initio calculations. 

In the cases of boundaries and planar defects, it is possible to construct supercell con- 
figurations of proper size for both TB and ab initio methods, and a direct comparison is 
possible. Such comparisons should be effective for further improvement of the TB methods. 
In the case of self-interstitial clusters, it is desirable to contain over several hundred atoms 
in one unit cell, which can be dealt with only by the TB method. We apply the ab initio 
method to a configuration in a small cell so as to test some aspects of the TB results of a 

large cell. 
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2. THEORETICAL METHOD 

Transferable Tight-Binding Method for Si 

The transferable TB method of Si [2,3] was developed in order to overcome the weak 
point of the previous TB method [7] in which the transferability of structures of Si other 

than the fourfold coordinated ones is not necessarily guaranteed. In this method, the bind- 
ing energy, which is the difference between the total energies of the system and the free 
atoms, is expressed as a sum of the band-structure energy Ebs and the remaining repulsive 
energy Erep. The former is obtained by tight-binding band calculations with the valence 
atomic-orbital basis, and the latter is given as a sum of short-range repulsive interatomic 
potentials. As compared with the previous TB methods, this method has three difining char- 
acteristics. First, the behavior of the two-center integrals in the Hamiltonian and that of the 
interatomic potential are modified for large distances and are smoothly truncated by using 
proper attenuation functions [1]. Second, different exponent values are used for respective 
two-center integrals and potential, and the parameters are determined so as to reproduce 
the Hamiltonian including second-neighbor interactions. Third, the dependence on the local 
environment is incorporated into Ercp through the effective coordination numbers. Erop is 
automatically reduced in the enviromnent with large coordination numbers. 

As discussed in [3], the dependence on the local environment of Erop is especially im- 
portant for the transferability, and was incorporated for the first time. This is because the 
overlap interaction between basis orbitals is one of the origins of Erop and has the depen- 
dence on the local environment as well as Ebs- This method can deal with energies and 
structures of various phases of Si, and is now one of the most reliable TB methods. A weak 
point of this method is that the bulk band-gap width of Si is overestimated as 2.2eY. In this 
method, the intra-atomic electrostatic interactions are included self-consistently through a 
form of a Hubbard-like Hamiltonian [13]. 

Self-Consistent Tight-Binding Method for SiC 

In order to deal with defects in SiC, we developed the SCTB method [12]. This is 
the application of the SCTB method originally proposed by Majewski and Vogi [11]. This 
method can deal with the effects of self-consistent charge redistribution and electrostatic 
interactions within the tight-binding approximation. This is essential for defects in solids 
with both ionic and covalent characters. In SiC. there exists substantial charge transfer from 
Si toward C, which gives rise to significant ionic characters [15]. 

The tight-binding Hamiltonian is expressed by assuming an r~2 dependence on the inter- 
atomic distance r. Charge transfer effects are included self-consistently in the on-site ele- 
ments of the Hamiltonian. The on-site element consists of the following terms: the orbital 
energy of the neutral atom, the change in the intra-atomic electrostatic potential caused by 
the on-site charge, the inter-atomic electrostatic potential, and the nonorthogonality correc- 
tion caused by the overlap between neighboring atomic oribitals. Finally, the binding energv 
is expressed as a sum of the following energy terms: the promotion and intra-atomic elec- 
trostatic energy Epro, the inter-atomic electrostatic energy E\iac]. the covalent energy Er0v, 
and the repulsive overlap energy Eov. The parameters and functional forms were determined 
so as to reproduce the basic properties of SiC, Si and diamond. For SiC and Si, the fourfold 
coordinated structures are reproduced as the most stable ones.  This method is one of the 
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few practical TB methods dealing with total energies of compounds. 

Ab Initio Method 

We use the plane-wave pseudopotential method based on the density-functional theory. 
In order to deal with large systems, we use the techniques of the FPMD method. First, 
the electronic minimization is performed efficiently through iterative techniques such as the 
conjugate-gradient method [11]. For the minimization of the total-energy functional Etot 
with the orthonormalization constraint of wave functions {ipi}, we consider the functional 
E = Etot—Ys \ij((tßi\ipj)—&ij) where A,j is the Lagrange multipliers. Its gradient with respect 
to V>; can be expressed as 6E/64>* = (-ff—A,)^t- where A; = (V>i \H\ V>t), if the orthonormalization 
process is performed separately. The negative of this gradient can be regarded as a force or 
a steepest-descent vector acting on t/>;- Thus the wave functions can be iteratively updated 
according to this force or vector and can reach the true eigen functions minimizing Eiot. Thus 
one can avoid time-consuming computations of the direct diagonalization of the Hamiltonian. 

Second, we use optimized pseudopotentials by Troullier and Martins [16] so as to reduce 
the number of plane-wave basis functions Npw. The TM pseudopotentials were constructed 
by using the configuration 3s23pa53rf°-5 for Si and 2s22p2 for C. The cutoff radius is 2.0a.u. 
for the s, p and d orbitals of Si, and 1.44a.u. for the s and p orbitals of C. We use the 
separable form [17] with the p pseudopotential as the local component for both elements. 
The lattice constants, cohesive energies and bulk moduli of bulk Si, SiC and diamond are 
reproduced accurately within the local density approximation [18] by using the plane-wave 
cutoff energy Ecut of 35Ry for Si and of 60Ry for SiC and diamond. The equilibrium lattice 
constants of Si and SiC are 98.9% of the experimental values of 0.5429nm and 0.4360nm. 
That of diamond is 99.3% of the experimental value of 0.3567nm. All calculations of defects 
are performed by using these equiliburium lattice constants. We also use the Hamman- 
Schlüter-Chiang (HSC) pseudopotential of Si [19], because this potential seems to provide 
more accurate results for small Ecut of 30Ry. In this case, the equilibrium lattice constant 
of Si is the same value. It should be noted that the total energies are well converged for the 
above values of Ecut for respective pseudopotentials within the accuracy of 0.02eV/atom as 
compared with the values for Ecut of 60Ry for Si and lOORy for SiC and diamond. 

3. GRAIN BOUNDARIES IN Si 

Grain boundaries in Si significantly affect the properties of polycrystalline Si used for 
solar cells and various devices such as thin-film transistors. Thus it is of much importance to 
understand the atomic and electronic structures of grain boundaries. Various tilt and twist 
boundaries in Si were dealt with by using the transferable TB method [20,21]. It has been 
pointed out that the (Oil) tilt coincidence boundaries are especially stable as compared with 
twist or general boundaries. This is because stable configurations can be easily constructed 
for such boundaries by arranging structural units consisting of atomic rings without any 
dangling bonds or large bond distortions. This point is in good agreement with experimental 
observations using high-resolution transmission electron microscopy (HRTEM) [22]. TB 
calculations were also used to clarify the effects of structural disorder at grain boundaries 
such as bond distortions, odd-membered rings and coordination defects on the electronic 
structure, which provided useful information about the origin of the gap states and band 
tails at grain boundaries in Si [21]. 

289 



We apply the ab iniiio method to the {122}E = 9 boundary in Si. This is a typiral 
tilt boundary. We deal with the glide-plane model, where the interface is constructed In- 
zigzag arrangement of five- and seven-membered rings without any dangling bonds. We use 
a 64-atom cell. The ridid-body translation optimized by the TB method [20] is used for 
the initial configuration. We use the TM pseudopotential with Ecll> of 35Ry. Two special 
k points per irreducible eighth of the Brillouine zone are used. After relaxation, the en- 

ergy increase against the bulk crystal is calculated by using four special k points for the 
relaxed configuration in order to obtain a more accurate value. This is because the energy 
increase of this boundary is rather small, which is about leV per cell. To execute heavy 
calculations with four k points, it is desirable to reduce Ecui without the loss of accuracy. 
Thus we have used the HSC pseudopotential with Ecu, of 30Ry as mentioned in Sec. 2. We 
have found that the relaxed configuration has negligible atomic forces for this new condition. 

CO 
O 
Q 

CO 
O 
Q 

l   I   l   I   l   l   I 

(b) 
Energy  (eV) 

Figure 1. (a) Relaxed configuration and valence electron density of the {122}S = 9 bound- 
ary in Si. Contours of the electron density are plotted from 0.Q03«.»."3 to O.OOlo.!/."3 in 
spacing of O.OOSfl.i/,.-3. Circles indicate the atomic position projected along the (Oil) axis, 
(b) Local densities of states (LDOS's) of this boundary. The LDOS's of the upper and lower 
panels are those of the interface and bulk regions, respectively. Each region corresponds to 
one half of the 64-atom cell. The dashed line is the DOS of diamond Si. Six k points in 
the irreducible part of the Brillouine zone and the Gaussian broadening of <r=0.2c V are used. 

Table 1 lists the results of energy and bond distortions. Figure 1(a) shows the ralaxed 
configuration and charge distribution. It is clear that the present configuration is stable with 
small bond distortions and energy increase. All the interfacial bonds are well reconstructed, 

although stretched bonds have slightly reduced bond charges. 
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0.18 -1.8 to+1.4 -16.3 to +22.2 
0.32 -1.9 to +1.5 -16.0 to +19.9 
0.45 -1.5 to +1.9 -16.3 to +21.1 

Table 1. Calculated results of the {122}E = 9 boundary in Si. SW indicates results by the 
SW potential [8]. Egt is the boundary energy, which is the energy increase per unit area 
of one interface against the bulk crystal. Ar and AÖ are the bond-length and bond-angle 
distortions. 

 Egh{J/m7) Ar(%) AOjdegree) 
ab initio (64-atom cell) 
TB (144-atom cell) 
SW (144-atom cell) 

The agreement between the TB results and the ab initio results is rather good, especially 
about the atomic configuration. The calculated stress [23] in the direction normal to the 
interface is rather small (-0.5GPa), which justifies the initial translation normal to the in- 
terface from the TB results. There is a substantial difference in the energy value. The TB 
method overestimates the energy increase as does the SW potential. Of course, there exist 
the problems of cell size and of energy convergence associated with the number of k points, 
Npw and Ecut [24]. However, the same tendency is observed in other cases. 

We have examined the electronic states of several k points. There exist no electronic 
states inside the band gap in accordance with reconstruction, although there exist states 
with relatively large probabilities at the interface region near the band edges. This feature 
is similar to the TB results [21]. As shown in Figure 1(b), it does not seem that the present 
interface has a large effect on the electronic structure. However, there exist small changes 
in the shape of the valence band DOS. The s-p mixing peak is decreased and the states are 
increased at the valleys among the three peaks. The p-p bonding peak tends to be flattened. 
These features are also similar to the TB results [21] and seem to be caused by the presence 
of odd-membered rings. 

4. {113} PLANAR DEFECTS IN Si 

The {113} planar or rodlike defects are induced by electron irradiation, ion implanta- 
tion, or thermal anealing only in Si or Ge. These defects are considered as aggregations of 
supersaturated self-interstitials. However, it is very strange that interstitial atoms are ag- 
gregated not on simple planes but on {113} planes. This difficult problem was solved for the 
first time by modelling through HRTEM observation coupled with theoretical calculations 
[25-28]. The model is described by an arrangement of two kinds of structural units, /and 
0 units, on the {113} plane [25]. These units consist of atomic rings without any dangling 
bonds on the (110) projection, similar to those in the (110) tilt boundaries shown in Sec. 
3. An /unit contains a self-interstitial atom chain along the (110) direction. The core of 
this unit corresponds to a tiny rod of hexagonal Si surrounded by five- and seven-membered 
rings. An O unit is formed from an /unit by removing the self-interstitial chain, which leaves 
an eight-membered ring. In the observed sequence of units along the (332) direction in Si 
[25], the ratio of /units is about 62% and there exists no long-range periodicity. However, 
there exists some short-range order. 0 units are arranged separately at intervals of one or 
two / units, occasionally three / units. 

On the theoretical side, calculations using the SW potential showed that the model has 
relatively small bond distortions and energies [26].   The relaxed configuration is in good 
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agreement with the HRTEM image [27]. The calculations also indicated that / units are 
more stable when neighboring side by side on the {113} plane rather than isolated / units, 
and that the insertion of 0 units can stabilize the sequence of /units. From these points, 
the mechanism of generation and the origin of the observed arrangement of the units were 
deduced [26,27]. These results were supported by the TB calculations of the \I0\ and |//0| 
models [28]. In these models, the structural units sandwiched by "|" are repeated periodically 
along the (332) direction. It is possible to investigate essential features of the real structure 
with only short-range order by such periodic models. 

In this paper, we deal with the \IO\ model by the ab initio method. We use the same 
90-atom cell used in the previous calculations [26,28]. In the unit cell, one sequence of the 
units is contained between the bulk regions with the observed rigid-body translation [25]. 
We use the TM pseudopotential and Ecui of 35Ry. Two special k points are used. After the 
ralaxation, the energy increase is calculated more accurately by using four k points with the 
HSC pseudopotential and Ecut of 30Ry because of the same reason mentioned in Sec. 3. 

Table 2 lists the results. The agreement between the TB and ab initio results is rather 
good. It is clear that the TB results are better than the SW results, which is also seen in 
the results of Sec. 2. The tendency to overestimate energy increases in the TB and SW 
calculations is also observed. 

Table 2. Calculated results of the \IO\ model of the {113} planar intersitial defects in Si. 
Eis is the energy increase per interstitial atom. This model contain two interstitial atoms 
per unit cell. Ar and A0 are the bond-length and bond-angle distortions. All calculations 
use the same 90-atom cell. 

 E,s(e.V/atow) Ar("A) A0(<l(gr(c) 

ab initio 0.49 -1.7 to+3.0 -17.6 to+23.7 
TB 0.92 -1.8 to+2.8 -17.9 to +2-1.0 
SW 1.13 -1.4 to +2.6 -18.8 to +22,1 

Figure 2 shows the relaxed configuration and valence electron density. It is clear that 
all the bonds are well reconstructed, although distorted bonds have reduced bond charges. 
It can be said that the ab initio calculation has proved the stability of the |/0| model 
and the stability of the structural units. It, is important to deal with the |//0| model so 
as to examine the relation between the two models, which is now in progress. Previous 
calculations indicated the relative stability of the latter model. This is reasonable because 
the latter model more closely resembles the observed sequence of the units. 

The electronic structure of the |/0| model has been examined. This configuration has 
electronic structure similar to that of the (Oil) tilt boundary in Sec. 2. In accordance with 
reconstruction, there exist no states inside the band gap, although we found states with large 
probabilities associated with the structural units near the band edges. These features are 
similar to the TB results [28]. 

Recently, high-resolution transmission electron energy-loss spectroscopy (HR-TEFLS) 
has been applied to {113} defects in Si [29]. The obtained low-loss and core-loss spectra 
with energy resolution of O.leV have indicated that these kinds of defects at least contain no 
deep states in the band gap. This point supports our prediction. A remarkable change by the 
defects has been observed in the Si-L2,3 ELNFS (electron energy-loss near edge structure). 
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which corresponds to s and rf-projected densities of states of conduction band. The first 
peak of the conduction band, mainly consisting of s-like states, is sharpened by the decrease 
of the higher portion of this peak. We have calculated the LDOS's of the \IO\ model in 
order to explain the observed change in the ELNES. The LDOS's have similar features to 
those of the S = 9 boundary in Figure 1(b). In the valence band, remarkable changes are 
the decrease of the s-p mixing peak, the increase of states at the valleys among the three 
peaks, and the flattening of the p-p bonding peak. In the conduction band, two sharp peaks 
are also flattened. These seem to be caused by odd-membered rings and bond distortions 
[30]. The observed change in the ELNES has been explained by the decrease of the s-state 
densities at the higher portion of the first peak caused by odd-membered rings [29]. 

Figure 2. Relaxed configuration and valence electron density of the |/0| model of the {113} 
planar interstitial defects in Si. Contours of the electron density are plotted from 0.003a.u.-3 

to 0.091a.u.-3 in spacing of 0.008a.u.~3. Atomic rings constituting /and 0 units are indi- 
cated by stars and asterisks, respectively. 

5. SELF-INTERSTITIAL CLUSTERING IN Si 

Self-interstitial atoms play an important role in various dynamic phenomena in Si such 
as self-diffusion and impurity diffusion. However, the existence of self-interstitial atoms is 
confirmed experimentally only when they form very extended defects such as {113} planar 
defects. Thus it is of great importance to investigate structure and properties of primary 
interstitial defects and interstitial clusters. In contrast to lattice vacancies and their com- 
plexes, it is very strange that self-interstitials and their clusters seem to generate no active 
electronic states in the band gap nor optical centers. Electron paramagnetic resonance has 
yielded no convincing structural information about defects of self-interstitials. Therefore, 
the structures of self-interstitials and their clusters have always been under debate, except 
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for very extended defects. Interstitial clusters of small or intermediate size are also of much 
interest so as to understand the mechanism of formation of the {113} planar defects. 

No clear experimental signals of self-interstitials and their clusters imply the possibility 
that self-interstitials usually exist as agglomarates without any coordination defects. In 
the {113} interstitial defects, lattice reconstruction occurs in the interior of the Si crystal 
involving self-interstitials so as to remove dangling bonds as shown in Sec. 4. Thus we 
have proposed a novel model of self-interstitial clustering in Si where all the atoms are 
fourfold coordinated [31]. Figure 3 shows the model of the four interstitial cluster l.\. This 
cluster contains four self-interstitials. The configuration is characterized by succesive five, 
and seven-membered rings without any coordination defects. 

The stability of this cluster has been examined by the SW potential and the TB method. 
We have used the 724-atom cell containing one /4 cluster. The present structure seems to in- 
duce large bond distortions and strains. Thus it is desirable to use cells of large enough size. 
The number of atoms in the cell is inevitably large as compared with cells for coincidence 
boundaries or planar defects with some periodic features. The edge lengths of the 724-atom 
cell have been optimized by iterating relaxations by the SW potential so as to reduce long- 
range stresses. In the final cell, the cluster repeats with intervals of 2.30nm. 2.30nm and 
2.73nm along the the (Oil), (Oil) and (100) directions, respectively. Then relaxation has 
been performed by the TB method. Results are shown in Figure 3 and Table 3. 

+24.7 

-3.1% 
2% MM -2.9% 

[Oil]        [Ofl] b 

Figure 3. Left: Relaxed configu- 
ration of the four interstitial clus- 
ter I4 in Si obtained by the TB 
method using the 724-atom cell. 
Right: A part of thecluster. Equiv- 
alent atoms are indicated by the 
same characters. 

Table 3. Calculated results of the four interstitial cluster /., in Si. E,f is the energy increase 
per interstitial atom. A7' and A0 are the bond-length and bond-angle distortions. The ah 
initio method is used only for the energy calculation of the relaxed configuration by the TB 
method. 

Et .(eV/at om) Ar(%) A0(dcgrc() 
TB (724-atom cell) 
SW (724-atom cell) 

2.46 
2.10 

-4.2 to +1.3 
-5.0 to+1.5 

-22.3 to +24.7 
-22.2 to +22.7 

ab initio (196-atom cell) 
TB (196-atom cell) 

1.53 
2.34 -3.9 to +2.1 -22.4 to +23.5 

We apply the ab initio method to this model. We use a 196-atom cell. It is at least 
possible to obtain information about the stability of the present model, although this small 
cell may affect some aspects of the results.   We use the HSC pseudopotential with Enii of 
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20Ry. Only the F point is used. The edge lengths of the cell are optimized by the SW 
potential. The cluster repeats with intervals of 1.54nm, 1.54nm and 1.67nm along three 
directions, respectively. Relaxation has been performed by the TB method. Then the ab 
initio method has been applied to this configuration. The energy increase has been obtained 
as compared with the ab initio results of the 192-atom cell without any self-interstitials by 
similar conditions. All the results are listed in Table 3. Full relaxation by the ab initio 
method is now in progress. 

The TB results of the 724-atom cell indicate the stability of this model. The calculated 
energy values are lower than those of an isolated self-interstitial atom in the range from 
about 3 to 7 eV by the ab initio or TB methods [32]. And the ranges of the bond-length and 
bond-angle distortions are not so different from the results of (Oil) tilt boundaries and {113} 
defects. The TB results of the 196-atom cell reveal similar features, although the energy 
is lowered by the interaction among defects. The energy value by the ab initio method is 
smaller than the value of the TB method. This value is also much smaller than the ab 
initio values of an isolated interstitial [32]. Of course, relaxation by the ab initio method 
has not been performed. However, the atomic forces by the ab intio method for the present 
configuration are not large. Thus it can be said that the ab initio calculation supports the 
stability of the 74 model. 

About the electronic struture of the I4 model, the TB calculation of the 724-atom cell 
reveals that this structure contains no deep states inside the band gap. However, defect- 
localized states have been found. These are occupied shallow states at the top of the valence 
band, and states at the bottom of the valence band. These states tend to possess a higher 
amplitude at the atoms with shortened bonds. This defect contains many shortened bonds 
because of insertion of interstitials. The origin of such states can be explained by the widen- 
ing of the valence band width by bond shortening. Such electronic states will be examined 
by the ab initio method in the near future. 

6. GRAIN BOUNDARIES IN SiC 

SiC is a very important material for high-performance ceramics and high-temperature 
devices. It is of great importance to understand grain boundaries in SiC, because various 
properties of SiC ceramics are dominated by grain boundaries. As compared with boundaries 
in Si, there exist further complexities in grain boundaries in SiC, such as polarity, interface 
stoichiometry and wrong bonds between like atoms. We have dealt with several coincidence 
tilt boundaries in SiC by using the SCTB method [33]. 

In this paper, we apply the ab initio method to the {122}E = 9 boundary in SiC. HRTEM 
observations of this boundary [34] indicate that this boundary has a configuration with a 
bond network similar to the same boundary in Si in Sec. 3. However, it is possible to 
construct three kinds of models by inverting the polarity of grains. These are two kinds 
of polar (nonstoichiometric) interfaces and a non-polar (stoichiometric) interface [33]. The 
interface stoichiometry dominates the kinds and numbers of wrong bonds. The models of 
the S = 9 boundary have four interfacial bonds per period as shown in Sec. 3. In the N-type 
polar interface, two bonds in the four interfacial bonds are C-C bonds, and the others are 
usual Si-C bonds. In the P-type polar interface, two bonds in the four interfacial bonds are 
Si-Si bonds. In the non-polar interface, two bonds are both C-C and Si-Si bonds. 

We use a 64-atom cell containing two interfaces in each cell. The supercell of the polar 
interfaces must contain two inequivalent polar interfaces by the crystallographic constraint. 
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Initial configurations are constructed by introducing the rigid-body translations between 
bulk regions otpimized by the SCTB method [34]. We use the TM pseudopotentials and 
ECut of 60Ry. Two special k points are used. Results are shown in Table 4 and Figure 4. 

Table 4. Calculated results of the polar and non-polar interfaces of the {122}E = 9 boundary 
in SiC. AEtot is the energy increase per cell against bulk SiC. Egh is the boundary energy, 
which is obtained only for the non-polar interface. Ar and A0 are the bond-length and 
bond-angle distortions. Ranges of Ar include only distortions of Si-C bonds. Values of Ar 
for C-C and Si-Si bonds mean the deviations against the bond lengths in bulk diamond and 
bulk Si, respectively. 

AEUeV/ccll)    Egb(J/m2 Ar(%) AO(dfgrcc) 

Non-Polar 
ab initio 4.44 1.27 -2.9 to +2.9 -22.4 to +27.9 
(64-atom cell) C-C:+3.6, Si-Si: 4.4 
SCTB 5.07 1.43 -2.5 to +2.2 -23.1 to +21.1 
(144-atom cell) C-C:+3.8, Si-Si: 4.3 

Polar 
ab initio 4.31 

N-type -2.7 to +2.0. C-C:+4.5 -20.1 to +22.5 
P-type -2.7 to +2.5. Si-Si:  1.1 -13.0 to +21.0 

SCTB 4.52 
N-type -2.5 to +2.1. C-C:+2.5 -21.8 to +19.7 
P-type -2.1 to +1.4, Si-Si:  1.9 -13.1 to +21.1 

It can be said that all the interfacial bonds are well reconstructed in each interface. The 
bond lengths and bond charges of the C-C and Si-Si bonds in each interface have features 
similar to those in bulk diamond and Si. The C-C bonds in the non-polar and N-type polar 
interfaces has a two-peak structure in the charge density, typical of bulk diamond. It seems 
that the electrostatic repulsion between C atoms with partial negative charges lengthens the 
C-C bond as compared with bulk diamond. The agreement between the ab initio and TB 
results is rather good on the atomic configurations, exxept for the C-C bonds at the N-type 
polar interface. The agreement on the total energy is also good, although the difference 
between the non-polar and polar interfaces is larger in the TB results. The relative stability 
of the polar interfaces can be explained by the relatively small bond distortions because of 
only one kind of wrong bonds in each polar interface. 

As shown in Figure 4(b), the present interfaces in SiC have a clear band gap in accordance 
with reconstruction of interfacial bonds. Electronic states greatly localized at the C-C bonds 
are observed at the top and bottom of the valence band, which are indicated by stars in Figure 
4(b). The localized states at the valence-band top exist at about 0.3eV and 0.5eV above 
the bulk valence-band top for the non-polar and N-type polar interfaces, respectively. States 
weakly localized at the Si-Si bonds are also observed near the bulk valence-band top for the 
non-polar and P-type polar interfaces, which are indicated by asterisks in Figure 4(b). 

The origin of the C-C bond states can be explained by the analogy to a diamond cluster 
embedded in bulk SiC. The width of the valence band of diamond is much larger than that 
of SiC. Thus band-edge states of diamond should stick out from the SiC valence band, and 
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become localized states. The present C-C bond states at the band bottom consist of s-like 
orbitals of C atoms, and the C-C bond states above the bulk band top consist of p-like 
orbitals of C atoms, similarly to the bulk band-edge states of diamond. 

Non-Polar Polar 
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Figure 4. (a) Relaxed configuration of the non-polar interface of the {122}S = 9 boundary 
in SiC. Contours of the valence electron density are plotted from 0.015 to 0.295 in spacing of 
0.020 for SiC. (b) Eigen energy levels at the T point for the polar and non-polar interfaces. 
Length of each horizontal line represents the probability of each state in the interface re- 
gions, which correspond to one half of the unit cell. Boxes represent the bulk band projection. 

In the results by the SCTB method [34], the C-C bonds generate localized states only 
at the bottom of the valence band, and the Si-Si bonds generate localized states at the top 
of the valence band and the bottom of the conduction band. This is a serious fault of the 
SCTB method. This may be caused by the usage of the universal parameters and simple 
r~2 dependence for the two-center integrals [14]. 

7. CONCLUSION 

Essential results of our TB calculations of various extended defects in Si and SiC have 
been supported by ab initio calculations. Especially, stable configurations by the TB meth- 
ods are rather correct, although the energy values are often overestimated and the C-C bond 
states in SiC are not correct. The present results also indicate the importance of an effec- 
tive combination of the TB method and the ab initio method in dealing with very complex 
systems, as is now being executed for the self-interstitial clusters in Si. 
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EMPIRICAL TIGHT-BINDING APPLIED TO SILICON NANOCLUSTERS 
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ABSTRACT 

The calculation of the electronic structure of silicon nanostructures is used to discuss the 
accuracy of results obtained by the tight-binding method. We first show that the level of refinement 
of the tight-binding approximation must be adapted to the calculated property. For example, an ac- 
curate description of both the valence and conduction bands which can be achieved with a 3rd- 
nearest neighbor approximation is necessary to calculate the variation of the gap energy with the 
silicon crystallite size. The sp3s* model which gives a bad description of the conduction band un- 
derestimates the confinement energy but can give good results when it is used to determine the 
variation of the crystallite band gap with pressure. To study Si-III (BC-8) nanocrystallites, we 
show that a good description of the bulk band structure can be obtained with non-orthogonal tight- 
binding but due to the large number of nearest neighbors one must take analytical variations of the 
parameter with interatomic distances. The parameters involved in these expressions can be easily 
fitted to the bulk band structures using the k-point symmetry without requiring the use of group 
theory. Finally we discuss the effect of increasing the size of the minimal-basis set and we show 
that it would be possible to get the values of the tight-binding parameters from a first-principles 
localized states band structure calculation avoiding the fit to the energy dispersion curves. 

INTRODUCTION 

The discovery of porous silicon luminescence [1] has induced many theoretical studies of 
silicon nanocrystallites properties. The blue shift of a cluster gap which is due to quantum confine- 
ment can be simply explained in the effective mass approximation (EMA) but it has been rapidly 
shown that it is overestimated by this method for the experimental cluster sizes (-1-10 nm). Em- 
pirical methods (using pseudopotentials or tight-binding (TB)) seem to be well suited for such sizes 
filling the gap between EMA and first-principles method. 

In the next section, we show that an accurate description of the valence and conduction 
bands is necessary to get accurate variations of the blue shift. This is the case of EMA or of TB 
approximations limited to first or second nearest interactions which respectively overestimate or 
underestimate the cluster band gap. We also show that a TB model can give good results for the 
blue shift but also can give very bad ones for other properties like the deformation potential. 

The third section is devoted to the fit of empirical TB parameters to a known band structure 
calculated by a first principles method like the pseudopotential local density approximation for ex- 
ample. Applied to the Si-III (BC-8) phase, we use simple analytic expression for the TB parame- 
ters. Such expressions reduce the number of parameters one has to fit. We also show how 
symmetry can be easily used even with such a large unit cell. 

BLUE SHIFT OF SILICON CLUSTER GAPS 

This is the first property which has been computed as it can be compared with the experi- 
mental luminescence energy. The EMA applied to a spherical infinite well gives a d variation of 
the gap with the diameter d of the cluster. It is obvious that such a variation cannot be valid for very 
small clusters (for very small clusters, the gap diverges). For large clusters TB can give the same 
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Fig. 1  Eigenstate of a linear cluster compared to the eigenfunction of the linear chain/ for the 
wave vector equal to ;—^r— 

kind of results provided the effective masses in this approximation are in good agreement with the 
experimental values. This is not the case of the sp3s* Vogl's model [2]. The width of the conduc- 
tion band is underestimated and the cluster gaps calculated with this model are too small. 

A simple explanation can be obtained from a TB model applied to a linear chain of atoms 
(Fig. 1). Periodic clusters of n atoms can be obtained by removing one atom each n+1 sites. This 
is sufficient with TB parameters limited to nearest neighbors to suppress all hamiltonian matrix el- 
ements between the clusters. Creating such vacancies can be simulated in TB by a local infinite 
potential on the atoms which have to be removed [3]. The effect of such a potential is to cancel the 
component of the linear chain eigenstatcs on these states. So the extended states of the clusters are 
simply eigenstates of the linear chain with a component equal to zero on the vacancies. If -ß is the 
TB nearest neighbor interaction, the energy En of the cluster is equal to -2ßcns(*n) where a is the 
lattice parameter and k = —^j— /= 1,2, ...n so that the linear chain eigenstatc v-sin(tr) vanishes 
on each vacancy site x = \n + \)a . Such truncated crystal model has been used for one-orbital per 
atom representations [4], single-band models [5-8] and empirical pseudopotentials [9-10]. Howev- 
er this only gives extended clusters or slabs states, localized states as dangling bonds for example 
can be obtained only if one considers complex wave vectors. 

Such a method could be generalized to a 3 dimensional cluster provided one uses a TB 
model without three-centers parameters. In such a case one must also suppress the contribution due 
to potential localized on the removed atoms. The cluster wave function can be expressed as a linear 
combination of bulk states with wave vector k: 

k 
corresponding to an energy belonging to the bulk band energy range: 

E„ = !«',„£, (2) 

A non-orthogonal TB model [11] with a minimal sp3 basis gives a good description of both 
the valence and conduction bands. We have already noticed that this is not the case of orthogonal 
TB models like the sp3s* one which gives very bad effective masses. The agreement for the lowest 
conduction bands with first principles calculations can be improved with next-nearest TB [12] and 
for higher energy bands one has to consider third-nearest and three-centers TB interactions [ 13] or 
take a minimal basis with s, p and d atomic functions. We have applied these different models to 
spherical silicon nanocrystallites. The dangling bonds on the surface atoms are saturated by hydro- 
gen atoms. The blue shift is given on Fig. 2. One can see the quite large difference between the 
different models for small clusters and which is mainly due to the width of the bulk conduction 
band. Close results are obtained (Fig. 2 curves a and b) for the two TB models which give a bulk 
conduction band in very good agreement with the first-principles one. 

Our best values obtained with non-orthogonal TB [ 14] are also in very good agreement with 
the empirical pseudopotentials ones [15] and the first-principles ones [16] (Fig. 3). Let us notice 
that in the latter method, a constant correction to the LDA gap equal to the bulk one has been used 
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Fig. 2 Comparison between different ETB models for Si clusters passivated with hydrogen, a) 
Non-orthogonal tight binding parameters [11]. b) Third nearest neighbors parameters [13]. c) Sec- 
ond nearest neighbors parameters [12]. d) First nearest neighbors sp3s* parameters [2]. 

1/d (inn1) 

Energy gap vs confinement parameter 1/d for hydrogen terminated Si clusters, wires and 
(d = aN/&   for  slabs,   d = a(0.5N/n)l/2   for  wires,   d = a(0.15Nn)1/3    where 

Fig. 3 
slabs 
a = 0.54nm and N is the number of Si atoms in the unit cell). [15] 
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Fig. 4 Compilation [17] of optical bandgaps of silicon crystallites and porous silicon samples 
obtained from optical absorption (empty symbols) and luminescence (full symbols) and with 
luminescence of hydrogenated clusters ( (D) [18]. Straight line: one-electron bandgap calculated 
for spherical silicon crystallites [14]. Dashed line: the same but including the excitonic binding 
energy 

as its variation with cluster size is unknown. There is a good agreement of the computed values 
with the measurements made for hydrogenated clusters and with the absorption edge (Fig. 4). Nev- 
ertheless the calculated values arc much larger than the luminescence energy measured for porous 
silicon. Such disagreement is also found for oxidized clusters and seems to be due to a surface ef- 
fect [19] like self-trapped exciton [20] for example. 

Analytic expressions of the non-orthogonal TB parameters as a function of the interatomic 
distance are given in [11] and one can try to use these values to calculate the variation of the bulk 
and cluster gaps with pressure. However the overlaps in this model arc large This gives rise to a 
too large repulsion between the atoms and then to a bulk lattice parameter larger than the experi- 
mental one [21]. This also gives rise to very small eigenvalues of the overlap matrix as shown on 
Fig. 5. A small variation of the interatomic distance can make some of these eigenvalues to vanish 
and even become negative for a few k points in the Brillouin zone which leads to energy divergenc- 
es. Applied to clusters, the contribution of these k points to the variation of the energy given by 
equation (2) with pressure is not negligible and the result docs not agree for small clusters with first 
principles results [21]. Such discrepancy is due to the fit of the overlaps to the band structure. In 
the case of a minimal sp3 basis they arc forced to reproduce an effect which is due to higher energy 
states like the d ones. 

Such divergences do not occur with the orthogonal sp3s* TB model. If one uses the bulk 
deformation potentials measured for some high symmetry k points, one can fit the variation of the 
TB parameters with distance. In this model the negative indirect gap deformation potential is due 
to the increase repulsion between the s* state (which simulates the effect of higher energy d states) 
with the first conduction band with increasing pressure. We have assumed that the interatomic 
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Fig. 5 Overlap dispersion curves along symmetry lines of the Brillouin zone. 

0.5 

1/d (nmJ) 

Fig. 6 Band gap pressure coefficient of spherical nanocrystallites [22] as a function of their diam- 
eter: LDA calculation [23] for small clusters (=), sp3s* tight-binding model (»)[2]. The values for 
1/D=0. are the bulk values. The dotted line is a guide four the eyes between the LDA bulk and 
small clusters values. 
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nearest-neighbor Slatcr-Koster tight-binding parameters used in the Vogl model vary as <fn" where 
a stands for ssa, spa, ppa, pp7t and s pa. The na 's have been fitted to the four bulk pressure coef- 
ficients listed above. We get n„0 = 3.25, «,,,„ = 2.5, „llp„ = 1.5, ;>w,„ = />w,„ and „s.pn = 3 [22]. The 
comparison between TB and LDA results is given on Fig. 6 as a function of cluster size. The results 
are slightly scattered for small clusters and one can see from the tight-binding calculation that it 
smoothly tends towards the bulk value when the diameter increases. For small clusters, the differ- 
ence is comparable to the one between tight-binding and LDA bulk values. The absolute difference 
between results obtained by the two methods is quite small as bulk deformation potentials vary in 
the -0-10 meV/kbar range. Such agreement suggests that the expansions given by equ. (1) of the 
cluster HOMO and LUMO states obtained by the two methods are quite close. The net difference 
between the behavior of the gap value and its variation with pressure calculated by TB and LDA 
methods can be simply explained with equation (2). This is due to the good agreement between the 
bulk deformation potentials calculated by the two methods although this is not the case of the bulk 
conduction band energies. 

The two preceding examples show that a TB model which can predict both conduction band 
energies and derivatives does not yet exist. One would have certainly to take into account an ex- 
tended basis including s, p and d atomic Orbitals. 

FIT OF EMPIRICAL TB PARAMETERS 

Due to the wave vector conservation law, the electron-hole radiative recombination yield 
in bulk silicon which is an indirect gap semiconductor is very small as it must be phonon assisted. 
It is improved for silicon clusters as this selection rule is no more valid. There is some interest to 
consider the BC-8 phase which is a direct gap semiconductor [24]. For this BC-8 phase, to get the 
same quality of the fit for the band structure as for the diamond structure one has to consider TB 
interactions up to 0.5 nm. This corresponds to the 7th nearest neighbors in the BC-8 phase which 
is close to the 3rd neighbors in the diamond phase. Together with the atomic levels Es and Ep, there 
are 58 TB parameters. To avoid a too large number of parameters whose numerical fit might lead 
to unphysical values, we have expressed the s and p atomic functions as linear combination of two 
gaussians and we have fitted the amplitude A and the exponential coefficient a of each gaussian. 
Two-centers analytical expressions for the four overlap parameters S; (i=ssa, spa, ppa and ppTt) 
between gaussian orbitals as a function of the interatomic distance are given in reference [25]. Four 
other extra prefactors Ej arc used for the hamiltonian parameters Hj which arc written as EjS, but 
with a and A parameters different from the overlap ones. We are left with 28 parameters which 
have been fitted to a band structure obtained by norm conserving pseudopotential theory [26] with- 
in the local density approximation. 

The fitting procedure can be simplified if one uses group theory to block diagonalize the 
hamiltonian as it is often not sufficient to sort the eigenvalues by increasing values because their 
order can change during the fit. When there are several atoms in the unit cell (8 in the case of the 
BC-8 structure,) this analytic calculation becomes rapidly tedious. This can be done numerically 
by a simple trick which is lattice structure and unit cell independent. 

Let us first take rough estimates of the parameters taken as Harrison's laws [21]. We first 
compute the n eigenvalues and eigenstates ^, at a symmetry * point. The states «„, have the sym- 
metry of the unit cell. If now we take random TB parameters, the hamiltonian matrix in this basis 
is no more diagonal but can be block-diagonalizcd. In the basis of the <>„, states, the hamiltonian 
matrix is for example: 
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H 

x 0 x 0 0 0 0 

0x00000 
x 0 x x 0 x 0 

OOJCXOOO 

0 0 0 0 x 0 x 

0 0x00x0 

0 0 0 0 x 0 x 

(3) 

where x stands for a non-zero matrix element. The zeroes are due to the symmetry of the $„ k 

states. Looking for the non-zero matrix elements in this matrix, it is possible to reorder the §n k 

states. In the example given in equation (3), we get a non-zero 4*4 block for n=l, 3,4 and 6, a 1*1 
for n=2 and a 2*2 for n=5 and 7. If we reorder the functions §n k, we get 

x x 0 0 0 0 0 

x x x x 0 0 0 

0 x x x 0 0 0 
#=0xxx000                   (4) 

0 0 0 0x00 
0 0 0 0 0 x x 

0 0 0 0 0 x x 

which is now block diagonalized. If a group representation of dimension m is / times degenerated, 
this procedure generally gives a ImHm block because the $„ k computed by a diagonalization pro- 
gram are a random combination of the true functions which give / identical m*m blocks. This is 
not a real problem for the m eigenvalues of the lm*lm block are / times degenerated and can be 
easily related to the degenerated first principles energies. 

The values we have calculated (Fig. 7) are close to the results obtained for silicon in the 
diamond structure [11] and they give silicon BC-8 conduction band (Fig. 8) in very good agreement 
with the LDA result. The energy gaps computed for Si BC-8 clusters are given on Fig. 9. The agree- 
ment with a LDA calculation for small clusters is quite good. 

Let us also notice two points which can improve the quality of the fits. The variations of the 
TB parameters with interatomic distance are sometimes computed by a fit using several first prin- 
ciples band structures calculated for different lattice structures. But these band structures have no 
common energy reference. The zero energy is usually taken at the Fermi level or at the top of the 
valence band. So the hamiltonian parameters have to be written as Hi-AEß*Si where AEß is an extra 
parameter which depends on the lattice structure ß. Such an expression must also be used in the 
case of a fit to a single band structure as in this case changing the origin of energy would modify 
the quality of the fit. 

The second point concerns the values of the TB parameters used as the starting point of the 
fit. As we have to solve a non-linear system of equations to minimize the error equal to the distance 
between the TB eigenstates and the first principles ones, one can finds different minima depending 
on the starting point. The errors obtained for these different minima are generally very close and it 
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Fig. 7 Non orthogonal tight-binding 
parameters for Silicon in the BC8 
phase. The vertical dotted lines indicate 
the positions of the nearest neighbors. 
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Fig. 8  .Tight-binding band structure of BC8 silicon 

Fig. 9 Variation of the cluster band gap as a function of the 
cluster diameter for silicon in the diamond structure (dotted 
line) and in the BC8 phase: tight-binding model (crosses); 
LDA calculation (full dots). The full line is a mean least 
square fit to the calculated points 
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II 
Fig. lOIn a square lattice and TB interactions limited to 2nd nearest neighbors an atom of a 4*4 
unit cell has no interaction with an atom of a neighboring cell. 

is difficult to choose between the corresponding TB parameters sets. To find a starting points or 
the TB parameters without any fit, let us write the hamiltonian in a basis of local atomic functions. 
The basis generally contains many states from the neutral atoms and the ionized ones. We also 
choose a unit cell large enough such as an atom will have no TB interaction with an atom in a 
neighboring cell (Fig. 10). We first orthogonalize the basis and write the hamiltonian as: 

H HAA HAB 

H
BA 

HBB 

(5) 

where A is a minimal basis set (sp3 for a silicon atom for example) and B the remaining basis func- 
tions higher in energy. To keep the size of the problem equal to the dimension of A , we have to 
consider an effective Hamiltonian: 

Heff - HAA + H 
1   „ 

ABE-HBB   BA (6) 

The matrix elements of HCJJ give the TB parameters. If their variation with energy E in the 
A states spectrum is not negligible, one can conclude that the minimal basis set A is too small. On 
the contrary, to simplify the search of the He[f eigenstates a constant E can be taken. 

Such method can be also used to get the variation of the intra-atomic TB energy levels and 
of the two- and three-centers interatomic integrals when the interatomic distance or the atom envi- 
ronment are modified. 

CONCLUSION 

We have made a pretext of the calculation of silicon clusters electronic structure for show- 
ing how TB can be used to get accurate results for sizes where neither EMA nor first principles can 
be applied. It also shows that to get accurate cluster band gaps, silicon is certainly among the most 
difficult materials. This is due to the difficulty of accurately describing the conduction band. This 
is certainly due to the d states generally omitted in silicon TB calculations. Some improvements 
have been made to take into account the symmetry to simplify the fit of the TB parameters. A meth- 
od to avoid the fit of the TB parameters is also suggested. It can also be used to test the validity of 
the minimal basis set used in TB calculations. 
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ABSTRACT 

We point out that the predictive power of tight binding potentials is not limited to obtaining 
fairly accurate total energy calculations and very satisfactory structural evolutions by molecular 
dynamics simulations. They also allow for a nice physical picture of the links between bonding 
and stability in different structures, which is particularly helpful in the case of binary silicides. 

INTRODUCTION 

Recently, semi-empirical tight binding (TB) potentials have been successfully adopted for 
total-energy calculations and numerical simulations of semiconductors, transition metals and 
carbon-based materials. An increasing amount of applications are taking place whenever the 
complexity or the size of the system prevents the employment of first-principles approaches, and 
We think that this volume contains the most complete and updated review on the subject. 
Probably, one reason for such an accomplishment is related to the low computational cost (as 
compared to selfconsistent methods) entailed by the semiempirical estimation of the electronic 
states entering the attractive (band structure) part of the potential (Ubs), and by the 
phenomenological description of the repulsive part (Urep) through pair interactions. One other 
reason is represented by the very recent achievements in developing linear scaling algorithms that 
may encompass the bottleneck of this non-selfconsistent method, i.e. the TB matrix 
diagonalization. They have disclosed the possibility of large scale simulations for realistic 
materials and a complete, updated review can be found in [1], 

Still, the most interesting feature of this method, in our opinion, rests in the possibility of 
exploiting a real-space analysis of the electronic features, and in the interpretative power 
provided by the partition of the total energy (and interatomic forces) into band structure and 
repulsive contributions. For what concerns the former, the orbital- (a) and site- (i) projected 
density of states Dia,ia(e) can be very helpful, especially in the case of non-periodic systems, 
where the wavevector integration on k is reduced to the T point of a large supercell. Moreover, 
the evaluation of the crystal orbital overlap populations (COOP) 

Diojp (s) = ReßnkC'iaWCjpOnk) Siajp 8(8-8,*)] 

can be achieved also in the case of orthogonal tight binding by substitution of the overlap element 
Siajp with the corresponding hopping element Hiajp, in agreement to the Hiickel guess Siajp = 
2Hiajp/K(8ia+Sjp). This allows for a qualitative analysis of bonding and antibonding features in the 
density of states (DOS) and for the evaluation of the bond energy contributions to Ubs 

Uiajp(sF) = jDictjp(e)de. 
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Obviously, this is not a novelty in the standard LCAO analysis of the stability trends in solids, 
as nicely outlined in the last fifteen years by distinguished chemists like Roald Hoffman [2], or 
physicists like David Pettifor [3], What makes still vital the subject is the need to import it into 
the standard analysis of molecular dynamics simulations, which is still mainly grounded on 
structural informations, such as the ones provided by pair correlation distributions 

The repulsive potential, on the other hand, also convey some additional information, if we 
consider that (within a simple pair potential scheme) it contains the orbital overlap correction and 
the crystal field contribution. In fact, competing structures may display a different partition in Uhs 
and Urcl,, depending on the neighbours configurations, in terms of covalent bonding and Pauli 
repulsion, respectively. Clearly, in case of binary compounds, the need to extend interactions up 
to secon neighbours (as motivated by the achivement of a satisfactory DOS) may introduce some 
arbitrariness in the determination of the pair repulsion parameters Still, a wise fitting on the 
equilibrium and stability conditions for a few structures always gives rise to a phenomenological 
link between the atomic size and the repulsive character 

In the last few years we have applied the orthogonal TB method to total energy calculations 
and molecular dynamics simulations of Ni-, Co- and Fe- silicides [4-12] The silicon-rich 
compounds are particularly interesting from this point of view, since they display both a high 
sensitivity of the electronic features to the bond directions, as provided by the fairly covalent pSl- 
diM bonding, and a relevant polymorphic attitude, which is typical of metallic materials The latter 
feature is emphasized in the case of thin epitaxial films, which frequently display pseudomorphic 
(i.e. substrate-induced) crystal phases, not present in the bulk phase diagram One example is 
FeSi2, which is presently the subject of a vivacious interst, due to the prosimising performances 
provided by its stable, orthorombic phase as a light emitting diode integrated at a silicon junction 
[13]. 

ONE EXAMPLE: FeSi2 

At variance with respect to the related compounds NiSi2 and CoSi2, the metallic fluorite phase 
y-FeSi2 is not bulk-stable, and evolves towards the the ß form, which exhibits a semiconductive 
gap as large as 0.8-0 9 eV [14]. The latter includes 24 atoms in a primitive, base-centered 
orthorhombic cell, and it is generated by a moderate deformation of the cubic cages of silicon 
atoms around the iron sites in the fluorite structure, leading to inequivalent Fei, Fen, Sii and Sin 
sites, with sizeable changes in the secondary coordination and volume reduction by 2 9 % [15] 
Actually, muffin tin orbitals calculations by Christensen [16] have predicted a high density of 
states at the Fermi level of the y-phase, suggesting that a Jahn-Teller distortion drives the cubic 
structure into the ß form Some more insight is provided by our analysis of the COOP for pSi-dic 

bonding (see Fig. 1, top panel), within the TB potential that we have developed for iron silicides 
[10]. It shows that the Fermi level is located at the maximum of an antibonding (i.e. negative) 
Dia.jp in the case of the fluorite structure On the contrary, the lattice distortion provided by the ß 
phase gives rise to an enhancement of the bonding features at low energy (nearly the double of 
the bond energy) and to a splitting of the antibonding band where the Fermi level is located (see 
Fig. 1, bottom panel). 

However, recent Molecular Beam Epitaxy experiments have shown that the y phase can be 
stabilized at very low coverages ontop Si (111) due to the bad matching of the ß phase to the 
substrate and to the superior interface bonding provided by the fluorite arrangement [17] As the 
film exceeds a few monolayers, a real structural phase transition to the stable form occurs at 
annealing temperature which decreases with thickness A similar behaviour is also found for other 
pseudomorphic phases of FeSi2, such as the CsCl-defected (d) structure [9] and the cc-phase 
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(bulk stable at high temperatures), which are closer in total energy to the stable phase (see our 
TB total energy estimation in Fig 2, as taken from [6]), still displaying large kinetic barriers to 
the selected atomic jumps within a pseudocubic network that the corresponding phase transitions 
do require. 
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Fig. 2. Total energy per atom vs atomic volume for the existing FeSh phases, as calculated by 
the TB potential described in [6]. 
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Here, by Tight Binding Molecular Dynamics (TBMD), we are interested in analyzing from a 
site-projected point of view the spontaneous evolution of the unstable bulk fluorite structure 
towards the stable phase, in order to see whether it corresponds to a Jahn-Teller mechanism. One 
may wonder how much our bulk simulation at 100 K does reproduce the structural phase 
transition occurring in the epitaxial configuration. Since we are not interested in the 
thermodynamic aspects, and since we show that the driving force of the transformation lies in the 
coupling between the local electronic density of stated and the local lattice distortion, which is 
obviously hindered by the lattice-matching condition at the silicon interface, we conclude that the 
only difference with respect to the epitaxial configuration rests in the "extrinsic" kinetic barrier 
provided by the interface bond breaking. 

Elsewhere [10] we have described how we implemented a suitable Rahman-Parrinello 
molecular dynamics with variable cell shape, and how we selected a suitable cutoff of the TB and 
repulsive interactions, in order to include the second neighbours shell. Here we focus only on the 
main physical results that we obtained during a simulation as long as 105 time steps (x=0.2 fs), 
which can be analyzed within the real space perspective that we outlined above. The simulation 
cell is initially taken as the tetragonal nucleus (x-oriented) of a cubic supercell made by 8 fee 
units, where a is two times the fee edge (5.37 Ä) and b,c are the diagonals of the fee square faces. 
It contains 48 atoms and, as the simulation evolves, it transforms into a simple orthorhombic cell 
(containing two primitive units), by decreasing a and increasing b and c very close to the 
experimental values values (a=9.86 A, b=7.79 A, c=7.83 A). Even the final atomic positions inside 
the simulation cell agree very well to the experimental target structure, as confirmed by the 
standard analysis of the radial and bond-angle pair distribution functions [10] and the site 
coordinations reported in Fig. 3. 

In Fig.4 we follow the evolution of the electronic DOS with simulation time, which shows that 
a metal-semiconductor transition takes place. It is interesting to note that, after the initial 
disappearance of the sharp density peak at the Fermi energy (0-200 x) as a consequence of the 
thermal symmetry breaking, a spread out of low energy s states occurs inbetween 200 and 3000 
x, along with a density redistribution of p/d states above and below the Fermi energy. Still, the 
gap opening takes place only between 4150 and 4700 x and the DOS does not change any 
further, showing the same shape and gap size of the ab intio result reported in [14]. 

In order to tell if a true Jahn-Teller distortion is taking place, we now analyze some more in 
details the configurational path during the first 5000 x (= 1 ps, the intrinsic relaxation time of our 
simulation cell). In Fig. 5 we display the evolution of the secondary coordinations for Fe and Si 
sites, Fe-Fe and Si-Si respectively, since the primary coordination for Si-Fe pairs is always eight, 
despite the relevant bond angle distortions (see Fig. 3). We note that between 2000 and 2700 x a 
sizeable change occurs and that the transformation is completed in a second, separate step 
between 4000 and 4700 x. It would be interesting to understand whether a partial, cooperative 
motion at all the sites is involved in both steps, or if the two-step behaviour is produced by a 
complete, local transformation occurring at different sites in different times. 

To this end we show in Fig. 6 the site projected DOS at 3000 x, the intermediate stage, for a 
selected number of atoms representing 6 different classes in which the atoms in the cell turn out 
to be divided. Four Fei atoms over eight, MI (A), do display a gap and the local environment 
(bond angles and secondary coordination) is entirely of ß-type. The remaining four, MI (B), are 
essentially fluorite-like and no local gap is present. The eight Fen sites, Mil (AB, BA) are in an 
intermediate stage both for what concerns the DOS and the structure, and they stay in this 
situation up to the second structural rearrangement at 4000 x, when the remaining Fd sites also 
make the transition. 
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Both Sii and Sin sites, 16 atoms in each class, are sharply divided into two groups of eight atoms: 
one, Sil.II (A), contains completely transited environments (the distorted cages around Fe! 
transited atoms) with a local gap opening, and the remaining, Sil.II (B), are still fluorite-type 
Therefore a set of local distortions take place in the first step, and they are distributed in an 
ordered pattern indipendently of the final Fei or Fen symmetry. 
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In Fig. 7 we show the comparison between the the original cubic arrangement in fluorite and 
the distorted cage which gives rise to a local gap opening, as extracted by our simulation cell at 
3000 T. We see that a displacement of Fe (small sphere) towards one face of the cubic cage 
occurrs, generating a bond angle distortion at first neighbours, which is responsible of the gap 
appearance, according to the rather covalent character of the Fed-Sip bonding This, in turn, gives 
rise to a deformation of the silicon cage into a solid with two square faces of different side and 
four nearly regular trapezoidal faces 

d) 

Fig. 7. Prospective views of fluorite (a and c panels) and orthorhombic (b and d panels) local 
configurations, as taken along x and z axis, respectively. Small spheres are the iron atoms. 
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One additional information is provided by the analysis of the repulsive potential for the two 
structures at the same volume per atom. The ß configuration, with respect to the y, turns out to 
have not only a larger Ubs, but also a lower Urep, as probably due to the slight increase in Fe-Si 
first neighbours distance that the silicon cage distortion generates. This occurs despite the 
sizeable reduction in the second neighbours distances, which are still within the cutoff radius of 
our potential. By the analysis of Urep at different steps of our simulation, we understand that the 
absence of any activation barrier can be related to the fact that no increase in the Pauli overlap is 
generated during the transformation, and in the target structure too. This is not the case, for 
example, of the defected (d) and a pseudomorphic structures. 

CONCLUSIONS 

In this paper we have just considered some qualitative aspects concerning one example of 
structural transformation in transition metal silicides, which can be analyzed by TBMD. 
Quantitative details on the subject (but for the analysis of the COOP and the repulsive potential) 
are contained in [10], The important point that we hope to have made sufficiently clear, however, 
is that the TB method provides more information that is usually extracted from molecular 
dynamics simulations, especially if we take profit of the real-space analysis of the bonding and the 
repulsive features. 
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ABSTRACT 

A simple spd tight-binding scheme for atomistic simulations in transition metals is de- 
veloped using an orthogonal basis set in the two-center approximation. The purpose of the 
present approach is to cope with the limitations of the canonical rf-band model for elements 
at the beginning or at the end of the transition metal series while keeping a reduced number 
of parameters, and simple decay-functions. The parameters for the hopping integrals are 
fitted to FP-LMTO calculations of the volume dependence of band energies and band struc- 
tures for several selected structures. Constant values are taken for the on-site energies, and 
the Born-Mayer pair potential is used for the repulsive term. Two approaches are compared 
for the total energy: the band model and the bond model. First applications are presented in 
the case of zirconium, where the difference between these models on phase stability results is 
particularly drastic. The bond model reproduces the stability of the hep phase and displays 
a good agreement with experiments for the elastic constants. 

INTRODUCTION 

Large scale atomistic simulations in transition metals increasingly need the use of ener- 
getic models being both fast and quantitative. The realism reached by calculations based on 
the Local Density Approximation (LDA) to the Density Functional Theory (DFT) is very 
satisfactory in most cases. However their computational cost are quite a limitation to reach 
very large system sizes, and to perform long runs of molecular dynamics simulations in par- 
ticular in metals. Even if the size of the matrices which are handled can be reduced by using 
localized basis sets, the calculation of the matrix elements and of the various contributions 
to the total energy together with the self-consistent loop make these calculations typically 
two orders of magnitude heavier or more than tight-binding schemes. For transition metals, 
spd tight-binding models therefore seem to be an interesting way of approaching the realism 
of ab-initio calculations while drastically reducing the computation time. 

The present study focuses on Group-IV transition metals (Ti, Zr, Hf) for which an 
explicit treatment of the electronic structure is required to go beyond semi-empirical models 
[1] in order to study the still open questions related to point and extended defects. Tight- 
binding rf-band models were shown to account for some of the specificities of these elements 
[2], but the effects due to s and p electrons and to their hybridization with d electrons are 
also expected to be important and have motivated the development of the present models. 
These elements are a particular difficult test for tight-binding models because 4 structures 
- namely hep, bec, omega and fee - are very close in energy [3]. After a brief description of 
the models and the fitting procedure, this paper illustrates the differences between the bond 
model and the band model in the case of zirconium. 
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TIGHT-BINDING APPROXIMATION 

Density functional Theory (DFT), using the- Kohn-Sham approximation within LDA 
gives the well-known following expression for the total energy of a system of interacting 
electrons in a solid : 

E[n(r)} = £u,k%0(k) - EF)Co(k) + F[n(r)} (1) 

where n(r) is the electronic density, cQ(k) are the eigenvalues of the Kohn-Sham hamiltonian 
for given wave-vectors k, Er the Fermi level, u>^ the weight of the k-point in the irreducible 
wedge of the Brillouin zone, and S(i — Er) a step-function limiting the summation inside 
the Fermi surface. This natural separation between the two contributions to /7[n(r)] can be 
mimicked by replacing the eigenvalue sum (or band energy) by expressions derived within 
tight-binding methods and finding empirical potentials for /'[«(r)] [4]. In contrast to this 
standard band formalism, Foulkes and Haydock [5] have suggested setting the zero of the 
cohesive energy equal to the energy of free atoms and rewriting the total energy as a sum of 
a bond energy and a pairwise repulsive contribution. If the later is taken to have a simple 
exponential decay, the total energy of a system in this bond formalism [6] takes the following 

form: 

£%?" = X>k 5[60(k) - EF] c„(k) - £ A'„ c°lt + A •£ £ c~'"- (2) 
o,k if i    3 + i 

where Nu is the number of electrons of each angular momentum C on site i. and c°f the { 
energy level of the free atom. In the present approach, the tight-binding eigenvalues. cn(k), 
arc obtained from a Slater-Koster hamiltonian, written in an orthogonal basis set using s, 
p and A Orbitals, in the two-center approximation. 

HAMILTONIAN PARAMETERS 

The first step of the fitting procedure is the same for both the band model and the bond 
model, and consists of retrieving information on the volume dependence of band structure 
and band energy from oft — initio calculations. Every independent hopping integral and its 
variation with distance depend on two parameters through: 

MÄy) = hlcrpi-qvRij) when /?„ < Rc (3) 

where u stands for the type of interaction (s.icr, dda, dd~, etc), and /?tJ is the distance 
between the atoms. A smooth decay to zero is ensured by replacing the exponential by a 
polynomial from Rc to R0 = \/2Rc. The polynomials are taken of order five to make first 
and second derivatives also continuous at Rc and RQ. Constant values are taken for the 
on-site energy differences: t°s — c° — h'sri and e° - f° = Kpj. A rigid shift of the bands is 
allowed by letting c° free to vary with structure and atomic volume. We will see in one of 
the next sections that the total energies in the bond model is independent of the value of 
e° and this remains true for the particular choice adopted here for the band model. The 
hopping integrals and the parameters defining the on-site energies are fitted simultaneously 
to FP-LMTO calculations of the volume dependence of band energies E'^JJ0 and energy 
bands e^T0(k) for several selected structures. In other words, we have to minimize the 

sum, 

s = 7EE k™n
r» - ^o(k)l2 + ßZ \E'b:,!J°(s.n) - E£U°.n)\2       W 
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with respect to fit parameters. We generally use two different structures (s = bcc, fee) 
taken for three atomic volumes fi each. For the band structure part, we have used about 
two hundred k-points. Integrations for band energy calculations are performed using a 
uniform mesh in the irreductible wedge of the Brillouin zone. The Hermit-Gaussian smearing 
method [7] has been employed to approximate the step-function S(x) with a smearing-width 
a = 0.3 eV. First guess values are obtained by fitting only energy bands (i.e. ß=0). Then 
the ß/f ratio is progressively increased to improve the band energies. A final value of 
ß/-y = 105 is found to give a good compromise in getting accurate band energies while 
conserving a valuable control on band structures. 

RESULTS OF THE FIT AND BAND STRUCTURES 

The above procedure has been applied to zirconium, leading to an accuracy of 10~3 eV 
on the six lowest bands selected for the fit. Band structures are very well reproduced in the 
two structures considered in the fit, namely the bcc structure (see figures l-(a) and l-(b)), 
and the fee structure (not shown). Figure l-(c) and l-(d) compares tight-binding and FP- 
LMTO energy bands in the hep phase as a first test of transferability of the parameters. 
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Figure 1: Comparison between ; 
bands in (a-b) the bcc phase and (c-d) the hep phase.   {,^=0.595, qdd-, 
9sd<7=0.699,   {pp„=0.676,   {äp<,=0.648,   {„(7=0.533  expressed   in  bohr-1 

tight-binding band structures in Zr and the corresponding FP-LMTO 
1.167, {p(Jc,=0.414, {,„,„=0.311, 

AS-,. =34.464, k'L- 
0.000, h°pd„ =-1.208, ft°,„=0.160, ft^=-4.398, ft°p,=3.781, h°p„=0.000, h%,= 3.263, fc?a<7=-1.364, 

A'pd=0.3853, Ksd=0.1625 expressed in Ry (1 Ry = 13.6 eV ; 1 bohr = 0.529 Ä). 

The ability of the model to deal with the hep phase is quite satisfactory, except for a 
narrow zone around the K and H points, where discrepancies are noticeable. The parameters 
characterizing the dd hoping integrals are found to be relatively robust and quite indepen- 
dent of the details of the fitting procedure. It is for instance interesting to notice that the 
values of the qv parameters are very close to those obtained from independent fits performed 
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on similar models for other transition metals: we may compare qddr = l.\25 A'1, with values 
of reference [9] for Mo and Re (qdd„ — 1.248 /I"1) or Nb (qdd„ = 0.987 A-1). Moreover the 
dd parameters were also found to be quite independent from the value of the cut-off radius, 
Rc. On the other hand, the on-sito energy differences change significantly with Bc. The 
influence of the cutoff-radius, Rc (from 3.491 A to 6.665 A), on the band-structure in the 
hep-phase, showed that the best transferability was obtained for the smallest value. The 
hopping integrals are therefore taken as relatively short-ranged, i.e. they do not exceed the 
third neighbour distance in the bec phase, in agreement with what is expected from physical 

arguments on screening effects. 

FROM ELECTRONIC STRUCTURE TO ENERGETIC MODELS 

The step towards a total-energy model is much more delicate than the band-structure 
part described above. One way of limiting the empirical character arising from terms other 
than the hopping integrals and the differences between diagonal elements, is to introduce 
as few parameters as possible in this second part of the energy. In the bond formalism, the 
bond energy is clearly separated from the repulsive part, which is taken as pairwise here. 
Moreover, it, should be stressed that in a perfect crystal for a pure metal, the total energy 
in the bond model is unambiguously independent from the value of (°d, since Eq. (2) can be 
rewritten as: , 0_ . 

E\°f = FZiT - N,Ksd - NpKpd + A £ £ £-'"■>, (5) 

where Eba
d

nd denotes the tight-binding band energy, calculated by setting the on-site energy 
reference, ejj, to zero in the hamiltonian. In the band formalism, a constant - like c° - can 
be arbitrarily subtracted from the diagonal elements of the tight-binding matrix, if its 
counterpart is introduced in the second part of the energy [4]. By analogy with (/-band 
calculations, we have chosen to set c°d to zero to calculate the band-energy, and to take the 
second term in the energy as a pair potential, like in the bond model, with a second set of 
two parameters: 

^"rf = ^0)+^LL^*",j- (6) 
To summarize, the two formalisms which are compared here have the same number of 
parameters and are essentially distinguished by the charge transfer between orbitals. when 
either the volume or the structure is changed. For both formalisms, we have fitted the 
two parameters of the repulsive potential to the energy-volume curve in the fee structure, 
calculated by the FP-LMTO method. The energy-volume curves in the hep and bec phases 
are shown in figure 2. The positive point which is common to both models, is that the 
different structures have very similar equilibrium volumes and bulk moduli, as desired. The 
most striking difference is that, the relative stability between the hep and the bec phases is 
completely reversed from one model to the other. In the following section we will concentrate 
on the bond formalism which is the only one able to reproduce the stability of the hep- 
phase. However, empirical improvements to the band model are suggested by analyzing the 
structure dependence of the values of cd, which are a by product of the band-structure fit. 
We have indeed noticed that the value of c°d in the bec structure is higher than in the hep 
structure at the same volume by a constant value which is almost independent of the volume. 
Moreover, if this constant value is taken into account in the band model - instead of setting 
t° in both structures - the near-degeneracy of the two structures is recovered. However 
attempts to model this structure dependence of cd by a simple environment-dependence 
have failed. 
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Figure 2:   Total energy curves for hcp-Zr and bcc-Zr treated by (a) the band formalism with t"d = 0 
(yi*=46.204 Ry and p* = 1.077 bohr-1) and (b) the bond formalism (.4=13.798 Ry and p=0.817 bohr'1). 

VALIDATION 

In this section, the ability of the present bond-model to reproduce the properties of the 
hep-phase of zirconium is tested. Since the fits have been performed only on the bec and 
fee phases, the results summarized in Table I have to be viewed as a test of transferability. 

The equilibrium lattice parameter is in very good agreement with experiments (1.5 % 
smaller). The model reproduces the fact that the c/a ratio is smaller than the ideal value of 
1.633, but with a discrepancy of 6% with respect to experiments. However this discrepancy 
is not so large when compared to other quantum mechanical models. The energy difference 
between compact structures (fee and hep) is very satisfactory, but the excess energy of the 
more open bec phase is significantly too high when compared to FP-LMTO values. 

We have calculated the elastic constants for the ground state hep-phase of zirconium in 
order to test the mechanical stability of the crystal and to validate the ability of the model 
to predict properties connected with second order derivatives of the energy not included in 
the fit. They are calculated by imposing an external strain on the crystal and performing 
the calculation of the the second derivative of the total energy with respect to the strain 
parameter by finite-differences. The energy differences between the strained and unstrained 
lattice are performed at constant number of electrons. Inner elasticity [8] has been taken into 

account so that the elastic constants may be written as a sum of two terms, C,j = C,-- + C[/', 

where C\j is the homogeneous contribution and C\f is the relaxation contribution due to 
relative displacement of the two sublattices of the hep phase. 

Zr 

a0 (Ä)      c/a      BQ (GPa)    AEbcc'hcp    AEicc'hcp 

3.18 1.50 
[3.15] [1.62] 
(3.23)    (1.59) 

125 
[102] 
(88) 

+0.326 
[+0.030] 

+0.041 
[+0.027] 

Table I: Calculated equilibrium properties compared to experiment (parenthesis) or FP-LMTO values 
[brackets], aa is the equilibrium lattice parameter, c/a is the hep axial ratio, and B0 is the bulk modu- 
lus. AEbcclhc>' and AE^CC/I"F (in eV/atom) are energy differences between bec and fee phases and the 
equilibrium hep phase. 
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Cu C33 CM Cßf, C12    C'"' 
Zr 219 

(158) 
183 

(174) 
28 

(37) 
74 

(47) 
71       34 

(63) 

Table  II:  Elastic constants in hep phase for Zr (in GPa) compared to experimental harmonic values 
extrapolated at 0 K (parenthesis). C[\<=C$=C$=-Cr" and C^'=+C"'. 

The calculated elastic constants, shown in table II, satisfy the Born criterion, ensuring 
mechanical stability of the hep phase. The deviation with respect to experiments is compa- 

rable to that of ab-initiocalculations for C33, CM and C12 (5%, 24%, and 12% respectively). 
The largest deviation, 57%, occurs in Cec where the calculated value is 74 GPa instead of 
47 GPa. Cu displays an average result with a deviation of 38%. The RMS deviation over 
all calculated hep elastic constants reaches 14 GPa, to be compared with 36 GPa found over 
all the hep transition metals in reference [4]. The relaxation contribution takes the value 

of 34 GPa and leads to a ratio Crcl/C$ = 31% in agreement with the [10%-40%] range 

predicted by d-band models [10] for Zr. 

CONCLUSIONS 

We have presented a comparison between simple spd implementations of the bond and 
band formalisms of the two-center orthogonal tight-binding scheme. We have taken ad- 
vantage of an ab- initio data base of the band-structures to fit the hopping integrals and 
on-site energy differences. We have shown on the example of zirconium that a minimal set of 
parameters describing the exponential decay of the hopping parameters is capable of repro- 
ducing very well the band structures in three different structures. The fact that the energy 
difference between the hep and the bec phases changes by 0.54 eV when going from one 
model to the other outlines the importance of the energy references. Only the bond model 
reproduces the stability of the hep-phase. However the description of the on-site energy 
differences (fitted to constant values here) has to be improved to get a more quantitative 
agreement for the energy difference between the bec and the hep phases. The properties of 
the hep-phase itself, including elastic constants, are in good agreement with experiments, 
making the present bond model a good candidate for performing other calculations in hcp-Zr. 

This study is partially supported by the Direction des Etudes et Recherches of Ehc- 
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ABSTRACT 

A transferable orthogonal tight-binding model for molybdenum is developed which goes 
beyond the traditional two-center approximation. The elements of the Hamiltonian matrix 
as well as the repulsive potential are allowed to depend on the environment. Several bulk, 
atomic defect and surface properties are calculated and compared with ab-initio data and 
experimental results to check the accuracy of the model. 

INTRODUCTION 

The original domain of tight-binding (TB) methods was the description of strongly 
covalent solids with special emphasis on Si and C. The application to metals is probably 
more demanding: in simple metals the s and p electrons are delocalized and the two- 
center approximation becomes questionable, and in transition metals there is a coexistence 
of delocalized s and p electrons and more localized d electrons. 

The objective of this paper is to develop a TB parametrization for molybdenum which 
is as accurate and transferable as possible to see how far we can go with a TB description of 
this metal. Special emphasis will be given to the dependence of the matrix elements and the 
pair potential on the environment, very much in the sense of the method developed by Tang 
et al. [1] for C. The effective environment-dependence of orthogonal two-center Slater- 
Koster parameters may arise from (a) the explicit neglect of three-center matrix elements, 
(b) the use of an orthogonal basis set, which means that we are implicitly dealing with 
Löwdin orbitals whose Hamiltonian matrix elements depend on the structural environment 
and (c) the use of a minimal basis set. Concerning the pair potential </>(rQ]Q<), a contribution 
to the environment-dependence may arise from neglected many-body exchange-correlation 
terms in the double counting term of the Harris-Foulkes functional (which is the basis for 
the derivation of every TB model) as well as from that part of the pair-potential which 
implicitly accounts for the neglect of non-diagonal overlap matrix elements. 

Another objective of the present paper is to develop this model in such a way that it 
is suitable for molecular-dynamics simulations which means that we will confine ourselves 
to interactions up to typically at most third-nearest neighbor interactions. 

THE MODEL 

We use a minimal basis set of one s, three p and five d atomic orbitals to construct the 
TB Hamiltonian. For an elementary metal we obtain 10 independent hopping parameters 
Vii'm and three intraatomic matrix elements (e3, ep and ed) whose environment-dependence 
is taken into account by ed = e°d + £a» Aed(raa„),es - ed + e°_d + £Q» Aes-d(raa>.) and 
an analogous equation for ep.   Here the quantities with superscript 0 denote the parts 
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independent of the environment and the Ae; are the environment-dependent contributions. 
In the following we adopt the same functional form for the distance-dependence of Vu'm, 

Ae; and <f>{rani), namely 

/(roa.) = C,,exp(-C2raa.)(l-5on.)  , (1) 

i.e., the primary distance-dependence is given by the exponential and the environment- 
dependence is modeled by the screening function introduced by Tang et al. [1], 

San. = tanh2£„„<  , (2) 

U' = C3J2eM-C/nn" + rn'n")C>   ■ (3) 
a" Ta°' 

There are 5 parameters C; (with C2...C5 > 0) for the 14 functions VWm (10), Ae, (3) 
and <j> (1), and the 3 parameters td, e°_d and ep_d. In order to reduce the number of 

parameters used for the fits we impose the universal ratios Vpd„ : Vpjw = -V3 : 1 and 
Vdda : VMT, ■ VdM = (-6) : 4 : (-1) for the preexponential factors. Furthermore, we realized 
from the fits that Vpl„ is small and can be neglected without a noticeable change of the 
results. In contrast to a previous model [2], we now scale the distance between two atoms 
according to their coordination numbers using the scaling function introduced by Tang 
et al. [1], which adds two more parameters to the model (using this bond-length scaling 
considerably improves the TB total energies of the sc and A15 structure). Altogether the 
final model contains 55 parameters which are determined by fitting to the ab-initio band 
structures along lines of high symmetry in the Brillouin zone and the total energy for Mo 
in various crystal structures (sc,bcc,fcc) and for a variety of lattice parameters around 
the respective equilibrium lattice parameters, the experimental phonon frequencies at the 
points N, H, P of the Brillouin zone, the experimentally obtained elastic constant C44, the 
vacancy formation energy obtained by the mixed-basis pseudopotential (MBPP) method 
and the unrelaxed (100) surface energy obtained by the MBPP method. 

RESULTS 

Fig. 1 shows the fitted total energy curves for sc, bcc and fee Mo as well as the results 
for Mo in hep and A15 structure, which were not included in the fit. Fig. 2 exhibits the 
fitted curves to the bandstructure in bcc Mo. Table 1 represents the TB results for bcc Mo 
for the equilibrium lattice constant a0, the elastic constants Cn, Cu and C44, the vacancy 

a0 Cn C\2 C44                  Ev Ej 
[a.u.] [Mbar] [Mbar] [Mbar]                [eV] [eV] 

"TB                 ^935 4.75±0.10 1.45 ±0.10 0.99 ± 0.04            2J5 IÖ55 
MBPP           5.926 [3] — — - 2.90 ±0.1 [3] 9.54 [4] 
experiment    5.945 [5] 4.50 [6] 1.73 [6] 1.25 [6]             2.9 [7] — 

Table 1: Results of the TB model for the equilibrium lattice constant a0, the elastic 
constants Cn, C12 and C44, the vacancy formation energy Ev, and the formation energy E, 
of an octahedral interstitial atom in a relaxed supercell containing 16 sites, in comparison 
with results from ab-initio MBPP calculations and experimental data. 
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Figure 1: Total energy versus volume for sc, bcc, fee and hep Mo and for Mo in the A15 
structure. The dashed and the full lines represent the TB and ab-initio data obtained 
by the linear-muffin-tin-orbital method in atomic-sphere approximation (LMTO-ASA), 
respectively. 
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Figure 2: The TB band structure (dots) of bcc Mo at ag = 5.8 a.u. in comparison with 
the ab-initio LMTO-ASA band structure (solid lines). 
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Figure 3: Comparison of the phonon frequencies in bcc Mo from the TB method (frozen- 
phonon calculation, full lines) and from inelastic neutron scattering [8] at T = 296 K 
(dots). 

formation energy Ev for a relaxed supercell with 54 sites and the formation energy Et 

for an octahedral interstitial atom in a relaxed supercell with 16 regular lattice sites, in 
comparison with experimental results and with results from the MBPP approach. The 
quantities aQ and C44 were included in the fit, and therefore the comparison simply tests 
for the quality of the fit. In contrast, the results for Cu, Cyi, for Ev in the relaxed supercell 

and for Es are predictions of the TB model, which agree rather well with the data from 

experiments (Cn, Cn, Ev) and/or the MBPP calculation (EV,E{). 
In Fig. 3 we compare the data from frozen-phonon type TB calculations with the 

experimental results [8] obtained by inelastic neutron scattering at 296 K. In spite of some 
quantitative discrepancies the qualitative agreement is satisfactory: the most important 
phonon anomalies in Mo, i.e, the low frequency of the H point phonon, the lowering of the 
T<2 mode when approaching the N point along the S line and the crossing of the longitudinal 
and the transversal phonon branches along the F line are correctly reproduced by the TB 
model. 

To investigate the structure and electronic properties of the Mo (100) surface, we use 
a supercell containing seven layers. Fig. 4 and Fig. 5 display the bandstructure along high 
symmetry lines of the irreducible 2D Brillouin zone, calculated with the FLAPW method 
[9] and with the TB model, respectively. The agreement especially of the surface states 
close to the Fermi energy is promising. 

Full relaxation of the p(l x 1) slab yields a top-layer contraction of 7.9%, compared to 
10.7% calculated with the MBPP method [10], and (9.5 ± 2)% (Ref. [11]) respectively 11.5% 
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Figure 4: Energy bands for the Mo (100) surface for even (left) and odd (right) states 
with respect to the given symmetry lines, calculated with the FLAPW method [9]. Solid 
circles indicate surface states whose charge densities have more than 50% weight within 
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50% weight within the surface Mo layer. 
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(Ref. [12]) obtained by LEED experiments. For the surface energy of the relaxed p(l x 1) 
surface our TB model yields a value of 1.89 eV per surface atom in satisfactory agreement 
with the MBPP value of 2.07 eV per surface atom [10]. Employing a c(V2 x v/2)45° unit 
cell, we found that the (100) surface is stable with respect to displacements according 
to a Mi surface phonon mode but unstable with respect to an M5 surface phonon mode 
resulting in a c(\/2 x \/2)45° reconstruction of the (100) surface, which is in agreement 
with MBPP calculations [10]. 

SUMMARY 

We developed a TB model for molybdenum which empirically incorporates the envi- 
ronment-dependence of interactions and demonstrated its transferability by comparing the 
TB results with ab-initio and experimental results for different atomic configurations. 

Surface calculations with larger supercells are currently performed to find out whether 
the model is able to yield the experimentally observed (7\/2 x \/2)45° reconstruction [13]. 
In a future application we intend to use TB calculations to investigate the core structure 
of (1/2) <111> screw dislocations in molybdenum. 
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ABSTRACT 

The semi-empirical tight-binding method is used to build up an interatomic potential in zinc. 
Using relaxed structures, the parameters are fitted to the lattice parameters, the elastic constants 
and the vacancy formation energy. The total energy calculation predicts the stability of the h.c.p. 
structure. The potential is used to calculate the energy of some extended defects : the basal 
stacking fault and two twin boundaries. 

INTRODUCTION 

The reliability of atomic scale simulation strongly depends on the interatomic potential. The 
simple empirical pair potentials are not able to describe all the characteristics of the interactions 
between the atoms. In many cases, it is necessary to take into account the electronic structure, 
using the density functional theory or the tight-binding approximation to build many-body 
potentials. 

Numerous studies on various kinds of defects in zinc have been performed with pair potentials 
[1] but the more recent potentials are the phenomenological many-body ones proposed by 
Igarashi, Khantha and Vitek [2] and by Mikhin and de Diego [3], They are fitted to several 
quantities, in particular to the non ideal value of the c/a ratio of the lattice parameters. They 
correctly predict the stability of the h.c.p. structure with respect to cubic ones. 

Unfortunately, they both give a negative energy for the (1122) twin boundary. Such a result 
predicting the stability of a defective crystal with respect to the perfect one is not satisfactory. It is 
our motivation to build a potential giving reasonable values of energy of extended defects in zinc. 
The high c/a ratio is thought to be a consequence of the electronic structure and this suggests to 
choose the semi-empirical tight-binding method. 

After a short review of the two potentials cited above, the present paper explains how the 
semi-empirical tight-binding method is applied to zinc to give the energy of several extended 
defects as the basal stacking fault and the (1122) and (1012) twin boundaries. 

MANY-BODY POTENTIALS 

The potential of Igarashi et al. [2] is built in the Finnis-Sinclair [4] scheme for eight hexagonal 
metals. For each of them, the parameters are fitted to the two lattice parameters a and c, the 
cohesive energy, the unrelaxed vacancy formation energy and the elastic constants. The potentials 
successfully describe the mechanical and structural stability, the elastic constants and the phonon 
dispersion curves. However, in case of zinc, a very low value (0.4 mlm"2) of the energy of the 
stacking fault in the basal plane is obtained. It is much lower than the estimates found in literature 
[5] (15 to 300 mlm"2) and the result obtained by Legrand [6] in a pseudo-potential approach (35 
mJm"2). 
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Mikhin and de Diego [3] try to overcome this difficulty by using the second-moment of the 
tight-binding approximation to account for the d-electron interaction. Instead of the cubic splines 
used by Igarashi et al. [2], a screened Coulomb potential derived from pseudo-potential theory is 
used in the repulsive term and a combination of Gaussians in the attractive term. The parameters 
are fitted to the same quantities as for Igarashi et al. potential, and this leads to a correct 
description of all the quantities except C33. The value of the stacking fault energy is found to be 
10 mJm"2, still rather low, even if it is improved with respect to Igarashi et al. value. 

It may be noted that both potentials give further information about point defects properties as 
formation energy of self interstitials and vacancies. These two potentials seemed to be reliable 
enough to be applied to grain boundaries, but a problem arises with the (11 22) one. We found 
that its energy is slightly negative (- 1.8 mJm'2) with Igarashi et al. potential and an analogous 
result is known with Mikhin and de Diego potential [7]. Such a result is not satisfactory and 
seems contradictory to the mechanical and structural stability given by the two potentials [2,3]. 
Anyway, it leads us to propose another potential for computing the total energy of zinc based on 
the semi-empirical tight-binding (SETB) method. 

APPLICATION OF SETB METHOD 

The total energy of the atomic system under consideration is written as the sum of the 
electronic term Uei and the repulsive term UR [8]: 

U = Ue, + UR (1) 

The electronic term describes the electron-ion interaction and is attractive. The second term UR 

describes the short-range interaction between ions, and the cohesion of the material is due to the 
balance between the two terms. 

Electronic energy 

The electronic term Uci is obtained with the following method. The tight-binding hamiltonian 
operator of electrons is written in a basis formed by the atomic orbitals §„ (n): 

H=2eM|^(ri)><<t>,(r,)|+ IlV^r^^rJx^j (2) 

where <|> (r;) is the u. orbital of the atom i at position T-, and s,, is the atomic energy of this orbital 
independent on the atom position, V^. (n rj) is the interaction matrix element between orbital u of 
atom i and orbital v of atom j, depending on length r and direction cosines of the vector joining 
atoms i and j. These matrix elements are expressed in terms of the hopping matrix elements in the 
nearest-neighbour tight-binding approximation of Harrison [9] for s and p orbitals, only. The 
matrix elements are multiplied by a cutoff function : 

fi(r) = -i(l-tanh^-) (3) 

where n is the cutoff radius and An the length on which the cutoff takes place The cutoff zone is 
established beyond the twelve nearest neighbours, by choosing n = 1.28a and An = 0.02 a 

The electronic energy is given by : 
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Uei = 2SHiajpPjpia (4) 
iajß 

where Hjajp and picyp are the elements of the hamiltonian and of the density matrix p between 
orbitals a of atom i and ß of atom j. A 0(N) method already developed [10, 11] is based on the 
method of Li, Nunes and Vanderbilt [12] to use the Lanczos Haydock recursion method. It allows 
a local calculation of the density matrix. With the cutoff radius ri given above and with a 
recursion level equal to twelve, the convergence of the method is satisfactory. 

Repulsive energy 

In the SETB scheme, the repulsive term in eq. (1) is usually written as a two body potential. 
Here, it is chosen as the product of two functions : 

UR = F(r)f2(r) (5) 

where F(r) is a polynomial form in r/ra - 1 (r, being chosen as equal to the mean value of the 
distances between nearest - neighbours) given by : 

F(r) = Ao + A, (r/r. - 1) + A2 (r/r. - l)2 + A3 (r/r. - l)
3 (6) 

and where f2(r) is a cutoff function of the same form as fi(r) but with possibly different 
characteristics: 

f2(r) = |(l-tanh^) (7) 

r2 is the cutoff radius and Ar2 is the length on which the cutoff takes place. The effect of this 
cutoff is to limit the range of the repulsion between ion cores to take into account the screening 
by the electrons. The parameters r2 and Ar2 are chosen to give negligibility small values of f2(r) on 
the second neighbours. Each of the four parameters of F(r) (Eq. 6) has a direct influence on a 
special property, which makes fitting procedure easier. The parameter Ao is fitted to the vacancy 
formation energy, Ai to the lattice parameters, A2 to the bulk modulus and A3 to the Grüneisen 
constants, which introduces some anharmonicity in the potential. 

RELAXATION AND FITTING PROCEDURE 

The equilibrium atomic configuration at zero temperature is that of minimum energy in which 
the sum of forces on each atom is zero. The calculation of the interatomic forces is the main 
reason of the high computation cost. Moreover, we found that our choice of basis and the use of 
the small localization region do not fulfill the conditions for applying Hellmann-Feynman theorem 
which leads to wrong results. Then, the interatomic forces are calculated by numerical gradients. 
Each atom is submitted to very small displacements (0.002 a), until the change in energy is less 
than 10"3 meV. 

By using this relaxation procedure, the parameters of the repulsive term (Eq.6) are fitted to the 
perfect crystal properties. Then, the total energy of the crystal may be considered as a function of 
c/a ratio and by trial and error method, the c/a ratio giving the minimum energy is obtained. 

Finally, with the values ra = a, rj=1.28a and Ar2 = 0.02a, for the lengths involved in Eq. 6 and 
Eq. 7 the best values of the other parameters in Eq. 6 are Ao = 2.35 eV, Ai = - 8.47 eV, A2 = 
22.25 eV and A3 = - 53.04 eV. This best fit corresponds to a contraction of c axis leading to a c/a 

335 



(a) 

(0001) 

(1122) 

T    o    ■    □    ■ ■ D      ■      G 
o»o«oo»o»o 
□      m      C      ■       D      ■      D      ■      □ 

• f°sK   °    •    •    °   ^C?^— • 
^D;      o   N^   o   )•    o    o    «f   o ^^   o 

• o^^^~cr   •    •    TS_V'^ o    • 
■ o Nr    D    ■     D    »    D    ■ 

o»o»oo«o»o 
G«C«C«D«D 

• o*o««o*o* 
■ D     ■      C      ■     D     ■     a 

o    •      o«oo*o*o 

.  z=0 

o  z=l/2 

a  z=-l/6 

B   z=l/6 

•   z=-2/6 

o   z=2/6 

(C) 

(1012) 

•   z=0 

o   z=l/2 

• a 

Fig. 1 : Projection of the relaxed atomic structure of the basal stacking fault along [l 120] (a), of 

the (ll22) twin boundary along [l f OOJ (b) and of the (lO 1 2) twin boundary along [l210] 
(c). Hexagonal unit cells are shown in outline, and the symbols distinguish atoms in different 
levels. 
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ratio equal to 1.801 (instead of 1.856). The vacancy formation energy is equal to 1.04 eV twice 
larger than the known experimental value (0.52 eV) [14]. 

RESULTS 

The potential is now used to test the relative stability of different polytypes of zinc : three 
hexagonal structures (hep. or 2H, 4H and 6H) and the f.c.c structure. They differ by their 
stacking periodicity : the hep. structure is obtained by the stacking ABABAB and the f.c.c. one 
by ABCABC .... The 4H structure is obtained by the stacking ABCBABCB... characterized by a 
four layer periodicity. In the same way, the 6H structure is characterized by the stacking 
ABCACBABCACB ... with a six layer periodicity. Each structure is relaxed and its energy is 
calculated with the method above described. The results are given in table I with respect to the 
energy of the h.c.p. structure taken as the origin. These results show that the h.c.p. structure is 
the most stable one. Table I also gives the c/a ratio for each polytype. 

Table I: Energy (in meV/atom) and c/a ratio of different polytypes. 

Polytype h.c.p. 4H 6H f.c.c. 
Energy 0 20.8 25.8 33.9 

c/a 1.801 1.708 1.676 1.633 

Another set of results is obtained for the relaxed structure of three planar extended defects : the 
basal stacking fault, the (l 122) and the (l0l2) twins. The atomic positions in the stacking fault 
are shown in figure la, resulting from the stacking sequence AB ABC AC A .... As indicated above, 
its energy is not precisely known, and our result given in table II is between the theoretical one of 
Legrand [6] and the experimental estimates of Harris and Masters [5]. The atomic positions of the 
twins are given in figures lb and lc for (l 122) and (lO 12), respectively. Both twins have been 
studied by Simon [15] with a pseudopotential and by Serra and Bacon [16] for all h.c.p. metals 
with six Lennard-Jones potentials. Moreover, the (10T2) has been studied theoretically by 
Hagege, Mori and Ishida [17] with a Lennard-Jones potential and by Braisaz, Ruterana, 
Lebouvier and Nouet [18] with Igarashi et al. potential and experimentally by Lay and Nouet 
[19] and by Braisaz, Ruterana, Nouet and Pond [20]. Table II gives the energy found in each 
case, either directly in the quoted papers or calculated from them. As usual it is impossible to 
compare the energy of the twin with experimental values, but our values seem statisfactory when 
compared to the other available ones. It may be noted that the energy of the (lO 12) twin is larger 

Table II : Energy of extended defects in mJm'2, with respect to the perfect crystal (* calculated 
with Igarashi potential [2]). 

Defect Stacking fault (ll22)twin (lO 12) twin 

Pseudopot [15] 290 1270 
Pseudopot [6] 35 

Lennard Jones [17] 372.4 
Many-body [2] 0.4         121 -1.8* 125         [18] 
Many-body [3] 10 

SETB 119.1 45.5 110 
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than the one of the (l 122). Serra and Bacon [16] have found the same order with two potentials 
but the opposite one (or nearly equal energies) with the other potentials. 

Our method gives a better description of the electronic density of states than second moment 
method already used. This improvement leads to a better estimates of interface energies. Another 
way of improvement could be found in the pseudo-potential approach, but the computing cost 
could be higher than in the SETB method for the study of grain boundaries. 

CONCLUSIONS 

Using the semi-empirical tight-binding method, the energy of the relaxed structure of several 
extended defects in zinc is calculated. Contrary to the results obtained with recent 
phenomenological many-body potentials, the energy of (1122) twin is positive. The results 

obtained for the (lO 1 2) twin and for the basal stacking fault are satisfactory. The method should 
be improved by taking into account the d orbitals with the same method of relaxation. 
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ABSTRACT 

The recently developed Environment-Dependent Interatomic Potential (EDIP) holds the promise of a 
new degree of transferability in describing bulk phases and defects of elemental covalent solids with a simple 
theoretically motivated functional form. Here we explore to what extent the environment-dependence of 
the model can extrapolate successes of the fitted version for Si for bulk defects to disordered phases, which 
involve local configurations very different from those used in fitting. We find that EDIP-Si provides an 
improved description of the metallic bonding bond angles of the liquid and is the first empirical potential 
to predict a quench directly from the liquid to the amorphous phase. The resulting amorphous structure 
is in closer agreement with ab initio and experimental results than with any artificial prepration method. 
We also show that melting of the bulk crystal and premelting of the (100)2x1 surface are reasonably well 
described by EDIP-Si in spite of its not being fit to any such properties. 

INTRODUCTION 

The availability of realistic and efficient interatomic potentials could have a major impact on the 
microscopic understanding of materials properties, for two basic reasons. The first is that simulations would 
be possible of complex processes requiring too many atoms or too long times to be feasible for simulation 
with a quantum-mechanical treatment of the electrons. The second benefit offered by a realistic interatomic 
potential is a conceptual framework in which to understand the complexities of chemical bonding. For 
example, the natural partitioning of total energy among the atoms and the distinction between radial and 
angular forces are very useful concepts for building intuition about atomic behavior in materials. 

The difficulty in exploiting these benefits is that they are accompanied by serious drawbacks. The first 
is that there is no general and systematic method for deriving interatomic potentials that has demonstrated 
superiority over the ubiquitous "guess-and-fit" approach, which is to guess a functional form containing 
adjustable parameters and then to fit them to some set of experimental or ab initio data. Secondly, once 
one has an interatomic potential, its transferability is often in doubt. In other words, the potential cannot 
reliably describe structures different from those used in the fitting. 

These problems have been most serious for covalently bonded solids, as exemplified by the prototypical 
case of silicon for which there are over 30 potentials in the literature, having a wide range of functional 
forms and fitting strategies but possessing comparable overall accuracy [1]. In spite of intense recent 
efforts, the simple, pioneering potentials of Stillinger-Weber (SW) and Tersoff continue to be the most 
popoular, albeit with well-documented limitations [1]. This experience suggests that the most successful 
approach is to build the essential physics into a simple functional form containing only a few adjustable 
parameters rather than brute-force fitting. The latter method, in our view also undermines the benefits of 
potentials described above: an overly complex functional form at the same time reduces the efficiency of 
force computation and hinders physical interpretation. 

THE ENVIRONMENT-DEPENDENT INTERATOMIC POTENTIAL 

In an effort to go beyond the practical limits of the guess-and-fit approach, we have provided ab initio 
theoretical guidance to motivate a functional form for interactions in covalent solids, which we call the 
Environment-Dependent Interatomic Potential (EDIP) [2]. Exact inversions of ab initio cohesive energy 
curves for silicon reveal global trends in bonding from covalent to metallic structures [3], and an analysis 
of elastic properties of the diamond and graphitic structures quantifies the mechanical properties of sp2 

and sp3 hybrid covalent bonds [2]. We argue that the fundamental limitation of existing potentials is 
their inability to properly adapt bonding preferences to the local atomic environment, which is crucial for 
reproducing phase transitions. 
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e   (dcg) 

Figure 1: (Left) EDIP-Si two-body interaction V2(r, Z) as a function of separation r shown for 
coordinations 3, 4, 6 and 8. (Right) EDIP three-body interaction V3 (r, r, cos 0, Z) for a pair of bonds 
of fixed length r = 2.35 Ä subtending an angle 8, shown for coordinations 3, 4, 6 and 8. Each 
interaction is compared with the corresponding environment-independent term in the S\V potential. 

We now present the EDIP functional form and refer the reader to Rcf. [2] for theoretical justification 

of all the terms. The energy of a configuration {./?,} is expressed as a sum over single-atom energies, 
E = J2i Ei> eacn containing radial and angular terms, 

(i) 

each dependent on the local atomic environment through an effective coordination number, Z, = £,„,,, f{R„, 
where /(r) is a cutoff function that determines the contribution to an atom's coordination from each of 
its neighbors, 

II if r < c 

exp(TrT^)    if c < r < a (2) 

0 if r > o 

where x = j—r\-   The environment-dependent radial term takes the form of a (second moment) bond 

order model similar to embedded-atom potentials for metals, 

V2(r,Z): (?)'--i-fe) (3) 

The strength of the attraction varies with coordination as dictated by inversion of cohesive energy curves 
[3]: as shown in Fig. 1, bond lengths get weaker and longer with increasing coordination, modeling sp2 and 
sp* hybrid bonds and the covalent to metallic transition. The angular term essential for covalent bonding. 

V3(r,r',9,Z)    =    Aexp (^) <*P (^r^) # ((™s" + T(Z))QI'
2
C'"^

2
) , 

H(x) 1- + 7)1' 

(4) 

(5) 

also contains strong adaptation to the local environment through the the preferred angle cos-1 T(Z) and 
the variable strength of the angular function e~>'z/2. The function T(Z) is chosen (before fitting the 
potential) to interpolate between values suggested by theory (T(4) = 1/3, r(3) = 1/2, T(6) = T(2) = 0), 

T(Z) = til + II2(«3" <), (6) 

with the parameters m = -0.1G5799 , u2 = 32.557, u3 = 0.28G198, and u., = O.GG. As shown in Fig. 1, 
the angular function shifts its preferred angle to mimick covalent rehybridization for Z < 4 and softens 
considerably for overcoordinated, metallic environments. 

Recently, we have presented a version of EDIP with 13 parameters fitted for bulk defects in silicon that 
displays remarkable transferahility for bulk properties (elastic constants, bulk crystal structures, point 
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T = 1800 

(Left) pair correlation function and (right) bond angle distribution for the liquid at 
K and P = 0 with EDIP-Si (solid lines) and an ab initio model [5] (dashed lines). 

defects, concerted excahnge, stacking faults and dislocation core properties) [4]. The optimal parameter 
set we found is: A = 7.9821730 eV, B = 1.5075463, p = 1.2085196, a = 3.1213820 Ä, c = 2.5609104 Ä, a 
= 0.5774108 A, A = 1.4533108 eV, 7 = 1.1247945 A, JJ = 0.2523244, Q0 = 312.1341346, p, = 0.6966326, 
ß = 0.0070975 and a = 3.1083847. Since the fitted cutoff distance 3.1213820 A is smaller than the SW 
cutoff, computing forces with our model is typically faster than with the SW potential (using an efficient 
algorithm [2]), making it possible to simulate thousands of atoms for millions of times steps in one day 
on typical workstation. Of course, at the moment this kind of efficiency is well beyond the reach of more 
accurate quantum-mechanical methods. 

LIQUID PHASE 

With the ability to simulate large systems for long times, it is natural to turn our attention to disordered 
structures and phases transitions. These situations contain a rich set of local bonding states from covalent 
(amorphous) to metallic (liquid) about which no information was included in our fitting procedure, thus 
constituting a stringent test of transferability for the model. Existing potentials have had considerable 
difficulty in simultaneously describing the crystalline, liquid and amorphous phases [1, 5, 6, 9]. In the case 
of the liquid, environment-independent potentials are not able to reproduce the bond angle distribution of 
the liquid[9], which deviates significantly from the tetrahedral angle. 

We prepared a 1728-atom liquid sample with EDIP-Si potential at T = 1800 K and zero pressure in two 
ways, using standard techniques (Anderson piston, velocity rescaling, 5th order Gear predictor corrector 
integration). First, following a lattice start at 4000 K, the sample is cooled and equilibrated for about 
50 ps. The same structure is also produced by heating a periodic bulk crystal, but the solid superheats 
before melting (an issue we address below). The latent heat of melting is 37.8 kJ/mol, in reasonable 
agrement with the experimental value of 50.7 kJ/mol, closer than the SW value of 31.4 kJ/mol [10]. The 
structural properties of the EDIP-Si liquid are shown in Fig. 2 and compared with the results of 64-atom 
ab initio simulations[5]. From the area under the first peak of p(r), the coordination of the EDIP-Si liquid 
is 4.5, well below the experimental value of 6.5. Although this is unphysical, EDIP-Si offers a qualitative 
improvement in the bond angle distribution function £3(0, rm). As shown in Fig. 2, EDIP-Si reproduces 
the auxiliary maximum at 9 = 60°, and is the first to do so, although the primary maximum is shifted 
toward the tetrahedral angle away from the ab initio most probable angle of 6 = 90°. It is important to 
emphasize that reasonable liquid properties are predicted by our model without any explicit fitting to the 
liquid phase. The reduced density and excess of covalent bonds may be artifacts of the short cutoff of our 
potential, which is appropriate for the covalently-bonded structures used in the fitting, but is perhaps too 
short to reproduce overcoordination in metallic phases like the liquid. 

AMORPHOUS PHASE 

Experimentally, amorphous silicon is known to form a random tetrahedral network, with long-range 
disorder and short-range order similar to that of the crystal [7, 8].  Ab initio simulations with 64 atoms 
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Figure 3: (Left) radial distribution function t(r) = A-prg(r) for the amorphous phase at T = 300 
K and P = 0 predicted by EDIP-Si (solid line) compared with the results of neutron scattering 
experiments[7]. (Right.) bond angle distribution for EDIP-Si compared with ab initio rosults[6] 

(dashed lines). 
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Table I: Comparison of thermodynamie and structural properties of the present model (EDIP) for 
a-Si with (annealed) ab initio[ü] and with (annealed) experimental[6, 7, 8] results. Shown are the 
density p,t in Ä"3, the excess enthalpy AW„_r compared to the crystal in cV/atom, the coordination 
Z, the mean Fj and deviation cr,., of the first neighbor distance in Ä, the mean second r2 and third 
T-i neighbor distances in Ä and the mean 9 and deviation a0 of the bond angles in degrees. 

find almost 97% four-fold coordination [6]. An empirical potential would be invaluable in exploring larger 
system sizes and longer relaxation times than are feasible from first principles, but unfortunately no 
existing potential is capable of quenching directly from the liquid to the amorphous phase. Instead, 
empirical model liquids (like SW) typically transform into glassy phases \ipon cooling, characterized by 
frozon-in liquid structure [10]. Therefore, it has been impossible to simulate an experimentally relevant 
path to the amorphous structure (e.g. laser quenching [8]), and artificial preparation methods have been 
required to create large-scale amorphous structures [10, 11], but these do not involve realistic dynamics. 

Remarkably, the EDIP-Si predicts a quench directly from the liquid into a high-quality amorphous 
structure. The phase transition is quite robust, since it occurs even with fast cooling rates. For example, 
quenching at -300 K/ps leads to a reasonable structure with 84"/ four-fold coordination. At much slower 
quench rates of-1 K/ps, an improved structure of 1728 atoms at T = 300 K and zero pressure is produced 
with almost 95% four-fold coordination. For comparison, the most common artificial prepration methods 
do not perform so well: the indirect SW method [10] predicts 81% four-fold coordination and the bond- 
switching algorimth of Woot.cn-Winer-Weaire [11] predicts 87%. 

As shown in Fig. 3, the radial distribution function t(r) = A~prg{r) is in excellent agreement with the 
results of neutron scattering experiments by Kugler et. al. [7] (using their experimental density p = 0.051 
atoms/A11 for comparison). The persistence of intermediate-range order up to 10 Ä raptured by our model 
as in experiment is a strength of the empirical approach, since this distance is roughly the size of the 
periodic simulation box used in the ab initio studies [6]. Given the limited resolution of the experimental 
data, especially at small r (large q in the structure factor), the sharper first three peaks with our model 
may be interpreted as refinements of the experimental results. The bond angle distribution /h(f),rm) 
shown in Fig. 3 (b) is narrowly peaked just below the tetrahedral angle, and also reproduces the small, 
well-separated peak at 60° observed in nb initio simulations [C] (unlike in previous empirical models). The 
peaks in both .17(7-) and (];i(6,r,„) are narrower and taller with EDIP-Si than with ab initio methods, which 
probably reflects the small system size and short times of the ab initio simulations compared to ours. 
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Figure 4:  (Left) total energy and (right) average EDIP coordination number for a simulation of 
melting of a 3405-atom crystallite with (100)2x1 surfaces using EDIP-Si. 
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Figure 5: Two slices (12 Ä thick) of the melting sample taken at stage 4, T = 1000 K. (Left) 
premelting of narrow (100) ledges. (Right) one of the two 7 nm x 7nm (100)2x1 surface just prior 
to the onset of premelting showing the presence of surface defects. 

In Table I we summarize a detailed comparison of features of a-Si as obtained with our model and with 
ab-initio methods, against those revealed by experiment. Overall the agreement with experiment is very 
satisfactory, with the results of the present model somewhat closer to experimental values than ab-initio 
results as in the case of the enthalpy and the bond-length and bond-angle deviations. In summary, EDIP-Si 
faithfully reproduces the structure of amorphous silicon, following a realistic preparation procedure that 
starts with a liquid phase and cools it down without any artificial changes. 

BULK MELTING AND SURFACE PREMELTING 

Simulations of bulk melting with periodic boundary conditions have trouble in pinning down the melting 
point, as indicated by the spread of values reported for SW [1]. The problem is that in a periodic, defect-free 
crystal it is difficult for the system to nucleate the liquid phase. This difficulty is removed by introducing 
surfaces, which also allows us to study surface premelting. We performed simulations of 3405 crystal 
atoms arranged in a finite slab (7 nm x 7nm x 1.5 nm) terminated by (100)2x1 surfaces. The dimer 
reconstruction was artificially imposed on the original sample to avoid waiting for dimer rows to form 
spontaneously. 

The sample was gradually melted by adding heat at a constant rate (by rescaling velocities) from 300 
K to 1500 K in 2 ns (over 10 million time steps). Although a bulk periodic solid superheats and melts 
at around 2200 K, the finite slab undergoes a sharp, first-order transition at 1370 ± 20 K, as shown in 
Fig.   4.   This is 20% below the experimental value of 1685 K, which is the closest agreement with the 
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Figure 6: Snapshots taken at 0.2 ns (one million step) intervals of a simulation of a 3405-atom 
crystallite melting using EDIP-Si. The seven images from top to bottom correspond to the states 
1-7 labeled in Fig. 4(b). The eighth state (not shown) is a spherical liquid drop. 
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melting point reported for any potential that was not explicitly fit to reproduce it[l]. The energy versus 
temperature curve shows some structure below the bulk melting point, but changes are much more clearly 
seen in the average EDIP coordination number, a convenient measure of local order. The system passes 
through 8 distinct states labeled in Fig. 4 and displayed in Fig. 6: (1) well-equilibrated (100)2x1 surfaces; 
(2) reconstructed edges exposing narrow (110) facets, give the sample a "beveled" look; (3) after passing 
through point A at 810 K, the edges and corners premelt, leaving faces intact; (4) after passing through 
point B at 950 K the narrow (2-4 dimers wide) (100)2x1 surfaces premelt, but the large surfaces do not. 
At this time, the large surfaces have some defects and mobile adatoms, as shown in Fig. 5; (5) after 
passing though point C at 1080 K, the large surfaces melt leaving two premelted monolayers encasing 
sample; (6) as the bulk melting point is approached, more layers premelt and surface and interface tension 
drive the sample to be more spherical by surface flow. The anisotropy of interfacial tension drives the 
interior crystallite to form (110) and (111) facets; (7) at T = 1370 K, added energy converts the bulk solid 
into liquid, leaving (8) a spherical liquid drop. Although the details of this simulation, primarily surface 
dynamics need to be more carefully validated, it demonstrates that EDIP-Si predicts premelting of the 
(100)2x1 surface about 200 K below the melting, consistent with experiment. Given our extensive tests 
for the liquid, amorphous and bulk defects, we may expect that the dynamics of the liquid-solid interface 
are fairly realistic by the usual standards. 

CONCLUSION 

In conclusion, EDIP-Si provides an improved description of disordered bulk structures and phase tran- 
sitions. It is the first potential to predict the quench from liquid to amorphous and the structure is in 
excellent agreement with experimental and ab initio results. It also appears to describe several aspects of 
surface premelting, and predicts the bulk melting point to within 20%. These new results taken together 
with known successes for bulk defects suggest that EDIP-Si may be useful in applications such as solid and 
liquid phase epitaxial growth or radiation damage. Finally, we remark that the theoretical analysis which 
guided the development of EDIP-Si may be useful in extending the model to related covalent materials 
(Ge, C and possibly alloys). 
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ABSTRACT 

We construct transferable tight-binding parameters of silicon-hydrogen interactions, 
reproducing the electronic energy levels and vibrational frequencies of the silane(SiH4) 
molecule accurately. The potential function was rescaled with the exponential factor in or- 
der to ensure that the potential energy is smooth at an appropriate cut-off distance, which 
is very important in molecular-dynamics simulations. The parameters have been applied 
to other molecules and various surfaces such as hydrogenated Si(100) surfaces, for example, 
monohydride, dihydride, and (3x1) phase. 

INTRODUCTION 

The roles of hydrogen atoms in semiconductor materials are not only interesting physical 
phenomena but also very important to understand in device technology, because hydrogen 
is generally known to passivate surfaces and amorphous silicon(a-Si) by saturating the dan- 
gling bonds, changing the electrical and optical properties. [1] Especially, hydrogen plays 
an important role in layer-by-layer epitaxial growth of Ge on Si(100) surface. [2,3] In this 
case the surface morphology of Si overlayers strongly depends on surface H coverage. [4] 
Despite the fact of the abundant appearance in many H-Si systems, the physical mechanism 
underlying these phenomena is still far from being completely understood. 

First principles approaches have been successfully applied to hydrogen in bulk Si and 
Si surfaces within the local density approximation(LDA). [5-7] Moreover, Car-Parrinello 
molecular-dynamics (CPMD) simulations [8] have also made a big step in further under- 
standing of hydrogenated a-Si. [9] However, this method is limited to a small number of 
atoms, and the computational cost is still expensive for some dynamical properties. Al- 
though classical potentials have been proposed in hydrogenated a-Si [10], due to the low 
computational cost, the reliability cannot be guaranteed since it does not include the elec- 
tronic information in total energy calculation. 

Therefore, several empirical tight-binding (TB) models have been proposed. [11,12] Since 
the TB scheme considers only the valence electrons in the electronic structure calculations 
and the overlap integrals are empirically fitted to the first principles calculations or experi- 
ments, both the accuracy and efficiency have been achieved. Although the TB model by Min 
et el. [12] takes account of the anharmonic effect by implementing the universal binding en- 
ergy curve in the fitting procedure, the simple inverse scaling law of the distance still causes 
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undesirable effects particularly in describing hydrogen dynamics and absorption-desorption 
processes. Therefore, a new model is generally required to have a smooth potential function 
behavior at an appropriate cutoff distance in a typical MD simulation. 

Goodwin, Pettifor, and Skinner (GPS) [13] have proposed a transferable TB total energy 
scheme by introducing an exponential factor in the distance scaling of the silicon system. 
This has been successfully applied to many complex systems. [15] Now, in this paper, wc 
propose a new TB model for H-Si system by introducing an exponential factor in the distance 
scaling similar to the GPS scheme such that the potential cutoff is smoothened so as to apply 
to more complex systems. We expect this model to be transferable to many complex systems, 
such as hydrogen dynamics in hydrogenated a-Si and the absorption-desorption reaction in 
chemical vapor deposition process or at hydrogenated Si surfaces. 

FITTING PROCEDURE FOR H-Si 

The total energy in an empirical TB scheme can be written as 

£M = XX* + t/. (1) 
n,fc 

Here the first term represents the band structure energy which can be constructed from 
the TB Hamiltonian HTB and the second term is the repulsive ion-ion interactions. The 
diagonal terms of MirB are equal to the corresponding atomic energy levels and the off- 
diagonal elements arc constructed via the Slater and Koster empirical TB scheme [16]. 

For the Si-Si interaction, the traditional GPS total energy scheme has been introduced. 
[13,14] In this scheme, the elements of H773 matrix are determined by 

Va
Si-S'(r/r0) = V?-Si(l){r0/rrcxp{T,(-(-r + (^)"')} (2) 

where the Vf'"'9' (1) are the hopping integrals at equilibrium distance r0. The repulsive 
interaction term also has a similar form: 

USi-si(r/r0) = Us'-si(l)(r0/rrexp{m(-(~r + (-)'"')}■ (3) 

The total energy from this model well reproduces the universal binding energy curves of 
various phases generated by the first principles calculations [17]. The main idea of this 
scheme is to improve the transferability by introducing an exponential factor in the distance 
scaling, in contrast with the previous inverse square law by Chadi [18]. 

For the H-Si interaction, we adopt a scheme similar to the GSP. The respective parame- 
ters are shown in Table I. In this system, the energy levels and the vibrational frequencies of 
silanc (SiH4) were used to fit those parameter. The significance of this formulation is that 
the potential change is smooth at an appropriate cutoff distance, as required for realistic 
MD simulations, and the quantitative accuracy is improved. 

TABLE I. The TB potential parameters of H-Si system. 

V,„(l) (eV) Vs^(l) (cV) r0 (Ä)     rc (Ä)          n             nc           m           mr U (1) (eV) 
-3.5535 5.088 1.48        2.18G      1.9877     13.2G9     2.255     13.269 3.01 
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RESULTS AND DISCUSSION 

Figure 1 shows the total energy curve of the H-Si interaction.  One can see that both 
the band structure energy and the repulsive potential energy smoothly approach zero at the 
cutoff distance (2.186 Ä) and the total energy shows the equilibrium at 1.48 Ä with the 
binding energy 3.73 eV, as compared to the experimental value 3.355 eV. 
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FIG. 1. The total energy curves of H-Si interaction. The band structure energy, repulsive 
potential energy (dashed lines) and the total energy (solid line) are smooth at the cutoff distance 
2.186 Ä. 

The energy levels and the vibrational frequencies of the SiH4 molecule have been calcu- 
lated using this model as shown in Table II. In order to calculate the vibrational spectra, 
the velocity-velocity autocorrelation function is calculated, and then the Fourier transfor- 
mations are also taken. For this purpose we run MD with a microcanonical ensemble at 
room temperature for 25 picoseconds, achieving a resolution of 0.001 meV. 

TABLE II. The energy levels and the vibrational frequencies of SiH4 molecule. The values in 
parentheses are from the experiment.(Ref.[12])  

Eigenvalues Frequencies 

levels present TB Min et al.a modes(meV) present TBMD Min et ala 

a+ (eV) -18.08(-18.23) -18.23 symmetric bending 121(121) 122 

t+ (eV) -12.60(-12.7) -12.71 asymmetric bending 108(113) 103 

t2- (eV) -0.53(-5.4) -1.93 symmetric stretching 276(270) 276 

ar (eV) -3.34(-4.1) -2.84 asymmetric stretching 284(271) 

0 Reference [12]. 6 Reference [12] and references therein. 
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The energy levels of the antibonding states are not well described with a minimal basis 
set in the TB scheme. However, in the H-Si system, the antibonding states are far away 
from the Fermi level and do not strongly affect the bonding charactrristirs of the system. 
Although we sacrificed our antibonding states a little bit compared to Min et a/.'s model, 
we improved the asymmetric bending frequency from 103 to 108 meV where the bending 
frequencies are solely determined from the change of Vsp„ (H-Si). The difference of V.„„ 
and Vspff determines the accuracy of the asymmetric bending mode in this case. (Our V.,„„ 
(H-Si) value is a little larger than Min et al.'s value.) 

We now apply this tight-binding model of the Si-H interaction to different molecules 
such as Si2H6 and Si2H4 and confirm the transfcrabilty of this model. [19] For example, the 
Si-Si bond in the fully relaxed Si2HG molecule is 2.31 Ä, not 2.35 Ä, in this model. This 
can be understood as the contraction of the Si-Si bond from 2.35 to 2.31 Abecause the 
electronegativity of the Si atom is a little larger than that of the H atom. The H-Si bond 
length becomes longer from 1.48 to 1.49 At he bond angle between H atoms is 107 ° and the 
bond angle between Si and H atom is 111.8 °, as compared to the tetrahedral angle 109.5 °. 
These values are in good agreement with electron diffraction experimental results [21]. The 
calculated energy levels are -10.49, -12.15, -12.79, -16.74, and -18.50, which are also in better 
agreement with experiments than Min et, al's results. [19] Moreover, the bending modes (113 
meV, 105 meV) are in excellent agreement with experiment (112 meV, 105 meV) which are 
important in identifying the various hydrogen bonding species in many real systems. 

Recently, Lee et al. [22] has applied this model to the hydrogenated Si (100) surface. In 
this study 72 Si atoms, with 24 H atoms to saturate the dangling bonds of the bottom Si 
atoms, have been used to reproduce the hydrogenated (3x1) phase. Among the 6 Si layers, 
two layers of Si atoms from the bottom and the bottom H atom layer have been fixed to 
mimic bulk Si. Figure 2 shows fully relaxed geometries in terms of the hydrogen coverage. 
H-terminated Si(100) surfaces can be classified by H coverage as monohydride, dihydride, 
and the (3x1) phase. 

When one monolayer(ML) of hydrogen atoms covers on dimerized Si(001) surface, this 
surface is called a monohydride. Although the starting Si surface is the asymmetric dimerized 
surface, as the exposed dangling bonds are completely saturated by H atoms the charges of 
the dimcr atoms are compensated by hydrogen atoms resulting in a symmetric dimcrization, 
as shown in Fig. 2(a). The dimer bond length is reduced from 2.45 A to 2.39 A after 
hydrogen chemisorption, close to the bulk bond length of 2.35 A in good agreement with 
the pseudopotential result of 2.40 At he Si-H bond length becomes 1.50 A shorter than the 
pseudopotential result of 1.54 A [23]. It seems that hydrogen atoms not only saturate the 
dangling bonds but also release strains near the surface, in good agreement with previous 
observation [24], 

As the hydrogen coverage increases from 1 ML to 2 ML, hydrogen atoms break info 
the dimer bond and a (2x1) phase is changed to a (lxl) phase, the so called dihydride 
surface, as shown in Fig.2(b). The bond angle between two hydrogen atoms with the same 
Si atom is 102.4 °, similar to 102 ° found by pseudopotential calculation [23]. This angle 
is smaller than the tetrahedral bond angle of 109.5 ° due to the H-H repulsive interactions 
of adjacent hydrogen atoms of the different Si atoms. (For the H-H interactions a new 
tight-binding model has been introduced. [19]) The Si-H bond length of dihydride is slightly 
shorter than that of monohydride, showing a similar trend to the pseudopotential results. 
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For dihydride, several possible models have been suggested, including the canted model. 
[23,25,26] In order to test the stability of each suggested structure, the configurations are 
redistributed to the approximate position, and then fully relaxed by the SD method. The 
canted model, which has a small rotation of the H2 groups, is found to be an energetically 
favorable structure, although the total energy difference from an ideal dihydride is negligible. 
Our TB scheme predicts the similar structure to the pseudopotential results qualitatively 
but not quantitatively due to the H-H interactions, fitted to H2 molecule. [19] In general the 
H-H interaction on Si surface might be very different than that of H-H in the H2 molecule, 
since each H atom makes a bond with different surface Si atoms. Unfortunately, it is beyond 
our scheme at this moment. 

(109) 
103.8° 

FIG. 2. (a) Fully relaxed monohydride upon one monolayer(ML) coverage, (b) ideal dihydride 
upon two ML coverage, and (c) fully relaxed (3x1) phase upon 1.3 ML coverage. The values in 
parentheses are those of pseudopotential calculations. [19] The bond lengths are in units of AThe 
dotted line in (b) simply indicates the distance between hydrogen atoms of adjacent Si sites. 

When hydrogen coverage is in intermediate ML as 1.3 ML, the monohydride phase ap- 
pears alternately with the dihydride phase along the [110] direction, the so called (3x1) 
phase as shown in Fig. 2(c). Each monohydride and dihydride domain which consists of the 
(3x1) phase has similar behavior to its individual ideal structure shown in Fig. 2(a) and (b) 
respectively. The obtained bond lengths and bond angles are in good agreement with the 
pseudopotential calculation in parentheses [23]. The 6H-H is slightly increased due to the 
farther distance, compared with that of an ideal dihydride, between the adjacent H atoms 
of different Si atoms. 

CONCLUSION 

A transferable TB scheme for the H-Si system has been constructed. The hopping 
integrals are empirically fitted to the SiH4 energy levels and vibrational frequencies for Si- 
H interactions, respectively. The application of this method to other molecules such as 
Si2H6 and Si2H4 shows good tranferability for our model. Hydrogenated Si(100) surface 
such as monohydride, dihydride, and (3x1) phase, were excellently described by this Si- 
H interaction. We expect that this model can be applied to more realistic MD simulations 
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such as the absorption-desorption mechanism and diffusion mechanism of H atoms in Si(100) 
surfaces. 
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ABSTRACT 

It is well-known that the Embedded Atom Method (EAM) predicts positive Cauchy 
pressures for cubic metals if physically-motivated embedding functions are used. Supris- 
ingly, even if the angular character of the covalent bonding is included within an orthorgonal 
or non-orthorgonal Tight-Binding (TB) description, the Cauchy pressure for most elemen- 
tal and binary metallic systems remains positive. We describe the results of a detailed 
breakdown of the different contributions to the Cauchy pressure within the Harris-Foulkes 
approximation (HFA) to density functional theory. We show that negative values of the 
Cauchy pressure for both elemental transition metals such as Ir and binary intermetallics 
such as Ti3Al, TiAl and TiAl3 are well reproduced by the HFA. We argue that the negative 
Cauchy pressure (NCP) arises namely from the environment dependence of the local TB 
orbitals which leads to both environment-dependent bonding integrals and overlap repul- 
sion. We discuss a particular functional form for overlap repulsion which leads to NCP 
and compare it with different fitting schemes proposed recently in TB theory. 

INTRODUCTION 

Development of intermetallic compounds such as the titanium-aluminides as advanced 
engineering materials for use at high temperature in aircraft engines has attracted consid- 
erable attention in recent years [1]. These intermetallics have many attractive properties 
but a challenging problem remains their low-temperature brittleness. A possible origin of 
their brittleness could reside in the peculiar property of their elastic constants, namely, a 
negative Cauchy pressure (i.e. C12-C44 < 0 for cubic materials, or C13-C44 < 0 and Ci2-C66 
< 0 for hexagonal ones) [2]. This reflects important features of the nature of the bonding 
at the atomistic level. If the bonding can be described by pair-wise potentials, then the 
Cauchy pressure would be zero. If the bonding is more metallic in that spherical atoms 
are embedded in the electron gas of the surrounding neighbors, the Cauchy pressure would 
be positive as described by the EAM potentials [3). A NCP seemed to imply that an- 
gular dependent many-body forces are playing a crucial role in intermetallic compounds. 
As the tight-binding (TB) model is the simplest scheme within a quantum mechanical 
framework for describing the bonding of materials, there was much hope that the NCP 
could be modelled successfully by a new many-body order N potential for the bond order, 
the Bond-Order Potential (BOP) [4]. Unfortunately, applications of these BOPs for inter- 
metallic compounds have found that it is usually impossible to fit BOPs with physically 
motivated TB parameters that achieve NCP (see for example, [5]). The purpose of this 
paper is to elucidate the physical origins of this complex problem and to find a way to 
improve the BOPs for predicting of materials with NCP's properties. 

RESULTS FROM THE TIGHT-BINDING BOND (TBB) MODEL 

Within the two-center orthogonal TBB model, the binding energy can be written in 
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the form [4] 
U = U™, + Uhma (1) 

where UjtjL is a semi-empirical repulsive pairuii.ie contribution 

^P = ^E*(lRi-Rjl) (2) 

and the attractive bond energy is given by 

(Fo- 

il ' u 
Ubrmd = Y, fF"\E - En)na(E)dE = Uband - ££„#„. (3) 

Uband is the band-structure energy, En is (21+l)-fold degenerate atomic energy level on atom 
i, 7i;/ and Nu are the 1-projected local density of states (DOS) and number of electrons, 
respectively. When evaluating the clastic moduli, we apply a small homogeneous strain 
tensor, tnß. At equilibrium, the equilibrium conditions are 

o«ß = °% + <<* = 0 (4) 

where craß is the average stress in the system, and o™ß, ab
aa are respectively their pair-wise 

and bond components. The second order elastic moduli 

Caflys = CnßlS + CaßlS (5) 

should be all positive definite. Following equations (4) and (5), the Caurhy pressures using 
Voigt's notation are 

Ci2 — CM = C12 — C4l, + -fTu (6) 
2 

for cubic symmetry and 

Ci3 - CM — C13 - Cu + 7(^33 + °"n) 

C12-C6G = C12-C66 +-<TU (7) 

for tetragonal symmetry. Equations (6) and (7) show that within the TBB model the 
Cauchy pressures are determined not only by the bond energy elastic constant contributions 
but also by its corresponding stress tensor components via the equilibrium condition (4). 
We have applied equation (6) for cubic fcc-Ir and (7) for tetragonal Ll0-TiAl where the 
orthogonal two-centre TB parameters are deduced from the ab-initio TB-LMTO method 
which gives a good features of the electronic DOS [6]. Our calculations have been made 
for different TB basis sets; in particular we use the down-folding method in TB-LMTO to 
deduce the d-band parameters for the transition metal (Ir) and the d-p parameters for the 
transition metal aluminidc (TiAl) [7]. Our results for the Cauchy pressure within the TBB 
approximation are presented in the Table 1. We see that the total Caurhy pressure within 
the TBB model remains positive in contradiction with experiment for Ir and TiAl. 

It is very clear from our calculations that the stress contributions in equations (G) and 
(7) are mainly responsible for the predicted positive values. The origin of this effect is 
physically understandable because of the decreasing of the (negative) bond energy as the 

354 



Table 1: Cauchy pressure (in GPa) within the TBB model calculated with different orbital 
basis sets.                                                                                                          

Ir-fcc        (d) (spd)    |         TiAl-Ll0         (d-p) (spd)    |     TiAl-Llo (d-p)    (spd) 

C12 ~ C44    -10 -32      |        Cl,-ClA          21 -6       1    C12 — Cm 20        28 

(l/2)Ki)     38 336     |    (1/4)«+^)      51 283     |    (1/2)«) 52       290 

G12 — C44     28 304     |        Cl3-C44          72 277     1    C\i — C*66 72       318 

Exp.        -13 -13      |            Exp.             -27 -27      |        Exp. -5         -5 

distance is reduced. The larger the TB basis set (for example, on going from d to spd 
for Ir), the larger bond stress contribution results as can be seen in Table I. We made 
more tests by including the effect of the crystal-field contribution in order to improve the 
TB on-site energy description. In this case, the results for fcc-Ir(spd) did show that the 
stress contribution is reduced but the total Cauchy pressure still remains positive (177 
GPa instead of 304 GPa from Table 1). Inclusion of non-orthogonality does not appear to 
improve the situation. A recent non-orthogonal TB fit to Si still predicts a strong positive 
CP of 31 GPa compared to the NCP of -16 GPa [8]. We conclude that even though the 
TBB model can give an accurate account of the band structure, it is unable to provide the 
correct sign of the Cauchy pressure within equation (1). 

RESULTS FROM THE HARRIS-FOULKES APPROXIMATION (HFA) 

To gain insight into the origin of the NCP, we need to understand the behavior of 
the elastic constants within the HFA from which the TBB model has been derived [9]. 
The HFA can be obtained from the variational principle of Kohn-Sham density functional 
theory (DFT)[10]. Taking the input charge density as the superposition of free atomic 
charge densities comprising the core density nc and valence density n„, the total binding 
energy can be written as [10]: 

l,OCC 

d3r nv(r)ßxc{r) + Uxc[nv] + STC (8) 
■/■ 

where the first term is the band energy and the next three terms are equal to a change in 
the electrostatic energy, comprising the double-counting electrostatic energy, the core-core 
interaction energy, and the negative energy of the valence electrons in the free atomic state. 
In the second line of equation (8), the first two terms represent the change in the exchange 
and correlation energy whereas the last term 5TC is a correction to the total kinetic energy 
due to perturbed atomic cores. It is well-known that the TBB model approximates all 
terms in (8) except the bond energy by a sum of pair potentials. Our HFA calculations 
were carried out using the Full-Potential Liniear Muffin-Tin Method (FP-LMTO) [11] in 
which the input atomic charge density was multiplied by a Fermi-factor cutoff suggested 
by Finnis [12]. Our HFA results of Cauchy pressure for cubic fcc-Ir and fcc-Rh, tetragonal 
D022-TiAl3 and Ll0-TiAl and hexagonal DOi9-Ti3Al are shown in Table 2. 

It is gratifying to see that the HFA can predict good values of the elastic constants. 
Moreover, the negative Cauchy pressures of all those materials are resonable well repro- 
duced, except for the CP of Ci2-C66 for TiAl and TiAl3.  Our further HFA calculations 
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Tablr 2: Elastic constant (in GPa within the H; irris-Foulkes a iprixima tion 

- Ir Ir Rh Rh TiAl3 TiAh TiAl TiAl ThAl Ti-iAl 

- HFA EXP HFA EXP HFA EXP HFA EXP HFA EXP 

Cn 633 590 469 422 218 217 195 186 197 183 
C33 - - - - 216 217 207 176 220 225 

CM 261 262 221 194 94 92 113 101 68 64 

Ceo - - - - 143 11C 74 77 67 47 

C\2 228 249 205 192 101 57 79 72 62 89 
C\z - - - - 44 45 72 74 65 62 

C)2 — C44 -32 -13 -16 -2 - - - - - - 
Cl3 ~~ C44 - - - - -49 -47 -41 -27 -3 -2 

C\2 — Coo - - - - -42 -59 5 -5 -5 22 

for bcc-Mo, diamond-Si, Bl-TiC and Cllb-MoSi2 show that the Harris-Foulkes functional 
docs indeed provide the correct sign of the Caurhy pressure. 

From a detailed examination of the different energy terms in equation (8) we see that 
the the band energy and the electrostatic contribution including the double-counting part 
give very large cancelling components to the NCP (see Table 3). This large cancellation 
between the band energy and the electrostatic energy was one of the main reasons for 
developing the TBB model in which the large shifts in the on-site energies implicit in the 
band energy were removed and grouped with the negative electrostatic contributions to 
give much smaller contributions from the bond energy and electrostatic energy [13]. 

A detailed analytic study of the hydrogen molecule within the TBB description of 
the binding energy led automatically to a very small net electrostatic contribution at the 
equilibrium nearest neighbour distance within the HFA (see Fig.2 of [14]). The failure of 
the TBB expression, eq. (1) to yield NCPs resides in the fact that the orbitals used are 
strictly tightly bound, i.e. interactions extend out to only nearest neighbour atoms. This 
requires that the orbitals are not unscreened atomic orbitals but are orbitals that have 
been screened by the local atomic environment, either through the application of chemical 
pseodopentential theory (see [14] and references therein) or use of screened structure con- 
stants within TB-LMTO theory [6]. We consider how this affects the Cauchy pressure in 
the next section. 

INCLUSION OF THE ENVIRONMENT DEPENDENCE 

Table 3: Different energy contributions to the Cauchy pressure (in GPa) for TiAl from the 
Harris-Foulkes functional (eq. (8)). 

UHFA c„ C33 c,, Ccr, C12 C\3 C\z — CM C12 — Ccr, 
Band 71 74 -397 -471 8 61 439 479 

Electrostatic 134 144 497 549 87 25 -473 -462 
Exchange-correlation 5 7 4 2 -5 -3 -6 -7 

Core kinetic correction -14 18 -9 -5 -9 -11 _2 -5 
Total HFA 195 207 113 75 79 72 -41 5 

Exp. 186 176 101 77 72 74 -27 -5 
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fjenv _ 
rep 

Ay — 2 (^» + ^i)' ^«' = Aoo + SXi 

6X, = fi = /(ft) = EÄ)]1/7 

kfr 

The environment dependence effects both the repulsive and bonding contributions in 
eq. (1) [14]. However, for the case of elemental transition metals, the valence d orbitals 
are not strongly screened by the local environment because they are fairly localised (see 
Fig. 4 of [15b]). Therefore, in this paper we consider the environmental dependence of the 
overlap repulsion only, since it arises in large part from the valence sp electrons in transition 
metals that we squeezed into the core region under strong influence of unsaturated covalent 
d bonds (see Fig.4b of [16]). In principle, the short-range part of repulsive interaction can 
be approximated by the Yukawa form 

A 
^{XijRij; XijRc) = —expi-XijiRij - 2RC)) (9) 

Kij 

where Rc is the core radius. For simplicity, we shall neglect the explicit core dependence 
and write the repulsive energy as a sum over environmentally-dependent potentials of the 
form 

\ (10) 

with the following definitions 

(11) 

where p(Rik) is a pair-wise function. Calculating the general form of the elastic constants 
from U=Ur"p +U6ond is a 'wet towel job', but finally we can get a relatively simple analytic 
expression for the Cauchy pressure. For example, in the case of cubic symmetry, we obtain 

Cl2 — C*44 = C12 — C44 + -(7n + 

+^E(E^§*)(£#P'(*K)) + ^ECE^SxsSVtf«))   (i2) 
where Xy and Y^ are the cartesian projection of Ry, 

p« = /;($y+XijRi&j) + [/fy>*$;fc + itf)25x** + i/;/;4-*>'(fl«)- (is) 

p(Rij), fj, f,-, $y, $/;- denote the full derivatives of the corresponding functions with 
respect to their argument. Comparing with equation (6) the second line terms in equation 
(12) represent an additional contribution coming from the environment dependence of the 
new repulsive potential (10). For the case of fcc-Ir, after fitting the d-band model with 
experimental values of lattice constant and bulk modulus we find that Cn=569 GPa, 
C12=272 GPa and C44=284 GPa. The result gives Ci2-C44=-12 GPa which is in excellent 
agreement with the experimental value for the NCR Importantly, we also find that in order 
to get a NCP the value of 7 in equation (11) must be 7 > 1. 

Finally, it is not difficult to show the relation between our proposed functional form 
for the overlap repulsion (eqs.(lO)-(ll)) with other recently proposed environmentally- 
dependent TB schemes. For instance, if we suppose $(Ayi?y) = Aexp(-AyÄy) and p(Rik) 
= Cexp(-/jRfc) then it is easy to justify that as in [15] 

F(Rtj) = dea^-CjÄyXl - Sy) (14) 
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provided the screening function takes the functional form S,j « 6XlJR1J. 
Also we can write U^'=(U^;'-U^,,)+ \Jp

r
p

cp=Va
r
r

cp+\JWp, where U^ is a correction due 
to environment dependence to the pair-wise potential. Then in relation with the effective 

medium theory (EMT) [17], we have \J°r
rp=Y.,[Y,j?, ^PP{R1J)]^, where 7=1+^/7? provided 

we take A7?ijexp(-A00/?,ij) as a constant. Note that within the EMT, 7/ > 0 and 7;, > 0. 
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CHARACTERIZATION OF INTERATOMIC POTENTIALS BY 
A CALCULATION OF DEFECT ENERGY 

Y. KOGURE, M. DOYAMA 
Teikyo University of Science & Technology, Uenohara, Yamanashi 409-01, Japan 

ABSTRACT 

Potential functions used in molecular dynamics simulations for metals are characterized 

through a calculation of the third-order elastic constants, the Gruneisen parameters, and 
the molecular dynamics simulation of point defects. The Lennard-Jones potential and the 
embedded atom method potentials for noble metals (Cu, Ag, Au) are characterized by using 

a common program code. 

INTRODUCTION 

The empirical interatomic potential is widely used in the molecular dynamics simulation 
for the structure of crystal and amorphous, defects, phase transition, and so on. In metals 

the interaction between atoms has non-central character due to the valence electrons, which 
causes a deviation from the Cauchy relation of elastic constants. Recently, the embedded 
atom method potential (EAM) has been developed by many authors to express the many 
body interaction in metals [1-5]. These potential functions are compared on the points of 
the reproducibility of the physical properties and the adaptability to the molecular dynamics 

simulations. 

POTENTIAL FUNCTIONS 

Lennard-Jones Potential 

The Lennard-Jones (L-J) potential is a typical two body potential based on the van der 

Waals force and is able to reproduce the properties of rare gas solid. The potential has a 
simple functional form and has been widely applied to the fundamental simulation studies. 

The potential is described by two parameters, e and <r, and is often adopted in the 
simulation of metals because it has a simple functional form. The interaction energy for two 

atoms separated by r is expressed as 

w-o"-en- "> .12        /<T\6n 

In the molecular dynamics simulation the potential function is truncated at a finite distance, 
rc, and the parameters depend on rc. The values of r and rc are normalized by the nearest 
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neighbor distance r0 through this paper. A truncation, rc = 1.9, is chosen in the present 

study , in which an atom in a fee crystal interacts with 42 atoms. The potential parameters 

e and a are determined by fitting the potential to the experimental values of the cohesive 

energy, the lattice parameter, and the second-order elastic constants on the basis of the least 

mean square method. Hereafter the potential function is referred as 'L-J'. 

General form of EAM potential 

The EAM potentials are commonly expressed as 

Ei = F(pi) + W<l>{rii), (2) 

where, p is the electron density function and it is a sum of the density of the neighbor atoms 

labeled by j. 

/>< = £/(ry) (3) 
ii-i 

A Variety of forms for F(p), /(r) and <f>(r) have been proposed. 

A-T-V-F (Ackland et al.) potential [3] 
Finnis and Sinclair have developed a A'-body potential for transition metals based on the 

tight binding theory, which is equivalent to the EAM potential by Ba.skes et al. The method 
was applied to fee metals by Ackland et al. The embedded function F(p) is given by 

F(P)   =  -y/p, (4) 

and the functions </>(r) and f(r) are 

<«r) = X>('>-r)3//(r,-r), (5) 

f(r) = J2MRk-rfH(R,.-r). (6) 

Here, H(x) = 0 for x < 0 and H(x) = 1 for x > 1, namely, each term in the summation 

is truncated at r^'s or /?*'s. The maximum values of the truncation distance is 1.2347fl0, 

where au is the lattice parameter. 

0-J (Oh and Johnson) potential [4] 
Oh and Johnson have developed a potential based on the exponential function. 

F(p) = a(p/Pc)n - b(p/pc), (7) 

flr) = Mr) ~ Mrc) - <?(r)^w(rc)/</(r), (8) 

f(r) = /ow(r) - /oW(rc) - 5(r)/^d(rc)/fl'(r), (9) 

/OMM = /cexp[-/9r-l],    0old(r) = 0cexp[-7r-l],    g(r) = 1 - exp[f(r - rc)], (10) 

where, a,b,n, /?, 7,<5 and <f>c are the fitting parameters. The truncation distance is chosen to 

be rc = 1.9. The potential is referred as 'O-J'. 
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(r) [eV] 

harmonic approx. 

Fig.l EAM ptential energy for in- 

teracting two atoms. Two thin lines 
show contributions from F(p) and 

4>{r), separately. The dashed line 
demonstrates harmonic approximation, 
schematically. 

D-K (Doyama and Kogure) potential [5] 

Recently, the authors have developed a new potential functions. 

F(p) = Dp\np,    p = Y,flrtj)- (11) 

where, F(p) is the embedding energy for z'-th atom, p is the electron density, and ry is the 
distance between i-th and j-th atom. The functions <f>(r) and /(r) are 

<j>{r) = A{rc - r)2 exp(-ciJ-), (12) 

/(r) = B(rc - rf exp^r), (13) 

where, rc is a cut off distance of the potential. These functions contain five parameters 

A,B,Ci,C2, and D. They are determined by fitting the potential to experimental values of 
physical properties for crystals. 

ANHARMONICITY 

Third-order elastic constants 

An example of the EAM potential energy between two atoms is shown as a function of 
separation distance in Fig. 1. The position and the energy of the potential minimum and 

are related to the lattice parameters and the cohesive energy of the crystal. The second 

derivative of the potential function is related with the second order elastic constants, which 
are the coefficients of linear stress-strain relation due to the harmonic approximation. The 

anharmonicity is a deviation from the linear stress-strain relation and can be expressed by the 
third-order elastic constants (TOE). The constants are calculated from the third derivative 

of the energy E about the strain rj. There are six elements of TOE in fee crystals. 
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Table I    Calculated elastic constants, (in units of 100 GPa) 

L-J A-T-V-F O-J D-K Exp. 

Cll 1.492 1.756 1.734 1.781 1.684 

Cl2 0.936 1.176 1.202 1.206 1.214 

CM 0.936 0.716 0.738 0.714 0.754 

Cm -21.545 -59.900 -9.882 -13.322 -12.71 

C112 -11.804 -21.899 -4.708 -5.740 -8.14 

C123 0.165 -8.574 -0.010 -0.491 -0.50 

C\u 0.165 -9.223 -0.407 -0.391 -0.03 

Cier, -11.804 -21.998 -4.426 -5.589 -7.80 

C45G 0.165 -8.961 0.059 -0.032 -0.95 

tjijMn 
1     dE 

(14) 
ft VijVklVlm ' 

where, ft is the atomic volume. The calculated TOE's for copper are summarized and 

compared with the experimental values (Exp.) in Table I. It can bo seen that the potential 

functions expressed by a power function r"'s (L-J and A-T-V-F) give larger values of TOE 

than the experiments. 

Griineisen parameter 

Although the third-order elastic constants express the elastic anharmonicity completely, 

available experimental data are rather limited. On the contrary, the Güneisen parameter 

expresses the anharmonicity by a single value, and it can be obtained from the elastic and 

thermal measurement. The Griineisen parameter for most of elements and many compounds 

are available in literature [6]. 

According to the. higher order elasticity theory, the mode Griineisen parameter can be 

calculated from the second- and the third-order elastic constants. 

7ij(elastic) = -(l/w)[cahik + caubkUJJi + caMUJJk 

+Cm,bvikUuUl,}NaNb, (15) 

w = calAvUJJvNaNb, 

where, Ni is the propagation direction of the elastic wave, and (/< is the polarization vec- 

tor. By taking average for sound propagation direction and the polarization (longitudinal 

and transverse wave), the Griineisen parameters of noble metals (Cu, Ag. Au) have been 

calculated and the results are summarized in Table II. 

The elastic Griineisen parameter is also determined experimentally from the nonlinear 

volume-pressure relation, 

AV/V = aP + bP2, 

7(elastic) = — — -. 

(16) 

(17) 
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Table II Calculated and experimental Grüneisen parameters. 
L-J A-T-V-F 0-J D-K Exp. (elastic) Exp. (thermal) 

Cu 4.92 11.76 1.37 2.01 2.00 1.97 

Ag 4.46 12.50 1.44 1.37 2.29 2.46 
Au 5.47 12.62 1.57 1.38 2.22 3.09 

The thermal Grüneisen parameter is derived from a relation 

7(thermal) = -£-^ (18) 

where, a is the thermal expansion coefficient, V is the atomic volume , B is the compress- 
ibility, and Cv is the heat capacity at constant volume. The experimental values of the 
Grüneisen parameter, .E(elastic) and E(thermal), are also shown in Table II. The calculated 
Grüneisen parameters by the potential L-J and A-T-V-F are too large compared with the 
experimental values, whereas the values are even smaller in the other two potentials. The 

origin of the large difference in the anharmonicity may be attributed to the functional forms 
of the potential. 

DEFECT ENERGY 

A molecular dynamics simulation to determine the formation energy of a vacancy and a 

interstitial in copper crystals was performed by using above EAM potentials. A model crystal 
consisted of 1300 atoms was arranged, and a vacancy or a interstitial was introduced near 
the center of the crystal. The time interval At of the MD step is chosen to be 2 x 10~15sec. 

After 10000 MD steps, the system attain an equilibrium state. The total potential energy is 
compared with that of the perfect crystal containing same number of atoms, and the defect 

[001] 

o     •     o     • 

o     •     o     •     o     • 

•     o     »     o     #    o     • 

Fig.2 Atomic configuration around 
a [100]-split interstitial. Solid circles 

show the atoms on  a  [100]-plane in 
•    o«fe8^o«o which  the  interstitial  atoms  are  in- 

O»CDOOO»O» volved. 

•     o     •     o     •    o 

•     o     •     o 

 > [010] 
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Table III    Formation energy of vacancy Ey and 

interstitial E\ in copper (in units of eV) 

A-T-V-F        O-J D-K Exp. 

Ev       1.05 1.23 1.04 1.30 

Ei       4.31 3.48 3.76 3.94 

energy is determined. As an example, atomic configuration around an interstitial is shown 

in Fig.2. The split interstitial in [100] direction is found to be a stable configuration. Tiie 

determined formation energies of the vacancy and the interstitial by using the three EAM 
potentials are summarized in Table III. The values determined from the three EAM potentials 

are not so different as seen in the calculation of the Grüneisen parameter. The anharmonicity 

is considered to be less sensitive to the defect formation energy. 

SUMMARY 

The empirical interatomic potential has conveniently been used in the molecular dynamics 
simulations, especially for the large atomic systems. The typical EAM potential functions 
have been characterized through the calculation of the anharmonicity and of the defect 
energy. The Grüneisen parameter is found to depend on the potential function , strongly. 
The formation energies of the vacancy and the interstitial also depend on the potential but 

less than the Grüneisen parameter. The characterization of the potential on the points of 

lattice vibration and the glass transition is now in progress. 
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A TIGHT-BINDING MODEL FOR OPTICAL PROPERTIES OF POROUS SILICON 
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Institute) de Investigaciones en Materiales, UNAM, 
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ABSTRACT 

Semi-empirical tight-binding techniques have been extensively used during the last six 
decades to study local and extended defects as well as aperiodic systems. In this work we 
propose a tight-binding model capable of describing optical properties of disordered porous 
materials in a novel way. Besides discussing the details of this approach, we apply it to 
study porous silicon (p-Si). For this purpose, we use an sp3s* basis set and supercells, 
where empty columns are digged in the [001] direction in crystalline silicon (c-Si). The 
disorder of the pores is considered through a random perturbative potential, which relaxes 
the wave vector selection rule, resulting in a significant enlargement of the optically active 
k-zone. The dielectric function and the light absorption spectra are calculated. The results 
are compared with experimental data showing a good agreement. 

INTRODUCTION 

From a theoretical point of view, the study of optical properties starts with the calculation 
of the electronic band structure. This can be achieved mainly by two possible approaches. 
First principle methods are very successful in treating small systems. However, semi- 
empirical or tight-binding calculations, less computationally intensive than first principle 
calculations, can consequently deal with larger and more complex structures. The use of 
phenomenological parameters in semi-empirical calculations includes many-body effects, 
otherwise extremely difficult to consider in first principle methods. Another advantage of 
the tight-binding approach is the possibility of treating different types of disorder such as 
local defects, alloys, quasicrystals and amorphous systems. Several well known techniques 
to treat disorder exist in the literature such as virtual crystal approximation (VCA), average 
T-matrix approximation (ATA) and coherent potential approximation (CPA). These meth- 
ods have played an important role in the understanding of many new materials though they 
are mostly appropriate for local disorder and, if self-consistency is included they become 
extremely computing demanding. 

We present here a semi-empirical tight-binding supercell model [1] capable to study dis- 
ordered and nano structured porous media. Oxrr aim is to calculate optical properties from 
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the electronic band structure. In order to address the disorder, instead of using the con- 
ventional procedures, we introduce a new approach which includes a random perturbativc 
potential to simulate the aleatory distribution of pores. This random potential produces a 
relaxation of the k wavevector selection rule broadening the optically active zone. 

One of the dominant trends in current research of materials science and solid state 
physics is the study of nanometric materials and devices. In these nanostructures many 
new effects take place and it is believed that, the quantum confinement plays a mayor role in 
their peculiar behaviours. In particular, porous silicon (p-Si) represents a very interesting, 
easily produced and non-expensive nanostructurcd system. 

Although the supercell model could be applied to different porous systems and nanos- 
tructures, in this paper we describe its application to porous silicon, which is produced 
from crystalline silicon by means of an electrochemical etching [2]. This process leaves a 
porous or sponge-like structure, with diameters at nanometer scale and lengths at micron 
scale, which intermingle at random. This material possess both, order and disorder, but 
at separate length scales. The order lies in the crystalline structures, and the disorder 
originates from the different shapes, orientations and distribution of the crystalline silicon 
crystallites, which conform the randomly arranged branches, characteristic of p-Si. The 
enormous interest in this material is mainly due to its very efficient luminescence at room 
temperature, which could be applied to all silicon based optoelectronic technology. For a 
detailed and recent review of p-Si sec, for example, the Ref. [3]. 

From the theoretical point of view, calculations have primarily been performed on ide- 
alized Si wire and dot structures [4]. Surface dangling bonds are passivatcd with hydrogen, 
as is in general the case in freshly etched Si. First principle calculations on p-Si have been 
performed using density function theory (DFT) within the local density approximation 
(LDA) [5, 6] which have been demonstrated to be successful in dealing with ground state 
properties of Si. Semi-empirical calculations of band structures of idealized p-Si structures 
have been performed [1, 4, 7, 8], giving band gaps in agreement with the experimental 
trends. 

On the experimental side, extensive studies have been achieved [9]. In particular, we 
are interested on optical properties of p-Si, such as the dielectric function, measured by 
Koshida et. al [10] amongst others, and the absorption coefficient [11. 12]. 

In the next section we describe the supercell model with disorder. Following this, we 
present and discuss the results obtained. Finally, some conclusions arc given. 

THEORY 

We use a minimum basis capable of describing an indirect band gap along the A'-direction. 
an spss*, with P. Vogl, H.P. Hjalmarson and J. Dow's parameters [13], which gives an 
1.1 eV gap in bulk crystalline silicon. Empty columns (pores) are produced by removing, 
in the [001] direction, columns of atoms within supercells. We saturate the pore surface 
with hydrogen atoms. The Si-H bond length is taken as 1.48 angstroms. The on-sitc energy 
of the H atom is considered to be —4.2 eV, since the free H atom energy level. -13.6 eV. is 
so close to the s-statc energy level of a free Si atom, —13.55 eV [14]. therefore the on-sitc 
energy of H is taken to be the same as that of silicon, as in [15]. The H-Si orbital interaction 

parameters arc taken as ssrrH^Si = -4.075 eV, spaH_Si = 4.00 eV, which are obtained by 
fitting the energy levels of silane [16]. 
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The real (ei) and the imaginary (£2) parts of the dielectric function (e = et +162) are 
related by the Kramers-Kronig dispersion relations and ti can be calculated as [14], 

e2(w) oc —2 £ |(k,|p ■ e\kc)\
26(E(kc) - E(K) - M. (1) 

10   kv.kc 

where e is the light polarization vector, p is the electronic linear momentum, |k») and |kc) 
are valence- and conduction-band eigenstates, respectively. In the tight-binding scheme 
eigenstates |k) = X^a^ H,^, where i is the site index and ß identifies the orbital, then 
the dipole matrix in the equation (1) can be expressed as: 

<k„|p • e|kc> =  £ ai;alv{i^\p\jv) ■ e. (2) 

The dipole matrix elements in Eq. (2) may be rewritten in terms of the Hamiltonian 
(H) and the position (r) operators, using the commutation relation p = *jr[H, r], 

MPIJ") = x J2(^\H\lX){lX]r\ju) - (iß\r\l\)(l\\H\jv)). (3) 
n   i.x 

Since the polarizability of a free atom is much smaller than that of the corresponding 
semiconductor [17], Eq. (3) can be simplified as [18]: 

%vn 
(iM|p|jV) = — {iß\H\jv)Au, (4) 

where dy = (jV|r|jV) — {iß\r\iß) is the distance between the gravity centers of the orbitals 
ß and v placed at atoms i and j, respectively, and it is independent on orbitals if the 
crystal field is symmetric. Notice that the contribution to the dipole matrix coming from 
two orbitals at the same atom is neglected. 

In order to understand the optical properties of p-Si, several unique features inherent to 
this material have to be considered. The luminescence of p-Si depends largely on its skeleton 
size, its disordered nature, as well as on its surface chemical composition. These charac- 
teristics switch on nonmomentum-conserving, no-phonon assisted radiative transitions [3]. 
In this work, we propose to include a random perturbative potential in the Hamiltonian 
to extend the supercell model, representing the aleatory distribution of pores. Its Fourier 
transform introduces an additional k wavevector to be considered in the momentum con- 
servation rule. Consequently, due to the randomness, when pores are introduced, we take 
into account both, vertical and non-vertical radiative interband transitions. However, not 
all of them contribute equally, depending on the nature of the perturbative potential con- 
sidered. In principle, it is possible to estimate the interval of non-vertical k values, defining 
a window around each vertical transition. An analysis of the behaviour of the k-window is 
given in the next section. 

RESULTS 

To calculate optical properties of p-Si, we have considered interband transitions for an 
x-direction polarized light. They are calculated in 8-atom supercells [1] with a 1-atom 
columnar pore saturated by hydrogen atoms.    The calculation has been performed by 
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5 

Figure 1: Analysis of the averaged absorption coefficient (Q) as a function of the window- 
width (Ak) introduced due to non-vertical transitions between valence and conduction 
band states, and a = 5.43 angstroms is the supercell size. 

considering 1331 kr-points in the first Brillouin zone. For each k0 point, a corresponding 
cubic k„-window of different sizes is considered. 

We start by analyzing the role of the disorder in p-Si. Figure 1 shows the thermally aver- 
aged absorption coefficient (a) as a function of the k-space window width. The absorption 
coefficient (a(w)) is defined as 

a(u>) = —e2{u>) 
nc 

where n is the refraction index of the porous media and c is the light speed. The thermally 
averaged absorption coefficient, proportional to the recombination rate, is given by 

_     /o(w)cxp(-^)rfa; 

'cxp( kDT )cL 

Notice that the absorption increases as the window broadens, which is expected since 
more non-vertical transitions arc considered. It can also be observed that the order of mag- 
nitude of the absorption is maintained, in spite that a significant fraction of the Brillouin 
zone is included in the window. It is worth mentioning that this result is much larger than 
that obtained if the same calculation is performed on crystalline silicon. This means that 
the quantum confinement plays a substantial role in the optical properties of p-Si. 

In figure 2 the results of the absorption coefficient, including non-vertical transitions, are 
compared with experimental data obtained by Sagnes et al [11] for a p-type 74% porosity 
sample. We have shifted the absorption curve to fit the experimental encry gap in order 
to analyze its shape, since the theoretical and the reported porosities are not equivalent. 
Notice that there is a fair agreement between theory and experiment around the band gap 
edge, in spite that no d-orbitals neither other elementary excitations have been considered 
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Figure 2: Absorption coefficient \JaE (open circles) calculated from an 8-atom supercell 
with a one-atom columnar pore, compared with Sagnes' experimental data (solid squares) 
for a p-type porous silicon sample with 74% porosity. 

In general, the analysis of the absorption coefficient around the band gap could reveal 
much about the gap nature, and figure 2 suggests that disorder is important. In a recent 
joint density of states study [19] considering 3D disordered crystallites they also reproduce 
the same absorption data and conclude that disorder plays a very important role. 

CONCLUSIONS 

We have shown previously [20] that a simple quantum mechanical treatment, such as a 
phenomenological tight-binding technique, is capable of reproducing the essential features 
of the dielectric function of p-Si. Furthermore, from the comparison with the experimental 
data we can conclude that the tight-binding supercell model, when disorder is considered, 
gives the correct shape of the absorption coefficient around the band gap in p-Si. 

Certainly, porous silicon is a complex material, where the quantum confinement and 
the disorder are two of the most important features. The quantum confinement effect 
is considered within the supercell method. However, disorder is difficult to treat within 
the widely used theoretical techniques, such as CPA. The non-vertical transition approach 
discussed here provides us a non-conventional first-approximation tool to treat the disorder 
present in p-Si, that has the advantage of being simple to implement and gives reasonably 
good results. 

This calculation is currently being extended to calculate the radiative lifetime of excited 
states. On the other hand, further studies should be performed to quantify the weight of 
each non-vertical transition, which will depend on the specific random potential to be 
included in the Hamiltonian. 
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TIGHT-BINDING ELECTRON-ION DYNAMICS: 
A METHOD FOR TREATING NONADIABATIC PROCESSES 
AND INTERACTIONS WITH ELECTROMAGNETIC RADIATION 

J.S. GRAVES, R.E. ALLEN 
Department of Physics, Texas A&M University, College Station, Texas, 77843 

ABSTRACT 

A method is introduced for simulations of the coupled dynamics of electrons and ions 
in a molecule or material. It is applicable to general nonadiabatic processes, including 
interactions with an arbitrarily intense radiation field. The field is included in the elec- 
tronic Hamiltonian through a time-dependent Peierls substitution. The time-dependent 
Schrödinger equation is solved with an algorithm that preserves orthogonality, and the 
atomic forces are obtained from a generalized Ehrenfest theorem. Calculations for GaAs 
and Si demonstrate that the method is reliable and quantitative. 

Many processes in physics, chemistry [1-3], and biology [4-6] involve the interaction of 
electromagnetic radiation with complex molecules and materials. Traditional treatments 
of this problem involve the Born-Oppenheimer approximation (in which the electrons are 
assumed to adiabatically follow the motion of the nuclei), the Franck-Condon principle (in 
which the nuclei are regarded as frozen during each electronic transition), and Fermi's golden 
rule (which is based on both first-order perturbation theory and the premise that the field 
varies harmonically on a long time scale). These assumptions may be difficult to employ 
for a complex system, and they are not always valid. For example, Fermi's golden rule is 
invalid for ultra-intense and ultrashort laser pulses [7-9]. In the most general case, one needs 
numerical simulations. 

Here we introduce a method for simulations of the coupled dynamics of valence electrons 
and ion cores in an arbitrarily strong and time-dependent electromagnetic field. Although 
a first-principles formulation is possible [10], a tight-binding representation is preferable for 
practical calculations: (1) The electronic excitations play a central role, so it is important 
that the excited states be at their proper energies. (These are fitted to experiment in a 
semiempirical tight-binding model, whereas they are typically too low in the local density 
approximation and too high in Hartree-Fock.) (2) Since the time step is of order 1 fem- 
tosecond, and the system may contain many atoms, the method must be computationally 
fast. (3) A tight-binding representation involves chemically-meaningful basis states which 
are localized on the atoms, and which has the same symmetries as atomic orbitals. One 
can then immediately interpret the results using intuitive ideas based on ground-state and 
excited-state chemistry [11]. 

Tight-binding electron-ion dynamics begins with the model Lagrangian [10] 

L = Y, \M<x?« - u-"+£ *) • (ihm - H) • **• 
IK 3 

(1) 

The first term is the kinetic energy of the ions, with coordinates Xu, which are treated classi- 
cally. The second is a summation over repulsive potentials which model the ion-ion repulsion, 
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together with the negative of the electron-electron repulsion which is doubly counted in the 
third term [12]. This last term is the tight-binding version of the standard Lagrangian for 
particles treated in a time-dependent self-consistent-field approximation [13]. Each electron, 
labeled by j, has its own time-dependent state vector *Pj. If there are N tight-binding basis 
functions in the system, tyj is JV-dimensional, and the time-dependent Hamiltonian H is 
NxN. 

When the action J Ldt is required to be stationary with respect to variations in XiK and 
&i, we obtain the equations of motion for electron and ions: 

ihdVj/dt = H(0*j (2) 

MX = -Y&- —   * -^ (3) 
i 

where X is any ion coordinate.    These are respectively the time-dependent Schrödinger 
equation and Ehrenfest's theorem, with the electrons treated in a tight-binding picture and 
the ions treated classically.   The corresponding equations in a first-principles formulation 
were obtained previously, using a completely different derivation. 

The electrons and ions are coupled in (2) and (3), because H is a function of the ion 
coordinates and the forces on the ions are influenced by the electronic states. We now need 
to couple the electrons to the radiation field. (One can also easily couple the ions to the 
electromagnetic field, but this is a minor effect if the field oscillates on a one femtosec- 
ond time scale, two orders of magnitude smaller than the response time of the ions.) The 
most convenient way to introduce the field into the electronic Hamiltonian is to employ a 
time-dependent Peierls substitution [14]: First consider the standard Hamiltonian in the 
coordinate representation with a time-dependent electromagnetic vector potential A: 

H = {p- -A)2/2m + V(r) (4) 
c 

where p = —iKV and e is negative for an electron. This is equivalent to 

H = exp(-£/A-*)//°exp(£/A-(/r) (5) 

with 

H° = p2/2m + V(r) (6) 

as one can easily verify by substituting (6) into (5) and letting H operate on an arbitrary 
function \P(r). To employ (5) in a tight-binding scheme, we recognize that the matrix 
elements of (5) are the same as matrix elements of (6) with the localized basis functions 
<j>a(r — R) multiplied by exp(iej A • dr/hc). In this factor, it is consistent with the spirit 
of tight-binding to take fA-dr«A-r«A-R, provided that A is slowly-varying on 
an atomic scale (as it is for electromagnetic radiation with hw < 10 eV). Then the matrix 
elements Hap(R. — R') are modified by the Peierls substitution 

Haß(R-R')   =   Ä°»(R-R')exp(gA-(R-R')) (?) 

This approach requires no additional parameters and is valid for arbitrarily strong time- 
dependent fields. 
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Solution of the ionic equations of motion (3) is essentially the same as in tight-binding 
molecular dynamics [12,15,16]. (The velocity Verlet algorithm was used.) Solution of (2) 
requires more care, since a naive algorithm for this first order equation fails to conserve 
probability. Instead we write the time-evolution equation in the form 

exp 
iHAA 

2h   ) 
9(t + At) = exp I 

tHAA 
2fi *(*)• (8) 

Now approximate the exponential by its first two terms. In lowest order this gives the Cayley 
algorithm 

» N     ,       iHAiN ,   ,       iHA<, 
■*(*)■ (9) 

2ß   '      ' 2H 
With a time step At of 50 attoseconds, we then find that probability is conserved to within 
about 3 parts in 106 during the full simulation, and orthogonality is preserved at this same 
level. Energy is conserved to about one part in 106 with no applied field, or one part in 104 

after interaction with an intense laser pulse (3 x 1012 W/cm2 for about 100 femtoseconds). 
Using the method outlined above, we have performed calculations for the electronic and 

structural response of semiconductors to ultra-intense and ultrashort laser pulses [17-20]. A 
standard tight-binding model was used [21], together with a standard r~2 scaling for the 
interatomic matrix elements [22]. We used a nonstandard repulsive potential with the form 

*(r) = ^ + 4 + 
a 
7* (10) 

The three parameters a, ß, and 7 were fitted to the experimental values of the cohesive 
energy, interatomic spacing, and bulk modulus. A cubical cell containing eight atoms was 
used in the simulations, and periodic boundary condition were imposed on the motion of the 
ions. The electronic states are then Bloch states corresponding to this large unit cell. 

2 3 4 5 

Energy (eV) 

2 3 4 

Energy (eV) 

Fig. 1. Im e(u>) calculated in the present work (heavy curves), compared with the 
measurements of Ref. 23 (light curves). Left panel: GaAs. Right panel: Si. 

The time dependence of the electronic states and ionic positions was calculated as de- 
scribed above, and the imaginary part of the dielectric function was obtained from the 
formula 

Im e(w)   oc   — ^2 [/„(k) - /m(k)]p„m(k) • pm„(k)5(w - wmn(k)) (11) 
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where the notation is defined in Ref. 14. This result of linear response theory is valid in the 
probe phase of a pump-probe experiment. It also yields good agreement with more usual 
optical measurements [23], as illustrated in Fig. 1 for GaAs and Si (or in Ref. 14 for GaAs 
with a slightly different tight-binding model). In Fig. 2, Im e(w) was calculated in arbitrary 
units, and the height of the theoretical curve then adjusted for a better comparison with 
the measurements. Without this adjustment, theory and experiment still agree to within a 
factor of two [14]. A set of 512 sample k-points were used in calculating the time-dependent 
dielectric function during the simulations. Further details are given elsewhere [24]. 

Fig. 2. Time-dependent dielectric function (in arbitrary units) for GaAs, with hw = 1.95 
eV and a FWHM pulse duration of 70 fs. Left panel: fluence = 0.815 k.I/m2. Right panel: 
fluence = 3.26 kJ/m2. 

Fig. 3. Time-dependent dielectric function for Si, with hui = 1.95 eV and a FWHM pulse 
duration of 70 fs. Left panel: fluence = 0.815 kJ/m2. Right panel: fluence = 3.26 k.I/m2. 

Representative results for the time dependence of e(u), during and after the application 
of a laser pulse, are shown in Fig. 2 for GaAs and Fig. 3 for Si. In each case, notice the 
difference in the behavior of e(w) for pulses of lower and higher intensity. For the pulse of 
lower intensity, Im e(w) is zero at all times for hixi less than the band gap, demonstrating 
that the material remains a semiconductor and there is no absorption within this range of 
energies. In addition, the structural features of Fig. 1 persist, showing that the original 
bandstructure remains intact. For the pulse of higher intensity, on the other hand, below- 
bandgap absorption is observed soon after the pulse, indicating a transition to metallic 
behavior. The original structural features in e(u>) are also washed out following the pulse. 
This general behavior is consistent with that observed in the experiments [17,18]. A more 
detailed analysis of the lattice destabilization, band-gap collapse, and modification of the 
dielectric function is presented elsewhere [24]. 
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100       200       300 
time (fs) 

Fig. 4. Average distance moved by an atom, during and following a laser pulse. The 
amplitude A0 of the vector potential is given in gauss-cm. Left panel: GaAs. Right panel: 
Si. 

In summary, we have introduced a method for simulations of the coupled dynamics of 
electron and ions in a molecule or material which is subjected to arbitrarily intense electro- 
magnetic radiation. We have also applied this method in studies of GaAs and Si subjected to 
ultra-intense and ultrashort laser pulses. The results for the time dependence of the dielec- 
tric function e(w) are in good agreement with what is observed in pump-probe experiments 
on these materials [17,18]. We find that the modification of e(w) indeed results from a non- 
thermal lattice destabilization and band-gap collapse, on a 100 femtosecond time scale, when 
electrons are promoted from bonding valence-band states to antibonding conduction-band 
states. 
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OPTICAL PROPERTIES OF MATERIALS USING THE EMPIRICAL 
TIGHT-BINDING METHOD 

L. C. LEW YAN VOON 
Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, 
Massachusetts 01609 

ABSTRACT 

Procedures for calculating the optical properties of periodic systems using the empirical 
tight-binding method are compared. Results of the linear and nonlinear susceptibilities are 
presented using a recently developed exact formalism [Lew Yan Voon and Ram-Mohan, 
Phys. Rev. B47, 15500 (1993)]. 

INTRODUCTION 

The multiband empirical tight-binding method was developed by Slater and Koster [1] 
in 1954 in order to provide an efficient full Brillouin zone parametrization of the electronic 
band structures of periodic systems. The Hamiltonian was formally represented in terms 
of a finite number of localized atomiclike basis functions satisfying the Bloch condition, 
the functions themselves never being explicitly given. The unknown parameters (the tight- 
binding [TB] parameters) were then obtained by fitting the eigenvalues of the Hamiltonian 
matrix (i.e., energies) to experimental data. For the next 30 years or so, the TB model 
was used extensively to solve a wide variety of problems: point defects levels, surface and 
heterostructure band structures, bulk and surface structures, transport coefficients. Miss- 
ing was the knowledge of how to calculate optical coefficients (e.g., absorption coefficient) 
exactly and completely. The argument was that the calculation of the optical coefficients 
requires first calculating momentum matrix elements and the latter could not be done be- 
cause the actual explicit wave functions were never known. Approximate schemes were 
introduced which relied mainly on fitting the momentum operator in a fashion analogous 
to the Hamiltonian [2, 3]. In 1993, we managed to prove explicitly that the momentum 
operator could be defined exactly in terms of the Hamiltonian operator [4]. 

Our aim here is to compare the fitting methods to our exact expression. We also present 
results of the linear and nonlinear optical susceptibilities obtained using our procedure to 
illustrate the difference between different TB parameter sets for optical properties. 

THEORY 

The long-wavelength optics we are interested in here is obtained from coefficients charac- 
teristic of the material. For linear optics, we will refer to the imaginary part of the dielectric 
function, 

62(W) =      ™\vTh{Ev) [1 - UEC)} \(c\p\v)\2S(Ecv - M, (1) 
€0m^iü 

cvk 

while, for second-order nonlinear optics, we will compute the coefficient of second-harmonic 
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generation [5]: 

X^(2£) " 2£om3£3 x L,/» { {Ec,v + 2E)(Ecv + E) + ''' J ' ® 
VCCK ' 

For the above, one needs the band structure Enk and the momentum matrix element p„m(k). 
In computing the momentum matrix element within the TB formalism, a number of pro- 

cedures had been adopted in the past. The most appealing was to represent the momentum 
operator in the same basis set as the Hamiltonian: 

pnm(k)   =    (nk|p|mk)= £c;l(nk)C/W(mk)£yk-R<»' 
aßbb' I 

x JdT(f>'olj(r)p<!>ßl,,{r-Rm,) (3) 

,k> = Jf E C^("k) E e'k R'V„(r - R«) (4) 

where 

\nb 
N 

ab I 

is the expansion of the band states in terms of the TB Bloeh states for orbit als <f>0 located 
at position Rlb. Symmetry is then used to reduce the momentum matrix elements into a 
minimal set of independent quantities. Thus, Xu [2] assumed that intraatomic excitations 
dominate and rewrote the expansion as 

P„m(k) = Y,C'ob(nk)Cßh{mk)Pb
aP 

aßb 

The unknown quantities P^ were then obtained by fitting to experimental dielectric func- 
tions. Chang and Aspnes [3] used a similar procedure but. obtained a slightly different set 
of parameters, which they then fitted to empirical pseudopotential calculations. Explicit 
values for GaAs are given in Table 1. Paa, for example, refers to the intraatomic momentum 

Table 1: Values of the momentum matrix elements for GaAs obtained by Chang and Asp- 
nes [3], 

P.«. P J   CC P» P PP,      -.. 
GaAs (eV)1/2 6.111 3.023 0.044 -0.114 0.178    ... 

matrix element between an s orbital and ap orbital for the anion. Psp is a nearest-neighbor 
momentum matrix element. These numerical values are consistent with the model of Xu 
since the intraatomic momentum matrix elements are much bigger than the nearest-neighbor 
ones. The procedures outlined above have a number of flaws. If the system is under strain, 
momentum matrix elements would have to be obtained for different levels of strain. The 
models are also of limited use since they require fitting to the bulk data. 

In 1993, Lew Yan Voon and Ram-Mohan [4] took a different approach. Drawing from kp 
theory, it was realized that there had to be a relationship between the momentum matrix 
elements and the Hamiltonian matrix elements. Using the generalized Feynman-Hellmann 
theorem, we obtained an exact relationship between the two operators 

P(k) = ^Vki/(k). (C) 
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The momentum matrix elements were then given by 

pnm(k)   =   ^(nk|VkH(k)|mk) 

=   ^C^(nk)Cflt.(mk)p^(k), (7) 
aßW 

where 

P&0O = ^ E ^^"RwE%(Rw). (8) 

Comparing with the procedures of Xu and Chang and Aspnes, one finds that 

and 

PaßC^w) ~ —jr-R-wEafiCRw)- (10) 

The key result of the exact expression is that Paßfätv) has no contribution from intraatomic 
excitations, in contradiction to the results of Xu and Chang and Aspnes. Also, it shows 
that one can obtain the momentum matrix elements from the Hamiltonian matrix elements 
and that the exact wave functions are not required. 

RESULTS 

We now present numerical results based upon Eq. (6). We start by studying the zone- 
center momentum matrix elements since the latter are often quoted in the literature. In 
Table 2, we list the calculated momentum matrix elements using three popular TB param- 
eter sets: VHD from Vogl, Hjalmarson, and Dow [6], SC from Schulman and Chang [7], 
and LS from Lu and Sham [8]. VHD and SC are nearest-neighbor sp3s* models, while LS is 
a second nearest-neighbor sp3s model. It is clear that different TB parameter sets lead to 
different momentum matrix elements. One source of the differences is the different fitting 
of the energies. The other has to do with the finite basis set used [4, 10]. 

We next show some examples of dielectric functions and JDOS (Figs. 1 and 2) calculated 
using the TB method and the parameters of Vogl, Hjalmarson, and Dow. While there 
are many differences between the experimental and calculated spectra (particularly with 
respect to magnitude), the general shapes are reproduced. A common approximation in the 
literature is to substitute the JDOS for e2- Figs. 1 and 2 show that this is valid for Si but not 
for GaAs. The calculations of the dielectric functions for bulk zincblende semiconductors 
on a DEC Alpha workstation took a mere 15 mins for over 20000 special points. 

For completeness, we show in Fig. 3 the kind of spectra obtained using different TB 
parameter sets for the second-harmonic generation coefficient [5]. The agreement between 
different parameter sets is less good than for linear optics. 

CONCLUSION 

We have reviewed and compared two distinct procedures for obtaining the momentum 
matrix elements within the TB formalism: a fitting procedure and the exact one.  It has 
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E(eV) 

Figure 1: Imaginary part of dielectric function and JDOS of Si calculated using TB. Inset: 
experimental curve from Cohen and Chelikowsky [11]. 

4.0 6.0 
E(eV) 

Figure 2:  Imaginary part of dielectric function and JDOS of GaAs calculated using TB. 
Inset: experimental curve from Cohen and Chelikowsky [11]. 
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Figure 3:  Dispersion of the imaginary part of the second-harmonic coefficient calculated 
using two different TB parameter sets. 

Table 2: Interband matrix elements E = 2P2/m0 (in eV) and key band energies and effective 
masses for GaAs at the T point calculated from three different tight binding models. E0 is 
the fundamental direct gap and Ex is the r15c-rlc (r7c-r6c) gap. These are also compared 
with values given by Gorczyca et aJ. [9], 

GaAs VHD SC LS Gorczyca 

Ep0 15.44 25.3 18.41 24.9,26.3,27.86 

EPl 0.01 0.36 0.97 0.11,0.78,2.361 

EQO 13.52 11.94 12.53 13.4,13.7,15.56 
E0 1.55 1.43 1.52 1.66 
E, 3.16 3.02 3.20 3.21 

Ao — 0.343 — 0.338 

Ai — 0.221 — 0.176 
ml 0.119 0.067 0.067 0.066 
mL(A) -0.409 -0.454 -0.511 — 
"4(A) -0.089 -0.070 -0.055 — 

been shown for the first time that the fittings so far carried out are unphysical. Examples 
of calculated linear and nonlinear susceptibilities are given. 
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ABSTRACT 

We propose an empirical tight-binding method for tetrahedrally coordinated cubic ma- 
terials and apply it to group IV and III-V semiconductors, extending existing calculations 
by the inclusion of all five d-orbitals per atom in the basis set. The symmetry charac- 
ter of the conduction states at the surface of the Brillouin zone is considerably improved 
compared to calculations in smaller bases, and the corresponding band positions can be 
obtained within the experimental uncertainties. Because the distance dependence of the 
tight-binding parameters is derived from deformation potentials, the model is particularly 
suited for an investigation of strained superlattices where the states at direct or pseudo- 
direct conduction band minima are composed of wavefunctions of all the minima at T, 
X, and L of the constituents. Investigations of GaAs/AlAs and short-period superlattices 
indicate a strong mixing between the conduction band valleys in the miniband structure, 
and the results are in better agreement with experiments than state-of-the-art empirical 
pseudopotential calculations. 

INTRODUCTION 

During the last decades, empirical tight-binding (TB) methods have been used for an 
approximate understanding of materials properties of various crystal symmetries [1-3]. A 
major problem for quantitative applications concerning cubic semiconductors has been the 
required extension of the atomic basis from the minimal size sp3 [2,4] towards higher-lying 
atomic states like the next s-shell in an sp3s* basis [5], rf-states of r3-symmetry in sp3d2 [6] 
and the recent parametrization including sp3d5s* states [7]. Group theoretical arguments 
demonstrate that the latter sp3d5s* basis is needed for a good approximation to numerical 
completeness, and various deficiencies of the smaller TB models have been resolved, e.g. the 
decomposition of valence and conduction wavefunctions into different atomic symmetries 
of cation and anion [7]. 

A crucial step in the parametrization of our sp3d5s* nearest-neighbour TB model was 
the investigation of the free-electron band structure along the lines indicated in older 
empirical TB calculations. This allowed an analytic derivation of universal parameters for 
zincblende- and diamond-like semiconductors. In particular, the on-site energies of the 
d-states and all their interaction parameters were deduced from the higher free-electron 
conduction bands [7]. As these bands remain free-electron like in cubic semiconductor 
materials, the corresponding TB parameters are typical for all materials of this symmetry 
class. Because the d-rf-interaction parameters interfere constructively at some points of 
the Brillouin zone, the corresponding splittings are by far too large to be obtained in low 
order perturbation theory. 

The lowest bonding d-state at the high symmetry points of the Brillouin zone occurs at 
X, leading to a dominating ^-contribution to the X6c wavefunction. The small transverse 
conduction mass at X is related to ^-interactions and cannot be reproduced in nearest- 
neighbour TB models excluding rf-states. Owing to the important admixture of r4(T23)- 
symmetric J-states to the highest valence band at T, the second conduction band at V and 
to the X6c valley, the use of a sp3d2 basis including only the r3(£i3)-symmetric ^-states [6] 

383 

Mat. Res. Soc. Symp. Proc. Vol. 491 "»^S Materials Research Society 



leads to severe shortcomings, resulting e.g. in poor estimates for dipole matrix elements 
and masses. The s*-state, on the contrary, is not really needed for good agreement with the 
experimental band structure. It is useful, however, in order to conserve the correspondence 
of the lower Ti-symmetric s-state with the free atom, and therefore the transferability of 
the on-site energies for the two valence states between different compounds, like e.g. FA 
and Ea

s for As in the two materials GaAs and AlAs investigated here. Furthermore, the 
anion-cation character of r6c would not correspond to first-principles results in the smaller 
sp3d5 basis, leading to severe shortcomings in heterostructures where the localization of 
the wavefunctions on well-defined atomic planes is of crucial importance [8,9]. 

GaAs 

FIG. 1: 
Comparison of GaAs ?nd AlAs 
bulk band structures, in eV. The 
calculated (expei'.nental, Ref. 
[10]) energies for the conduction 
minima, measured from the va- 
lence band maximum, arc: 
GaAs: 
E(r6c) = 1.519 eV (1.510 eV), 
£?(L6c) = 1.837 eV (1.85 eV), 
£(XGc) = 1.989 eV (1.98 eV), 
E(X7c) = 2.328 eV (2.35 eV). 
AlAs: 
£(r6r) = 3.230 cV (3.13 eV), 
£(L6c) = 2.581 eV (2.54 eV), 
£(X6c) = 2.223 cV (2.229 eV), 
E(X7c) = 2.584 eV (2.579 cV). 
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The band structures resulting in our sp3(f's" TB model for GaAs and AlAs are shown 
in Fig. 1. The conduction band energies at the minima T^c. Lf,,. Xc;- and X-r as well 
as the corresponding masses n^Fc) and mt(Xßc) are reproduced within the experimental 
uncertainties. The orderings E(rc,c) < E(]JGC) < E(Xer) f°

r GaAs and the reversed ordering 
for AlAs can be related to the size of the cation core: The (/-dominated wavefunction at 
Xec is pushed up by the presence of «/-states in the Ga-core, an effect not present in 
AlAs. Using the valence band maximum as the conventional energy zero, this effect is not 
directly reflected in the TB parameters because the energies of the empty (/-states and 
their interactions remain quite close in both materials, resulting in similar Xcr-energies. 
The main changes between the TB parameters of the two materials are a shift of the on-site 
energy Ec

s of about 1.4 cV upwards between GaAs and AlAs, and a significant change in 
the interaction s*sc(T, leading to a much higher Tec-state in AlAs [7]. 

ELECTRONIC BAND STRUCTURE OF (GaAs)„(AlAs)„ SUPERLATTICES 

We demonstrate the quality of the present TB model by calculating the electronic pro- 
perties of short period (GaAs)n/(AlAs)„ [001] superlattic.es and comparing the results with 
experimental data and pseudopotential (PP) calculations. The lattice constant orthogonal 
to the growth direction is fixed to the GaAs substrate, resulting in a compression of the 
AlAs lattice in these plains and correspondingly a dilatation along the growth direction. 
Calculating the strain in the AlAs layers from elasticity theory, the modifications of the 
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TB parameters are analogous to bulk material under tetragonal strain. As the interface 
between GaAs and AlAs is always an As layer, the bonds of the As atoms to Ga and Al 
can be parametrized as in the corresponding bulks, except for the strain corrections. The 
on-site energies of all atoms not on the interface are shifted between the two materials in 
accordance with the valence band offset. On the other hand, the on-site energies of the 
atomic-like orbitals on the As interface layers take the average values between the two 
bulks, shifted therefore by half the valence band offset compared to As-sites in the central 
part of the GaAs and AlAs layers. As the valence band offset cannot be derived from our 
empirical TB calculation, it is introduced as an additional model parameter characterizing 
the interface, chosen as Ev — 0.55eV in accordance with experimental results [11]. 

2.4 

FIG. 2: 
Comparison of experimental 
and tight-binding gap energies 
in (GaAs)„(AlAs)„ superlatti- 
ces. States deriving from T: 
TB (solid), experimental (open 
o: low T [12], filled o: RT [13], 
open D: compilation of dif- 
ferent temperatures [14]); Xz: 
TB (long dashes), experimental 
(open o: low T [12], filled o: RT 
[13]); Xx,y: TB (dash-dotted), 
experimental (x, low T [12]); 
L6c: TB (short dashed). 

L (AlAs) 

XfGÜXs)" 

L(GaAs) 

X(AIAs2      - 

T(GaAs) 

4 8 12 16 

superlattice period n 
20 

Fig. 2 shows the calculated direct and indirect gap energies together with experimental 
data. The TB gaps correspond to free electron-hole recombination, neglecting excitonic 
effects. We found the n = 1 superlattice is characterized by a L-derived conduction band 
minimum (CBM) mainly localized on the Ga sublattice (s(Ga) +p(Ga) + d(G&) ~ 40%), 
in agreement with first-principle calculations [15]. Both in empirical and ab initio pseudo- 
potential (PP) investigations [8,15] and in the present tight-binding approach, this energy 
level is found to oscillate strongly with the superlattice period n. Quantum-confinement 
effects at the L-point are most pronounced within the empirical PP method owing to a 
higher electron potential barrier: These calculations overestimate the difference of the \J$C 

energies in bulk AlAs and GaAs by 0.33 eV [8]. For n = 2, the TB CBM derives from the 
bulk AlAs XX|!/- states because tetragonal strain shifts the Xj-level above Xx<y by about 
20 meV for n = 1 and 2, in agreement with experiment [12]. As the corresponding PP 
calculations neglect strain, this is not observed [8]. Due to the large longitudinal mass 
m/(X), the quantum confinement energy of the Xz states is smaller than for the XX)V states 
confined according to the much smaller transverse mass m((X). This confinement effect 
induces a XXlV -¥ X2 crossover for the CBM between n = 2 and 3 in our calculations, in 
good agreement with experiment, where this crossover occurs between n = 3 and 4 [12]. 
For 3 < n < 13, the TB CBM derives from the bulk AlAs Xz-states folded to the center of 
the tetragonal Brillouin zone. Since the valence band maximum (VBM) is a F-like state 
localized in the GaAs well, the interband transition is then pseudodirect in momentum 
space and indirect in real space (type-II). The quantum size effects associated with the 
period n induce a type-II -» type-I transition between n = 13 and 14 monolayers, and 
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for n > 14 the CBM is a T-like state localized mainly in the GaAs well. This calculated 
crossover thickness is in good agreement with the experimental results for the crossover 
thickness nc ;w 11 at room temperature [13] and nc « 14 at low temperature [12]. The 
overall agreement between theory and experiment is excellent and clearly demonstrates 
the transferability of the TB parameters to quantum structures with energy offsets at the 
interfaces. Interestingly, the best empirical pseudopotential approaches use As pseudo- 
potentials depending on the number of neighbouring Ga and Al sites [8], in qualitative 
correspondence with our TB parametrization of the interface. However, the advantage of 
the TB model is that we can better distinguish the bonds towards the Ga and Al sites: 
They arc parametrized as in the corresponding (strained) bulks. 

Both type-II and typc-I transitions refer to the same heavy hole VBM, so that the typc- 
II -> type-I crossover at nc w 11 is a pure effect of the folding of the conduction minima 
in the supcrlattice. Therefore, it is most instructive to compare the conduction band 
energies calculated in different approaches. In order to guarantee comparability between 
our TB calculation and pseudopotential results, we use now the same valence band offset 
of A£„ = 0.50 eV [8,9]. This reduces the type-I type-II crossover thickness in our TB 
calculation to 10 < nc < 11, compare Fig. 3. 

FIG. 3: 
Comparison of calculated ener- 
gies for the conduction minima 
in (GaAs)„(AlAs)n superlatti- 
ces. States deriving from bulk 
r6c states (lowest 3 lines for lar- 
ge n): TB (solid), PP (clot- 
ted) [9], k • p (short dashes) [9]; 
X,: TB (long dashes), PP (dot- 
ted); Xr,v: TB (dash-dotted), 
PP(dotte'd); L6c (highest 2 lines 
for large n): TB (short dashed), 
PP (dotted). The type-II (X.) 
type-I (T) crossing thicknesses 
in the PP and TB calculations 
are indicated by circles, and the 
bulk and average energies of the 
conduction minima as horizon- 
tal bars. 
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For large layer thicknesses, the superlattice minima approach the lower of the bulk valleys 
(GaAs for V and L, AlAs for X), with a confinement energy proportional l/(n2?«*). In- 
terestingly, the superlattice minima for layer thicknesses n = 2 - 3 are quite close to the 
average of the corresponding bulk values. The confinement in the well material leads to a 
small increase of the wavefunction within the well, and correspondingly to a quite small 
reduction of this average energy. The too low crossover thickness 6 < nc < 7 in empirical 
PP calculations [8,9] can be related to a too small confinement energy, scaling inversely 
with the GaAs bulk mass of mc(T) = 0.099 instead of the smaller experimental value of 
mc(r) = 0.067 [8]. We suppose an empirical PP parametrization resulting in an improved 
value for the bulk-GaAs conduction band mass would be in much better agreement with 
the experimental crossover thickness nc > 11 and our TB value of 10 < nc < 11. 

kp perturbation theory in the envelope approximation [9] shows a monotonous decrease 
of the T6c confinement energy with increasing layer thickness n. It does neither reproduce 
the small even-odd oscillation nor the correct bands deriving from X and L, which are 
about 20 eV too high. Therefore, it is only applicable for type-I quantum structures with 
sufficient layer thickness, compare the detailed discussion in Ref. [9]. 
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INTER-SUBBAND TRANSITIONS 

Recently, X-r intersubband resonances [16] have been observed in GaAs/AlAs [001] 
superlattices under transverse magnetic (TM) polarization with the electric light field par- 
tially along the [001] growth direction. In dipole approximation, such transitions related 
to z-polarized light are forbidden in zincblende-type crystals, but in superlattices, they 
become weakly allowed due to intervalley mixing effects at the interfaces. In order to gain 
some insight into the underlying mechanism, we have calculated the momentum matrix 
elements of (GaAs)rl/(AlAs)7l [001] superlattices for z-polarized light at the center of the 
tetragonal Brillouin zone. 

0.25 

FIG. 4: 
Energy gap E{T) - E(X.) 
(long dashes), dipole matrix 
element P (a.u.) (short das- 
hes with o), and optical tran- 
sition strength (a.u.) (solid). 
The valence band offset used 
in this calculation is AEV = 
0.55 eV. 
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Fig. 4 shows the calculated oscillator strength between Xj-like and T-like states. Such 
optical transitions remain dipole-forbidden for even n, suggesting that the T-X mixing 
strongly depends on the parity of n. These features can be understood qualitatively 
by considering the superlattice states in terms of bulk states and zone folding. Because 
of zone folding, conduction states at the superlattice zone center can evolve either from 
a bulk T state, r(IV), or from non-bulk states r(Xic) and T(X3c), the latter two with 
opposite parity with respect to the central atomic layer of each material. For even n, 
the central atomic plane in the AlAs barrier is occupied by As, and since the Xic states 
are invariant under mirror reflections 54 (As) with the origin on the anion site, the folded 
states r(Tic) and T(Xic) have the same symmetry, Vlc- This ensures that the momentum 
matrix element (ric(ric)|p|ric(Xic)) is zero since the momentum operator transforms like 
T4. For odd n, Xlc is an anti-symmetric state with respect to the central Al layer, so that 
it folds into the superlattice state r\ic(Xic). Moreover, for odd n the states r(Tic) and 
r(X3c) have the same symmetry rlc and retain therefore both the character of bulk Tlc 

and X3c-states. The momentum matrix element (ric(ri,;)|p|r4C(Xic)) is non-zero in this 
case, and the corresponding intersubband transition becomes dipole-allowed. Its intensity 
depends on the strength of the rlc-X3c mixing and is particularly enhanced for ultrathin 
layers with significant quantum confinement effects, i.e. true two-dimensional states. Note 
that this dipole-allowed optical transition has a counterpart in the bulk since (X3o|p|Xic) 
is non-zero (p transforms like X5 + X3 at X). 

For small and large n, the wavefunctions remain close to the corresponding bulks and 
behave like three-dimensional states. The mixing between IV and X3-derived superlattice 
states is not pronounced, so that the dipole matrix elements in Fig. 4 remain small. Only 
for intermediate thicknesses rc, the wavefunctions show a two-dimensional character with 
larger admixture of Ti and X3, resulting in larger dipole matrix elements.  For small n, 
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the gap is large, so that in addition to the small rrX3 mixing, the transition strength is 
suppressed by the large energy denominator. 

Recent experiments [16] have suggested that TM absorption in (GaAs)r,/(AlAs)8 [001] 
superlattices are due to X-I" intersubband transitions. However, our calculations clearly 
evidence that these transitions are dipole-forbidden, as explained with the symmetry ana- 
lysis carried out before. Accordingly, a new interpretation of the experiment is necessary, 
including band-band transitions away from the high-symmetry points. A calculation of 
the dielectric function and the inter-subband absorption coefficient based based on our TB 
model is in progress, compare [17] for interband absorption in heterostructures. Possibly, 
the p-n-junction around the superlattice in the experimental set-up leads to a significant 
electric field, resulting in a weakening of the selection rules derived from group theory. 

CONCLUSION 

The spds* basis extension in our empirical TB model for zincblende materials has 
transformed this method into a highly predictive tool, both for bulk materials and for 
quantum structures. The comparison of our superlattice bands with experimental gaps 
suggests that a valence band offset of AE„ = 0.55 eV [11] is quite realistic for GaAs/AlAs 
interfaces. The method presented in this contribution is well suited for computations 
where the diagonalization of the Hamiltonian is the most time-consuming step, like e.g. 
investigations of the self-consistent field in heterostructure devices under forward bias [17]. 
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ABSTRACT 

A self-consistent tight-binding approach applied to semiconductor nanostructure is pre- 
sented. This allows us to describe electronic and optical properties of nanostructured de- 
vices beyond the usual envelope function approximation. Example of applications are given 
for High Electron Mobility Transistors (HEMTs) and non-linear optical devices. 

INTRODUCTION 

Modern microelectronics and optoelectronics is heavily based upon semiconductor nanos- 
tructures, where the dimension of the "active" region is in the nanometric range. Typical 
examples are the High Electron Mobility Transistor (HEMT), the semiconductor LASER, 
the semiconductor optical amplifiers (SOA). Basic element of all these structures is the 
heterojunction between different semiconductor materials. 

The theoretical study of electronic and optical properties of such devices has been 
undertaken by different methods. These range from ab-initio approaches [1], which are 
very precise but require a large computational effort and, consequently, are limited only 
to very small nanostructures, to approximate but easy-to-handle and fast methods such 
as those based on the k.p expansion in the envelope function approximation (EFA) [2]. In 
its simplest form, the EFA leads to the evaluation of the energy levels of nanosystems by 
simply solving a one-electron Schrödinger equation where each semiconductor is described 
in terms of effective masses and band edges. [3] Despite its easy applicability, EFA is 
limited by several factors. First of all, it is not capable to describe the nanosystem in the 
whole Brillouin zone. Second, the use of the same periodic part of the Bloch function for 
all the semiconductors forming the heterojunction makes EFA unapplicable to very thin 
structures. Moreover, the level of description needed to account for and to predict the 
properties of last generation micro and optoelectronic devices cannot be reached within 
the context of simple EFA methods. 

The empirical tight-binding method (TB) [4] has been shown to be a valid alternative 
to EFA, since it improves the physical content in the description of the nanostructure with 
respect to EFA without requiring a much higher computational effort. In particular, it 
allows us to treat indirect-gap semiconductors, heterostructures formed by indirect and 
direct materials, and to describe very thin layers [5, 6, 7, 8]. 

TB has been mainly used in the calculation of the electronic properties of nanostructures 
without taking into account self-consistent charge redistribution, which is an important 
requirement when we deal with real systems. However, very recently, we have shown [9] 
that a self-consistent tight-binding procedure can be defined. 

In this paper we will describe the self-consistent TB model and its application to the 
study of the electronic and optical properties of realistic nanostructures. 
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THEORY 

In this section we discuss the self-consistent tight-binding model for a system where 
the translational symmetry is broken in one direction, for example the growth axis (z). 
The wave function |£7, k||) can be written as linear combination of planar Bloch sums, 
|a,mlk||)[7,10] 

\E,kn) = Y,Ca,m{E,kn)\a,m,kn) (1) 

with 
I a,m ,h) = -j=^eik^\o,Ra), (2) 

V N R"„ 

where | a, Ra) is a localized orbital, k|| is the in plane wave vector and A' is the number 
of unit cells in the atomic plane. The subindex a refers both to the basis atom index 
and to the atomic orbital index. The lattice vector, RQ = R + vQ, (where vQ is the basis 
atom displacement), can be written as RQ = m d + R^ where m is an integer, d a vector 
parallel to the growth direction with module equal to the distance between two atomic 
planes and R£ji is a vector on the m-th atomic plane. For a given k]|, the eigenstates 
E are calculated by solving the secular equation (H + VH)\E,k^) = E\E,k\>) where H 
is the system tight-binding hamiltonian and Vu is the Hartree potential. The influence 
of the electronic charge rearrangement can be included at a Hartree level by solving the 
Poisson equation, d2Vn/dz2 = —p(z)/e, where e is the static dielectric constant. The 
charge density in the m-th plane p{m) is defined by: 

P^ = -JTYii    dk^\Cn,n(En,h{)? j{En,EF) (3) 
l/7rJ    Jn7'\\ n,o 

where e is the electron charge and n labels the energy levels for a given kj. The function 
f{En, EF) is defined as follows 

T, . _ j f(En,EF) for the conduction states . . 
j{tn, tF)-tyl_ f^ E^   for the valence gtates . W 

where f(En, EF) is the Fermi distribution function with a given Fermi level EF. f(En,EF) 
is a well behaved function which is different from zero only in the proximity of the valence 
and conduction band edges. In order to evaluate the carrier density (Eq. 3), a full ky 
integration is performed in the 2D Brillouin zone (BZ^) by using the special k-points 
technique in the irreducible wedge [11]. The convergence of this integration has been 
obtained by using 5 special points with |ky| < 0.0G lixja for direct band gap material. To 
achieve self-consistency in indirect band gap material we use 8 points with |k|]| < 0.2 2TT/O. 

Poisson and Schrödingcr equations in the TB representation are iteratively solved un- 
til convergence is reached. Open-chain (infinite well) boundary conditions are used for 
Schrödinger's equation. In order to avoid and influence on the calculated electronic levels, 
boundaries are chosen far away from the nanostructure active region. This may not be 
satisfactory for high energy states such as those above barrier. Indeed, a better choice 
for the boundary condition is provided by applying the scattering theory as explained in 
Ref. [10]. However, for all the situations discussed here the open chain condition represents 
a valid choice. Moreover, the use open chain boundary condition induces the hamiltonian 
matrix to have a "band" form.  This implies that very efficient diagonalization methods, 
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suited for this matrix form, can be applied. We have here introduced a hybrid method to 
diagonalize the tight-binding hamiltonian which uses a standard (LAPACK [12]) routine 
to calculate eigenvalues and an inverse iteration scheme [13] to calculate eigenvectors. The 
advantage of this procedure relies on the fact that only few eigenvectors are needed, namely 
those closed to the energy band gap. To speed-up the self-consistent TB calculation, we 
take as initial starting potential the one obtained self-consistently in the effective mass 
approximation. 

When optical properties are of interest, one can make use of the Kubo formula to 
define the susceptibility tensor which is related to the current-current response function of 
the electromagnetic perturbation. This can be easily calculated within the tight-binding 
scheme without introducing new fitting parameters [14]. If we consider a linear polarization 
of the light along the i-th axis, the absorption coefficient can be written as [14, 9] 

4TT
2 

a(w) = ^7v^    £   [f(E)-f(E')]S(hu} + E-E')\(E,kll\^Ji(a,m)\E',k^ (5) 
tLCMJO    am   EE,k am 

a' ,m' " 

Here, S is the transverse area of the primitive cell, n is the refractive index and c the speed 
of light. The matrix elements of the current operator can be expressed as: 

<£,k|||J(a,m)|tf,k||)   =   |   E  Ciim,(£,k||)Crf.,m»(tf,k|,) 
a' m' 
a"'m" 

x £        eikN(R?"-R?'){a',RQ,|j(a,RQ)|a",RQ„), (6) 

where 

(a',R0«|j(a,Ra)|a",Ra«) = ;^j;tQ>,Q"(RQ<-RQ») [Ra<-Ra»] {«W^aii,, +<5Q»RQ„,ORQ} . 

Here tQ/itt»(Ra/ - Ra") = (a', Ra*|.ff|a", Ra«) is the tight-binding hopping matrix element. 
The k|| integration needed to calculate the luminescence or absorption coefficient (Eq. 5) 

is performed in the irreducible wedge of the 2D Brillouin zone. Since, we are only interested 
to calculate these optical properties close to the energy gap, we limited the integration only 
to the region |k||| < 0.1 2-nja. 

In order to be able to change the carrier distribution function without recalculating all 
the eigenvalues/eigenvectors of the hamiltonian, we first calculate (and store) the energy 
levels and the squared optical matrix elements for each ky. We then evaluate the lumi- 
nescence or the absorption coefficient by performing the sums in Eq. 5. To reduce the 
numerical fluctuation induced by the finite number of k|| points considered (~1600), we 
sum over a much finer k|| grid (~ 105 points). Energy levels and squared matrix elements 
at these new k|| points are obtained by using a bilinear interpolation of the calculated quan- 
tities. This is allowed since variation of both energy levels and squared matrix elements in 
the irreducible wedge are quite smooth. 

The strain is included in the TB model by scaling the hopping matrix elements by 
using the modified Harrison scaling law [15]. Tight-binding parameters are adapted from 
Ref. [7]. 
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RESULTS 

We consider a typical psoudomorphic (PM) HEMT device whicli consists of a 35 nm 
n-doped (n=2 • 10

18
CITT

3
) Al0.2Ga0.gAs cap layer, 2 nm undoped Al0.2Ga0.HAs spacer, 12 

nm Ino.2Ga0.nAs 2D channel, 4 nm undoped Al0.2Ga0.sAs spacer, 8 nm n-doped (n=2 • 
1018cirT3) Alo.tGao.sAs, 400 nm undoped Al02Gn0^As and finally a GaAs substrate. In 
this calculation the background doping charge is simply added to the free charge as given 
by Eq. 3. The self-consistent band edge profile for a Vgale = 0 is shown in Fig. 1 for 
both conduction and valence band. Here we have assumed a 0.8 eV Schottky barrier 
between AlGaAs and gate metal contact. Since there is not charge transport across the 
heterojunction (i.e. along the growth direction z) the Fermi level in the z direction is 
constant and is fixed from the Fermi level in the substrate and in the metal. Strain in the 
InGaAs region splits the heavy hole HH and the light hole LH bands. Here the labels HH 
and LH refer to the character of the valence band in the growth direction. 

Under bias conditions close to the breakdown of the device, there is generation of holes 
due to impact ionization processes [16] which radiatively recombine with electrons around 
the gate region of the channel. The calculated photoluminescence spectra is shown in Fig. 
2. Since the HH quantized levels are now above the LH states, the luminescence transitions 
occur between conduction levels and the heavy hole levels. The main peak corresponds 
to the C\ -> HH\ transition, while the other two peaks are related to the C2 -> HHX 

and C2 -» HH2 transitions. The C2 -> HHi transition, forbidden in a flat infinite barrier 
quantum well [2], is in this case allowed due to the symmetry breaking (consequence of 
the band bending) in the channel [9]. The emitted light is mainly polarized in the in-plane 
direction since the levels have essentially a heavy-hole character. 

In the previous case, all semiconductors forming the device have a direct gap. The 
strength of this self-consistent TB approach consist in the possibility to treat at the same 
time systems formed by indirect gap semiconductors. In order to compare the TB with 
EFA in these situations we consider an AlGaAs/GaAs lattice matched HEMT. The Al 
concentrations of the cap layer is chosen in order to have Er = Ex. It becomes evident 
(sec Fig. 3) that EFA completely fails in describing the charge redistribution between the 
2D channel and the parasitic channel which forms due to the large X-valley contribution 

to the charge density. 

5"   o.o 

„ 0.30 

C2->HH1 

. C2->HH2 

0 20 40 60 80 100 
Depth [nm] 

1.30 1.40 
Energy [eV] 

Fig.l Self-consistent band edge profile of 
the PM HEMT. The dashed line represent 
the position of the Fermi level. 

Fig.2 HEMT electroluminescence arising 
from the recombination of electrons with 
holes created by the impact ionization pro- 
cess. A Lorcntzian broadening of 4 meV 
has been considered. 

392 



Since the self-consistence is achieved regardless of the type of the energy gap, the self- 
consistent TB approach can be also used in Si/SiGe devices where conventional device 
simulators are unable to describe the electronic properties [17] 

In the HEMT examples given above, the position of the Fermi level was given by align- 
ment condition between substrate and gate contact. However, the developed approach al- 
lows to self-consistently calculate the Fermi level as a function of the excess electrons (holes) 
in the conduction (valence). Systems where this approach is needed are, for example, those 
where the charge created by an optical excitation induces an electrostatic potential which 
modifies the bending profile of the structure and, in turn, its optical properties. Such 
devices are very useful for their optical non-linearities and are used for example as optical 
switches, frequency converters and optical amplifiers [18]. 

The investigated nanostructure consists on a InP/IriQ^GaoAvAs quantum well. In the 
middle of the InGaAs well a strained GaAs layer is inserted which behave as a barrier for 
electrons and a well for holes. 

20 40 60 
Depth [nm] 

0 10 20 30 40 
Depth [nm] 

Fig.3 (a) Self consistent band profile 
of a AloA5Gao.ttAs/GaAs/Alo,3GaojAs 
HEMT structure. (b)Self consistent 
charge density of the HEMT 

Fig.4 Self consistent band profile of the 
optical switch structure under high inten- 
sity laser pumping. 

The self consistent band edge profile is shown in Fig. 4 for a high pumping laser 
intensity. The laser intensity fixes the injected electron charge density in conduction (equal 
to the hole density in valence) which is used as input parameter in our calculation. A more 
rigourous account for the injection mechanism can be found elsewhere [18]. From the 
knowledge of the pumping density and the energy levels (which is obtained via TB) the 
position of the quasi Fermi levels is calculated. By increasing further the laser intensities, 
electrons are promoted to the conduction band . However, electrons move in the InGaAs 
region while holes will be confined in the GaAs layer, as depicted if Fig. 5. This charge 
separation induces a net dipole moment which is responsible for band bending. The position 
of the quasi Fermi level with respect to the scale shown in Fig. 4 is Epc = 0.9279 eV for 
electrons and Epc = 0.0722 eV. The absorption coefficient of the structure with and without 
laser pumping is shown in Fig. 6. The effect of the laser is to create population inversion, 
thus a negative absorption (gain) is achieved. Beside this, we notice how the structure of 
the absorption is changed due to the redistribution of the charges. Indeed, the onset of 
the absorption is shifted by more than 30 meV with respect to the situation without laser 
pumping. Moreover, the different number of peaks between the two situations reflects the 
changing of levels position and oscillator strength. 
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CONCLUSIONS 

In conclusion, we have shown that a self-consistent tight-binding approach can be used 
to evaluate the electronic structure and optical properties of semiconductor nanostructuros. 
This represents a further step with respect to the envelope function model towards an ab 
initio calculation of such properties. 
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Fig.5 Self-consistent electron and holes 
charge density of the optical switch. 
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ABSTRACT 

We present a tight-binding formalism which can properly treat various ionic füllendes. In 
the Hamiltonian we include the intrafullerene Coulomb repulsion energy and the Madelung 
energy of the ionic lattice, both of which depend on the possible charge disproportion between 
fullerenes. This Hamiltonian requires a self-consistent treatment, but it is applicable to 
much larger systems than first-principles methods. Using this formalism we have studied 
the electronic structure of the one-dimensional AiC6o polymer. The present generalization 
of the tight-binding model is found to be important for ionic füllendes and a moderate- 
amplitude charge-density-wave state is found to be a possible stable state. 

INTRODUCTION 

Materials consist of ionic cores and valence electrons which mutually interact to attain 
the lowest free-energy state under a given external condition. To predict this microscopic 
optimum state, which nature automatically finds, usually requires elaborate first-principles 
quantum-mechanical calculations. This can be done for infinite crystalline systems as well as 
for finite systems having a reasonable number of independent degrees of geometrical freedom. 

On the other hand, the recent macroscopic production of cage-network all-carbon clusters 
called "fullerenes" such as Ceo, C7o, and C84, and also the discovery of the carbon nanotubes 
opened a new field in materials science and engineering. These systems have a variety of 
geometries with a large number of constituent atoms in a unit cell or in a molecular unit. 
Due to their large unit size and to experimental difficulties in determining geometries of 
carbon-based complex materials because of the weak X-ray scattering ability of light el- 
ements, theoretical structure studies represent an important tool in this field. However, 
first-principles calculations can be computationally highly expensive, therefore, less expen- 
sive theoretical methods such as interatomic model potentials and tight-binding methods are 
now attracting renewed interest [1]. In particular the tight-binding model constructed so as 
to reproduce first-principles results for various carbon systems has been proven to be useful 
in studying geometries and the electronic structure of these all-carbon systems [2,3]. 

Among various interesting subfields of this growing field of new carbon materials, the 
research on the alkali-doped füllendes (AjyCeo, A=Na, K, Rb, and/or Cs) have been at- 
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tracting great interest since it has resulted in various interesting material phases including 
superconductivity [4]. Also recently, several AiC6o füllendes are found to have stable poly- 
merized phases [5], which now form another new class of carbon-based crystalline materials 
consisting of both sp2 and sp3-hybridized C atoms. Although the charge transfer from alkali- 
metal atoms to the fullerene units usually takes place in these füllendes, the application of 
the standard all-carbon tight-binding model with an additional number of electrons may 
not give a correct microscopic optimum state since there remain two important terms to be 
included for these ionic füllendes. One is the intra-C6o Coulomb repulsion energy, and the 
other is the electrostatic energy of the ionic crystalline lattice (Madelung energy). In the 
present work, we generalize the tight-binding model by including these two important terms 
for ionic füllendes. This approach is applied to the KiC0o polymer and these terms are found 
to be very important. The obtained stable state is a charge-density-wave (CDW) state with 
a considerably smaller amplitude than the CDW state obtained by the tight-binding model 
without these two additional terms. 

FORMALISM 

In the usual tight-binding (TB) model [2], the total energy including the short-range 
repulsive term ETcp is given as 

N 

EM = 2'£ti + ETq,{R1,R2,-), (1) 
t 

where N is the number of occupied states and the factor 2 is from the spin degeneracy. The 
e*s are the eigenvalues of the transfer-matrix Hamiltonian with a basis of atomic 2s and 2p 
orbitals of the constituent C atoms. This first term is derived by minimizing the electronic 
energy 

£l = 2E(V,|ffTB|^>, (2) 
i 

with respect to the expansion coefficients {C/} of the electronic state ip, by atomic orbitals 

*W=E^iW, (3) 
j 

under the normalization condition (ip,\ip,) = 1. By introducing the Lagrange multipliers e,-, 
we now minimize 

/° = 2f>,|,F/TD|V<,>-2:£e,(^,), (4) 
t i 

which results in a standard matrix diagonalization calculation. 
In the case of ionic füllendes, on the other hand, the electrostatic long-range force, i.e. 

the Madelung energy (EM), should be considered in addition to the short-range repulsive 
interatomic force. Also the intrafullerene Coulomb repulsion energy (U) should be consid- 
ered. This generalization of the TB model for ionic füllendes can be done in the following 
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way. We consider the electronic energy of the from: 

Eeu = 2f>i|#TB|^> + £ \u{nk - 240)2 + EM(nlyn2,...), (5) 

where 240 is the number of valence electrons in a neutral Ceo unit, the index k runs on Ceo 
units, and nk is the number of total valence electrons on the fc-th Ceo unit; 

%- = 2£ £       |C?'|2. (6) 
i j on fc—th Cßo 

Then, the value to be minimized instead of 1° in (4) as a function of {C\} is 

I = Eele-2Yiei(ti\ipi). (7) 

The Madelung energy as a function of {n*,} is first numerically evaluated by using the Ewald 
method, and then fitted by a quadratic form, which has been confirmed to be highly accurate 
for A]C6o füllendes as will be shown later. 

The introduction of the above site-depencent occupation number of Ceo units (n*) now 
enables us to deal with a various kinds of CDW states having electronically, and consequently, 
geometrically inequivalent Ceo units. In the case of alkali-doped Ceo superconductors, the 
strong electron-phonon interaction generally expected for carbon-based materials is consid- 
ered to be one of main reasons for their high transition temperatures. Since the CDW state 
should also be one of the favorable states in the strong electron-phonon interaction systems, 
the present course of generalization of the TB model should be of importance in various 
electron-doped füllendes. 

Although the present formalism is for ionic crystalline füllendes, the intrafullerene 
Coulomb repulsion should be also important for studying the stability of ionized isolated 
fullerenes, Cg1^. Without the second term in (5), the first term, the one-body term, would 
stabilize unrealistic highly-ionized fullerenes. 

APPLICATION TO AiC60 POLYMER 

The rock-salt geometry AiCßo (A=K, Rb, or Cs) füllendes, which are stable at high 
temperatures, have been found to transform to a one-dimensionally polymerized COO in an 
orthorhombic phase with two COO units (two chains) per cell [5]. Their transport properties 
show complicated temperature and alkali-element dependences [6]. It has been discussed 
experimentally that some kind of phase transition such as a spin-density wave (SDW) or a 
CDW seems to take place at low temperatures. However, the direct observation of neither 
SDW nor CDW has been reported. In the present work, we apply the above generalized TB 
model to study the stability of a possible CDW state and its amplitude. 

It is expected that one of the two added terms in our TB model, the intrafullerene 
Coulomb repulsion, should tend to depress the CDW amplitude. The other term, the 
Madelung energy, on the other hand, tends to enhance the amplitude. Therefore, a quan- 
titatively reliable evaluation of these two terms is required.  In our previous work [7], we 
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have studied the electronic energy levels of isolated CCo and C^0 clusters and nearly constant 
shift of energy levels upon the ionization has been found. Therefore, the bare intrafullerene 
Coulomb repulsion, U, should be equal to this shift, 3.4 eV. 

The Madelung energy should be, on the other hand, evaluated numerically for each CDW 
state to be formed. In the quasi one-dimensional chain-like materials, the density-wave 
formation is usually observed not only along the chain axis but also along the remaining two 
directions. Therefore, in the present work, the CDW state with the unit cell of a' = 2 x a, 
b' = 2 x b, and c' = 2 x c is considered. Here, the a axis is the polymerization axis and the 
experimentally observed lattice constants for KjCoo (o=9.109, 6=9.953, and c=14.321 (A)) 
are used. Hence, the value EM can be evaluated as a function of the CDW amplitude, i.e., 
the population difference between two kinds of C6o units, 5; nk is either 241+6 or 241-5. 
Here, the more and less populated C0o units are labeled by A and B, respectively. The 
electronic energy per one A-B pair is then given as 

Ear. = 2f>,|ffTi#,} + U{\ + 52) + EM(S). (8) 
t 

For the present CDW state, the following expression, 

EM(S) = c0 + c28
2, (9) 

with C0=EM(0)=~7.313 and c2=-2.474 (eV) is found to reproduce the numerically obtained 
value for KjCco within an error of less than 0.001% for the whole range of 5 (0~1). Then, 
it is straightforward to show that, to minimize / of (7), the coefficients {CJ,} should satisfy 

Yit,jCi + Ü(l±6)C! = eiC'i. (10) 
i 

Here, tti is the transfer integral between 0, and <j>j, Ü = U + c2, and the upper (lower) case 
is for the orbital <j>t on the ^(B)-type C60- Since 5 depends on {C/} to be determined, (10) 
should be solved self-consistently. Still this iterative calculation is much less expensive than 
first-principles calculations, and is easily applied to the present CDW state considered. 

The self-consistent calculation for KiCoo with a simultaneous geometry optimization by 
minimizing Et„,=Eclt:+Ert)r is found to give 5=0.4. On the other hand, the TB model 
without two additional energies considered in the present work is found to give 5=0.9. This 
difference clearly indicates the importance of the present generalization of the TB model for 
ionic füllendes. 

In addition to KiCCo, the Madelung energy calculation for FU^Cco with the same kind 
of the CDW state has been done and c2 is found to be -2.456 (eV), which is similar to the 
value for KjCco- Hence, the similar CDW amplitude is expected for this material. 

CONCLUDING REMARKS 

In the case of one-dimcnsionally polymerized AiC6o, the CDW state, found to be one 
of the possible low-energy states in the present work, would be further stabilized if the off- 
center displacement of the alkali ions in a large interstitial site of C6o lattice takes place. A 
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study of this point is now in progress. Also a spin-polarized study of AICöO with the present 
TB model would be a very interesting future project for clarifying the relative stability of 
the CDW and the SDW states in this material. 
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ABSTRACT 

A revisited electronic structure study of iron pyrite, FeS2, has been performed using a 
new Tight-Binding Linear Muffin-Tin Orbital (TB-LMTO) technique in which the radii of 
overlapping MT spheres are determined from a full potential construction. The interstitial 
spheres were chosen to provide an efficient packing of space while ensuring that the overlap 
between the spheres remain small. We have found that this treatment of interstitial spheres 
results in a dramatic improvement in the description of the electronic structure and the 
binding energy curves for FeS2 in comparison with a previous LMTO calculation. In 
particular, the energy band gap, the equilibrium lattice constant and the bulk modulus are 
all in much better agreement with experimental observations. Moreover, the calculated 
equation of state is in excellent accord with recent measured P- V data up to pressures 
of 15GPa with overall deviations of less than 10%. The predicted reflectivity spectrum 
of FeS2 as a function of pressure gives the observed behaviour of the optical edge. The 
bonding behaviour the orthorhombic marcasite phase of FeS2 is also discussed within this 
new TB-LMTO formalism. 

INTRODUCTION 

Transition metal sulfides are a major group of minerals. The iron disulphides and 
other pyrites are the most widely occuring of the sulphides being found not only in ore 
deposits but also as accessory minerals in many common rocks [1]. The mining industry is 
interested in their electronic, magnetic, optical, structural and thermodynamic properties 
since there are ore formation, mineral processing and environmental mineralogy. A previ- 
ous electronic structure study of the pyrite-type disulphides (MS2, where M=Mn, Fe, Co, 
Ni, Cu, Zn) within the local density approximation (LDA) using the Liniear Muffin-Tin 
Orbital method in the Atomic Sphere Approximation (LMTO-ASA) showed a qualitative 
relationship between the calculated local density of states and the experimental X-ray pho- 
toelectron spectra (XPS) and the Bremsstrahlung Isochromat spectra (BIS) [2]. However, 
the predicted equation of state as well as the corresponding value of the bulk modulus 
were poorly reproduced in this paper. In particular, for FeS2, the predicted bulk modulus 
of 675 GPa was is too high by a factor of 4.6 compared to experiment. These results 
may give the impression that the LMTO method is not good enough to use for extract- 
ing quantitative information about pyrite-type materials. The purpose of this paper is to 
make a revisited calculation for FeS2 by using a new TB-LMTO technique in which the 
muffin-tin radii of overlapping spheres is determined from a full potential construction [3]. 
Our results show that a correct treatment of the interstitial spheres in the pyrite structure 
removes the previous theoretical disagreement with experimental values, so that the TB- 
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LMTO method provide a simple and efficient way to predict quantitatively the electronic 
structure, equation of state, optical properties and bonding character in the pyrite-type 
materials. 

TB-LMTO COMPUTATIONAL THEORY 

In the present study the electronic structure was calculated self-consistently using the 
TB-LMTO technique the details of which have been described in [4]. We use the scalar- 
relativistic version in the atomic-sphere-approximation including the combined correction 
(ASA+CC). Exchange and correlation contributions to both atomic and crystal potentials 
were included through the local-density-functional description using the von Barth-Hedin 
formula [5]. We also performed the total-energy calculation with the gradient exchange 
correlation potential using a Langreth-Mehl-Hu non-local correction to the LDA [5]. In the 
ASA+CC, the one electron potential entering the Schrödinger equation is a superposition 
of overlapping spherical potential wells with position R and radii ,SR, plus a kinetic-energy 
error proportional to the 4th power of the relative sphere overlap [6]: 

_ sR + sR- 
IR-R'I 1 (1) 

In the pyrite structure and with only atom-centered spheres, the ASA would cause sub- 
stantial errors, either due to large overlap and misrepresentation of the potential, or due 
to neglect of charge in the van der Waals gap. Therefore, it is necessary to pack the van 
der Waals gap with interstitial spheres. In general, the requirements for choosing sphere 
positions and radii arc that the superposition of the spherical potentials approximate the 
full three-dimentional potential as accurately as possible, so that the overlap error for the 
kinetic energy be acceptable. Here, as a model for the full potential we use the super- 
position of neutral-atom potentials and for simplicity, take only the Hatree part. The 
atomic-centered spheres are then determined by tracing the potential along the lines con- 
necting nearest-neighbour atoms and finding the saddle-points. For a given atom with 
position R, the distance to the closest saddle-point is taken as the radius of a sphere and 
usually touch the sphere constructed in the same way for other atoms. The ASA radii 
are then obtained by inflating these atom-centered non-overlapping spheres until they ei- 
ther fill space or until their overlap u>RR' reaches a maximum of 16%. In the latter case, 
the potential between the atomic potentials must be represented by additional interstitial 
spheres, which are usually repulsive. The positions of these interstitial spheres are first 
chosen among the non- occupied symmetry positions of the space group. Then their radii 
are chosen in such way that the maximum overlap between an atomic and an interstitial 
sphere is 18% and maximun overlap between two interstitial spheres is 20%. This precedurc 
has been made automatic in computer program of ref. [4]. 

FeS2 crystallizes in the cubic primitive structure with space group Pa3. The experimen- 
tal value of lattice parameter is a=5.4179 A and the positions of the atoms arc generated 
by Fc: (4a) (0,0,0) and S: (8c) (u,u,u) with u=0.384 [7]. Our Full-Potential LMTO calcu- 
lation shows that the theoretical value of the internal parameter u is only 0.5 % smaller 
than experimental. Following the above procedure for FcS2 additional interstial spheres 
are placed at E: (24d) (x,y,z) with x=0.31081, y=0.09148 and z=0.21362. The muffin-tin 
sphere radii arc s/.-,,=1.1714 A, s5=1.08G4 A and .5/5=0.7303 A and with radii, the sum of 
the MT sphere volumes equals the unit cell volume. At this point wc can see a crucial dif- 
ference in our treatment of interstitial spheres in comparison with the previous calculation 

402 



[2] where only 2 empty spheres per formula unit formula had been introduced. It is not 
clear from their paper [2] where the exact positions of empty spheres are, but with a unit 
cell of 4 formula units they used only 8 interstial spheres in comparisions to our 24. We 
think that our introduction of interstitial spheres is physically transparent and, therefore, 
results in the quantitatively better description of the equation of state for the pyrite struc- 
ture in general and for FeS2 in particular. The basis set consisted of Fe 4s, 4p, 3d; S 3s, 
3p, 3d and the interstitial sphere E Is 2p so that in total there are 204 basis functions per 
unit cell in comparision with only 140 in [2]. All k-space integrations were performed by 
the tetrahedron method. Convergence to self-consistency was achieved with a grid of 11 
irreducible k points, although subsequently 119 irreducible k points were used to generate 
the band structure and density of states for FeS2. In all calculations, the tolerance in total 
energy before self-consistency was deemed to have been achieved was 10~2 mRy. 

RESULTS 

Equation of state 

We have performed both LDA and gradient corrections to LDA for calculating the 
equation of state. Spin-polarised calculations for both ferromagnetic and antiferromagnetic 
states show that there is no magnetic moment in pyrite FeS2 in the vicinity of equilibrium. 
The LDA total energy reaches a minimum at VLDA=0.97 Vexp. The equation of state for 
FeS2 is analysed by using the Birch-Murhaghan formula and the pressure dependence as a 
function of volume renormalised by the equilibrium value, Ve„ is shown in Fig. 1. 
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Figure 1. Pressure vs. renormalised volume by equilibrium value 

Our TB-LMTO calculations are in very good agreement with two experimental mea- 
surements performed recently by Jephcoat: a) hydrostatic (isotropic) compressions in neon 
medium (Exp.l) and b) nonhydrostatic (uniaxial loading) compressions with no pressure 
medium (Exp.2) [8]. For instance, the pressure at V=0.975 Ve, is 4.82 GPa which was mea- 
sured experimentally as 4.28 GPa. Comparing our results with the theoretical calculations 
in [2], we can see that the new treatment of the empty spheres improves dramatically overall 
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pressure-volume dependence. Our calculated bulk modulus at the theoretical equlibrium 
volume is 187 GPa which is within 30% of the observed value of 147 GPa. The non- 
local correction to the LDA is found to give marginally better results: V„;r=0.983 Vejp, 
Bn(r=182 GPa and Pn,r(V 
LDA calculation. 

0.93 Vc,)= 15.2 GPa in comparison with 15.9 GPa within the 

Electronic structure 

The calculated total and partial electronic densities of states (DOS) for pyrite FcS2 

is presented in Fig.2. The valence band is fully occupied, the top of the valence band 
setting the energy zero. Our calculations indicate that FeS2 is a semiconductor with an 
indirect band gap which is coherent with a recent density-functional calculation using norm- 
conserving pseudopotentials [9]. However, our predicted LDA and gradient corrected band 
gap Eg take the values of 0.71 eV and 0.6 eV, respectively, comparing with 0.52 eV (LDA) 
and 0.3 eV (GGA) calculated in [9]. Experimental values of E«, show considerable dispersion 
(from ~ 0.7 eV to ~ 2.6 eV) as has been recently reviewed [10]. Optical absorption edge 
measurements of pyrite indicate a value of 0.95 eV for an indirect gap transition [11]. 
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Figure 2.  Calculated total and partial DOS for FeS2-pyrite 

It is important to emphasise that although there are contributions to the total DOS at 
the valence and conduction bands coming respectively from the t2g and es symmetries of 
the Fc(3d) orbitals [12], it is clear from Fig. 2 that physical nature of the band gap is due to 
strong bonding between Fe(3d) and S(3p) states. In fact, apart from the isolated s-band at 
high binding energy (~ -1 Ry), the valence band between -0.5 Ry and zero energy and the 
conduction band (up to 0.25 Ry) originate essentially from the Fe(3d)-S(3p) hybridisation 
states as has already been well documented for the case of RuAl2 and RuGa2 [13]. 
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Optical properties 

The refelectivity of FeS2 is calculated from the frequency dependent conductivity tensor 
&xx{ty v*a tne complex optical constant, re= n+ik, by the relation 

R(Q) 
(w(fl) - l)2 + k2(Q) 
(n(n) + l)2 + /t2(Q)' 

(2) 

where Q describes the photon energy. The results, which we obtained using the ESOCS 
programme from MSI, are shown in Fig. 3 for different values of the calculated pressure. 

0.55 

0.53 

> 
0.50 

w 

0.48 

0.45 

1 ........... 
• P=4.82 GPa 
■ P=0 GPa 

• 

tl g s 
9 

»P=-5.12GPa 

• 1 
f 

♦ 
a • "   5 

i 
i 

1 

- 

0.0      0.5      1.0      1.5      2.0      2.5      3.0      3.5      4.0 
ENERGY (eV) 

Figure 3. Reflectance spectra of FeS2 for different pressures 

We find that under high pressure the reflectivity peak is shifted to higher energy levels in 
FeSi which is consistent with measurements at 0.2 GPa and 4.2 GPa in [14]. Our calculated 
maximum refelectivity is larger than experimental [14] by approximately 23 %, although 
it does agree with more recent measurements by Ferrer et.al. [10]. The minimum in the 
reflectivity around 3 eV reflects the conduction band width just above the semiconductor 
gap as shown in the DOS from Fig. 2. 

DISCUSSION 

In order to understand the bonding properties in FeS2, we have performed additional 
electronic structure calculations for the orthorhombic marcasite phase (space group Pnnm), 
the second form of dimorphic FeS2, by using the same TB-LMTO scheme. We predict semi- 
conductor behaviour with an indirect band gap Eg of 0.85 eV which is twice as large as 
the TB calculation (0.4 eV) from [12]. Interestingly this value is also larger than our 
calculated for the pyrite phase of FeS2. As far as we know, there are no experimental 
data of optical and conductivity gaps in the marcasite phase of FeS2- However, whereas 
the S-S bond length is 1.6 % longer in pyrite than in marcasite, the Fe-S bond length in 
marcasite is about 1.7% shorter [15]. The larger theoretical gap predicted in the marca- 
site phase probably originates from the stronger 3d-3p hybridisation reflected in the Fe-S 
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bonding behaviour discussed above. This is further evidence that the eovalent character 
of the bonding plays a key role in formation of the semiconductor gap in FeS2 rather than 
the conventional picture of the crystal-field splitting within transition metal d-band [12]. 
Assuming fixed internal coordinates, we find the calculated ratio of equilibrium volume 
between the two phases, (V™r/V"J"r), of 0.957 which compares well with the experimental 
value of 0.974. We also found a small total energy difference between these polymorph 
phases of 9.5 k.]/mol which overestimates (within the LDA calculations) the experimental 
values of the enthalpy difference of 4-5 k.l/mol [16]. 
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Effects of Grain-Boundaries in Superconducting Materials 

J.J. Hogan-O'Neill, A.M. Martin and James F. Annett, University of Bristol, H.H. Wills 
Physics Laboratory, Royal Fort, Tyndall Ave, Bristol BS8 1TL, United Kingdom. 

ABSTRACT 

We examine the effects of grain-boundaries on the order-parameter and critical-currents 
in superconductors. We use a geometrical model of the lattice structure of grain-boundaries. 
We solve the Bogoliubov-de Gennes equation using the Recursion Method to obtain the 
self-consistent BCS gap function A and the local density of states N(E) near the boundary. 
Imposing a phase difference across the boundary we calculate the supercurrent and hence 
obtain the critical-current, Ic, of the junction. 

INTRODUCTION 

Since the discovery of high Tc superconductors over 10 years ago it has been generally 
agreed there is an unconventional symmetry of the order parameter, the most likely being 
dx2_j,2 pairing. Indeed, this can be shown from several different experiments [1]. However, 
due to their highly complex crystal structure, the difficulty of fabricating single crystals 
without twinning, and the orthorhombic nature of the CuOi planes, it has been anticipated 
by some that there is a mixing of s-wave (local) and d-wave (non-local) symmetries [2]. 
Tseui et al [3] have reported a half-integer flux quantisation through a superconducting 
ring with an odd number of grain-boundary weak-links in the ring. They attribute this to 
an unconventional pairing state, possibly dx2_y2. 

One way to help clarify the role of grain-boundaries and twinning is to model inter- 
faces between s-wave and rf-wave superconductors. All calculations up until now have 
modelled perfectly flat interfaces and have assumed a specific form for the order param- 
eter [4, 5, 6]. Martin and Annett [7] have taken the more realistic step of inputing an 
idealised order-parameter but allowing it to evolve through a self-consistent algorithm to 
solve the Bogoliubov-de Gennes equations. Annett and Goldenfeld [8], and Litak et al 
[9], have already undertaken similar calculations but only for a purely local-interaction 
corresponding to s-wave pairing. The Greens functions are calculated using the Recursion 
Method [10] and thus it is possible to determine the local and non-local charge densities, 
order-parameters, and also, the local quasi-particle density of states. 

This work also uses that algorithm, but instead of using a perfectly flat interface we now 
use an idealised grain-boundary (figure 1) with periodicity and reflective-symmetry around 
the line x=0. This periodicity allows us to select a few sites for self-consistent calculations 
which can then be mirrored onto similar sites in the rest of the sample: these inequivalent 
sites are highlighted in figure 1. It is also possible to calculate the supercurrent across 
the boundary with differing phases of the order-parameter imposed on either side in the 
bulk. From this we obtain the critical current for the junction. By doing this for various 
grain-boundary angles it will be possible to determine how the critical current depends on 
the grain boundary angle. In this paper we shall discuss the s-wave scenario; the d-wave 
case shall be reported elsewhere [11]. 
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Figure 1: Construction of the model grain-boundary (symmetric). By periodicity, it is 
possible to carry out. self-consistent calculations on a few sites (highlighted) which arc. then 
mirrored onto similar sites in the rest, of the sample. 

THEORY 

The equation under consideration is the Bogoliubov-de Gennes Matrix Equation on a 
tight binding lattice: 

£Hij 

with 

and 

H;i 
H 

En 

A,, 
-H* 

'-{ 
Ha = (fi - // + \Uünü)    (local) 
Hij = [tij + \Uijntj) (non - local) 

(2) 

(3) 

d ttj is the where ß is the chemical potential, f, is the normal on-site energy of site i an 
hopping integral between site i and site j, u" and v" are the particle and hole amplitudes 
on site i associated with an cigenenergy En. We model t,j to be of the form 

N/2- 

N/2- 1 
0 < r,j < sj2 (4) 

where r^ is the distance, between sites ?' and j, in units of the lattice constant. The on-site 
and off-site interaction terms \Uana and ^Uijn^ are the Hartree-Fock potentials corre- 
sponding to the on-site interaction [/, and the non-local interaction U,j. The quantities of 

408 



interest are the local charge-density, nu, and order-parameter A,;. Writing these quantities 
in a Greens function formalism we obtain 

nu   =   £<4ä>   =   - [Ec(G±+(E + zr,)-G±+(E-ir1))f(E)dE, (5) 
, 7T J-Ec 

\i   =   Uufacii)   =   ±UiiJ
EC

E(G±-(E + iv)-Gt(E-iV))(l-2f(E))dE,   (6) 

"y   =   I>U,>   =   - [Ec(G±+(E + zri)-G±+(E-rr,))f(E)dE, (7) 

Ay   =   [/y(cite^>   =   ^C/y £j (G±-(E + it,) -G±-(E- w,))(l -f(E))dE.    (8) 

where the +/— subscripts on the Greens functions refer to particles and holes respectively, 
and Ec is the cut-off energy (hojD in conventional superconductors). These expressions arise 
by making the Bogoliubov Transformation for the fermion operators and then by realising 
that the terms in urf are the residues of the Greens function for the previously stated 
Bogoliubov-de Gennes Hamiltonian [12]. By solving the above equations in conjunction 
with equation (1) we can iterate to a self-consistent solution. 

In order to calculate supercurrents across the boundary we impose a phase-difference 
across the junction. The supercurrent, /y, between the sites i and j is derived by making 
the Peierls substitution for the overlap integral iy 

Uj >->■ Ujexp  -i \rAii + <t>i- <t>j) (9) 

where Ay is the line-integral of the vector potential along the link i-j and <j>t = arg(A;j). 
Then using 

yields 

/y = ^3 [^ /_+J [G++(£ + m) - Gt+{E - tr,)] e~^ f{E)ds] (11) 

where 0y = |Ay + fc — <j>j, and f(E) is the Fermi-Dirac distribution. Note that even for an 
s-wave order-parameter when calculating the current, we use a non-local Greens function. 
It is also a trivial matter to calculate the local quasi-particle density of states from the 
well known relation 

N(E) = -i-3 [G±+(E + in) - G±+(E - «,)] . (12) 

The Recursion Method allows us to calculate all of the necessary Greens functions 
efficiently, as a continued fraction of 2 x 2 matrices. 

RESULTS 

This paper reports calculations undertaken for an s-wave superconductor with a simple 
model of a geometric grain-boundary. It is hoped that the construction of this model 
will give a qualitative understanding of both large and small angle scenarios, and where 
twinning and un-twinned crystals can be analysed (we study the latter here).  A typical 
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model boundary is shown in figure 1. Note that it is periodic in the y-direction and can 
be divided into cells as shown. Each cell has a percolation site (the central site in figure 
1) through which a supercurrent can always flow. As the angle of the grain-boundary 
is increased there will be zero hopping between sites on either side if their separation is 
greater than or equal to a\/2, a being the lattice constant. For smaller grain-boundary 
angles we remove sites from one side if the distance to an atom on the opposite side is less 
than |n. 

We report here on results obtained from the grain-boundary in figure 1. the angle being 
roughly 53°. For the angle chosen there is a non-zero hopping across the boundary for both 
strips shown in figure 1, not just the central site. When calculating the Greens function 
we find that when we generate terms in the continued-fraction after a certain number of 
levels we can extrapolate for many more levels. In the work presented in this paper we 
have evaluated 75 levels exactly and extrapolated for a further 3000. The sites on which 
self-consistent calculations have been made are those highlighted on the two lines in figure 
1, i.e. 10 sites away from the edge along both lines giving a total of 41 sites on which 
self-consistent calculations are made. After this number we set all other sites equal to 
the bulk value calculated for an infinite square lattice. This can be done provided the 
quantities being evaluated are well behaved before they reach this distance: we have found 
that 10 sites from the boundary is sufficient. Indeed this distance is much greater than the 
superconducting coherence length £. 

Figures 2(a) and 2(b):   The. self-consistent magnitude of the order-parameter as we move aeross 
the grain-boundary for a phase-difference of0" (left) and 180" (right). 

When performing a self-consistent calculation with a local interaction, the only free 
parameters which need to be defined are [/„ and Ec: given these all other parameters 
are determined self-consistcntly. For the rest of the paper we will be concerned with the 
situation where Uü = -3.5 and Ec = 3.0 in units of the hopping-integral in the bulk. 

In figure 2(a) we plot the magnitude of the order-parameter against the x-ordinate, 
distance from the boundary. We have plotted two lines corresponding to the two lines 
of incquivalent sites in figure 1. Thus, far away from the boundary we see the value At- 
tend to a bulk value of around 0.77 in units of the bulk hopping (ttj), but as we approach 
the boundary we see the characteristic Friedel oscillations [13]. On going through the 
boundary the order-parameter is depressed by a considerable degree. For smaller angle 
grain-boundaries (not shown) we sec the opposite occur: an enhancement of the order- 
parameter. This seems to be a general conclusion for this model: a missing site enhances 
the magnitude of the order-parameter. Note also that this plot is symmetric about x = 0 
as is expected. 

410 



Figure 3 shows the local quasi-particle density of states versus energy for the percolation 
site (solid line), and the calculated local quasi-paricle density of states in the bulk (dashed 
line). We observe the characteristic B.C.S. energy-gap around the Fermi Energy: any 
degree of rounding of the function is due to the existence of a non-zero value for n in the 
Greens functions. Comparing the dashed and solid lines in figure 4 we can see that the 
local quasi-particle density of states on the percolation site exhibits much more structure 
than the bulk local quasi-particle density of states. This is due to the inhomogeneity of 
the system around the percolation site, which may in turn induce resonances and quasi- 
localised states at the band-edge. 

Figure 3: The two lines depict the local quasi-particle density of states for two different 
sites in the structure. The solid line is for the percolation site, and the dashed line is for 
a site deep in the bulk.. 

In order to examine supercurrents across the grain-boundary we impose a bulk phase 
difference 6<f> across the system. This is done by fixing the order parameter phase, <j>, deep 
in the bulk on either side of the junction and allowing it to evolve self-consistently in the 
region of the grain boundary. In figure 4 we show how the phase (</>) varies across a grain- 
boundary. In this particular case we have set the phase in the bulk to be 0° on one side 
in the bulk and 30" on the other. Doing this, we can clearly see how the phase naturally 
evolves on going through the grain-boundary giving a smooth function and therefore a 
finite phase-gradient. Most previous calculations do not allow the phase-gradient to be 
determined in a self-consistent manner. However self-consistency is crucial in conserving 
charge, ie. ensuring that the net current flow into any given site is zero. 

In figure 2(b) we have plotted the magnitude of the gap-function |A(a;)| in the case 
where the phase across the junction is 180°. Comparing this with figure 2(a) we can 
now see that the magnitude of the order-parameter, is not only depressed for this phase 
difference, but actually goes all the way to zero on the central site. Thus we can see that as 
one changes the phase-difference across the system, the properties of the grain-boundary 
are affected, i.e. one cannot just impose a phase difference without considering what effect 
this may have on the magnitude of the superconducting order-parameter. The magnitude 
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Figure 4: The. self-consistent phase of the order-parameter as we move across the grain- 
boundary for a bulk phase-difference of 30". 

of the order-parameter going to zero is expected in this case since there should be exact 
cancellation from the two contributions A„ from either side of the junction. That this 
has been reproduced demonstrates the validity of the numerical method employed in this 
paper. 

In figure 5 we have plotted the calculated values for the current across the grain- 
boundary as a function of the bulk phase difference. The form of this curve is dependent 
upon the structure of the grain-boundary itself, the sawtooth form for the current phase 
relation in figure 5 is similar to previous work [14]. We, however, note that the current 
phase relation must and does obey 

l{-<t>) = -i(4>). (13) 

The important information to gain from figure 5 is not the exact form of this curve but the 
critical-current (Ic) corresponding to the maximum in figure 5. The critical-current is the 
maximum value of the current which can pass through the grain-boundary without energy 
loss. What we have shown in figure 5 is that for a given grain-boundary angle it is possible 
to calculate this critical-current. 

CONCLUSIONS 

By solving the Bogoliubov-de Gennes equation using the Recursion Method to calculate 
the Greens functions we have calculated the local quasi-particle density of states, the 
magnitude of the order parameter and its phase self-consistently. We have shown how 
A can vary on going through the grain-boundary and also how a change in phase of A 
across the junction affects its value on a given site (e.g.   the central site).   By imposing 
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Figure 5:   The total current across the grain-boundary versus the phase-difference, 
boxes denote the calculated value, and the circles denote the calculated error. 

The 

a phase difference across the boundary we have also constructed a profile of how this 
phase-difference affects the value of the supercurrent across the boundary. 

By repeating this process for many different grain-boundary orientations it will be 
possible to see how the critical-current of the boundary varies with the grain-boundary 
angle, thus enabling us to calculate the critical-current for macroscopic wires with many 
random grain-boundaries in them. These ideas are now being extended to consider the 
case for the high temperature superconductors where the order-parameter is likely to have 
dx2_y2 symmetry. Other cases of interest shall be to study twinned and orthorhombic 
scenarios both separately and jointly. 

This work was supported by the EPSRC under grant number GR/L22454. The authors 
would also like to thank B.L. Györffy and P. Miller for useful discussions. 
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ABSTRACT 

Four linear scaling tight binding methods (the density matrix method, bond order potentials, the global 
density of states method, and the Fermi operator expansion) are described and compared to show relative 
computational efficiency for a given accuracy. The density matrix method proves to be most efficient for 
systems with narrow features in their energy gaps, while recursion based moments methods prove to be 
most efficient for metallic systems. 

INTRODUCTION 

During computer simulations, the need for accuracy under diverse conditions implies that a quantum 
mechanical description of interatomic interactions is required. However, the need to handle many atoms 
implies that computationally efficient implementations are necessary. These two considerations are in 
competition with one another. A good compromise solution is to use tight binding (TB) which is a simple, 
but often accurate, quantum mechanical model. While this model can be implemented efficiently on a 
computer, there is still a bottleneck, namely the cubic scaling with respect to number of atoms of the 
computational effort required for matrix diagonalisation. This effectively limits the system size to around 
100 atoms for molecular dynamics simulations. 

Recently, however, a number of schemes have been proposed for which the computational effort scales 
linearly with number of atoms (so called O(N) methods) [1-11]. In this paper, the density matrix method 
[1, 2] (DMM), the bond order potential method [6, 7] (BOP), the global density of states method [10] 
(GDOS), and the Fermi operator expansion method [8] (FOE) are compared for two example systems. 
The aim of the investigation is to discover which method is computationally most efficient for a given level 
of accuracy for a given system. 

METHODS 

The linear scaling methods currently available for TB can be broken down into two broad areas: 
variational methods and moments based methods. In this section a brief overview of the methods is given 
according to the two categories. 

Density Matrix Method 

This is a variational method. This method was proposed simultaneously by Li et al. [1], and by Daw 
[2], though from different arguments. The method revolves around the density matrix. The number of 
electrons in the system, the band energy for the ground state and the corresponding contribution to the 
forces from the band energy can all be written in terms of the density matrix p: 

(1) 

(2) 

(3) 

where Tr indicates taking the trace of a matrix, H is the Hamiltonian, and p is the chemical potential. 
The ground state energy can be found by minimising U with respect to p subject to two constraints: 
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U    =    2Tr[pH] 

Fi    =    -2Tr 
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idempotency of the density matrix [p2 — p, which is equivalent to p having eigenvalues of 0 and 1) and 
constant number of particles (Nc = constant). In the density matrix method, the elements of the density- 
matrix are used as variational degrees of freedom with respect to which the energy is minimised. To impose 
idempotency on the density matrix, it is replaced with the result of the McWeeney transformation [12] of 
a trial density matrix, 

p = 3p7 - 7p\ (4) 

where p is identified as the trial density matrix and p is identified as the physical density matrix, such that 
the expectation value of an operator A is given by Tr[/?/l]. 

Without the McWeeney transformation, minimisation of U with respect to the elements of p would 
result in p having eigenvalues of ±oo; once it has been imposed, the band energy has a single local minimum 
where p is equal to the true density matrix, p, and has eigenvalues of 0 or 1. The runaway solutions can 
be avoided easily by explicit construction [13]. 

The second constraint is easily achieved by varying the chemical potential, /i, at each step. In the 
implementation used in this work, the chemical potential is introduced into the minimisation by working 
with the grand potential (Q). Minimising the energy and fixing the number of electrons are then performed 
in a concerted fashion [13]. The grand potential (Q) is defined by: 

fi = U-pNc = 2Tr[j>(//-/*)], (5) 

and is minimised with respect to the elements of the trial density matrix, p. 
In order to achieve linear scaling, the density matrix method takes advantage of the fact that the 

elements of the density matrix between two atoms tend to zero as the distance between them tends to 
infinity. A cutoff radius (Rc) is postulated beyond which all elements of the trial density matrix are set to 
zero. This leads to a sparse density matrix, which gives linear scaling. However, imposing this cutoff leads 
to a density matrix which is no longer exactly idempotent, though the McWeeney transformation reduces 
the error. If the trial density matrix has idempotency errors to first order, then the physical density matrix 
will have idempotency errors to second order. The transformation forces the eigenvalues of the density 
matrix which emerges to be clustered about 0 and 1, rather than exactly equal to 0 and 1, as would be 
the case for an idempotent operator. It should be noted that in the implementation of this method used 
for this work, the cutoff is defined not by a radius, but by the number of hops away from an atom. 

From the point of view of carrying out computer simulations with the DMM, the following features of 
the method should be noted. The method is variational, leading to excellent forces, and cohesive energies 
that are bounded from below. Efficiency in molecular dynamics simulations is achieved by carrying forward 
the density matrix from one time step to the next, thereby greatly accelerating the energy minimization. 
Where this carry forward is not possible (such as for liquids, for which the change in density matrix 
between MD time steps is large), the method ceases to be very efficient. This method can be very memory 
intensive, as the whole density matrix, and the product of the Hamiltonian and the density matrix, must 
be stored. This limits the applicability of the method, making the study of close packed systems essentially 
impossible with it. Good scaling can be achieved on a parallel computer. 

Moments Methods 

Although the details of the three moments methods considered here are quite different, the underlying 
concept of a moment expansion (either of the density of states or of the Fermi function) is common to 
them all. Thus by way of introduction to all the methods, we begin with a summary of the key concepts 
involved in evaluating the density of states from its moments. 

The band energy of a system, which is evaluated from the total density of states, can be decomposed 
into a sum of contributions from the individual atoms by writing nt>,t«i(E) (the total density of states of 
the system, and hence a global quantity) as a sum over the local densities of states [14] of the system: 

nioi „,(£) = X>c(£), (6) 

where i is a site index, and a is an orbital index. 
The density of states is a function with a finite width, a shape and a centre. These properties (and 

hence the density of states) can be described by the moments of the density of states [15]. The p'h moment 

of the local density of states, n,„(/J) is /([„ , where 

ffj -. J E"n,c,(E)dE. (7) 
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There is a useful identity [16], which states that the p"1 moment of the density of states projected onto 
the orbital | ia) equals the p'h moment of the Hamiltonian projected onto the same orbital: 

$) =  fE"nia{E)dE = (ia\H"\ia). (8) 

This identity allows an identification to be made between the pth moment of the density of states and 
powers of the Hamiltonian matrix: 

$2= E Hi"JiPiHiißiJ2ß2-Hir-ißr-i,ia- (9) 

In turn, the process of multiplying the Hamiltonian matrix into itself can be mapped onto a process of 
hopping around the lattice along closed paths of length p, by equating Hiaj$ with a hop between orbital ia 
and orbital jß. This then leads to a simple interpretation of local bonding in terms of the local connectivity 
of atoms. 

While moments indeed offer a promising way to reconstruct a function, most possible implementations 
are numerically unstable. An important exception is the recursion method [17]. This is an optimal Green's 
function method for building densities of states from moments. 

To summarise the above, we note first that the density of states can be reconstructed from its moments. 
Further the moments can be obtained directly as powers of the Hamiltonian matrix. In turn this allows 
us to interpret the density of states (and hence the local bonding) in terms of the local connectivity of the 
atoms, provided we identify the Hamiltonian matrix with a hopping process. It is this local description 
that leads to the O(N) scaling of these methods. Finally, to turn these appealing intuitive concepts into a 
stable and rapidly convergent numerical method, we introduce the recursion scheme. 

Global Density of States Method 

The recursion method is an optimal method for generating the density of states, and hence the band 
energy, from the moments of the Hamiltonian. For molecular dynamics simulations, however, we also need 
the atomic forces. These have a contribution from the band energy, which is given by the derivative of the 
band energy with respect to atomic positions: 

Uiand = -- T\ hm Im / dEGia,ia(E + ir))Ef{x). (10) 
la 

where f(x) is the Fermi function, x = (E - /()/&B7\ and G{Z) = [Z - H]_1 is the Green's function. The 
contribution to the force on atom k from the band energy (at constant chemical potential) is then: 

dUba; 

=    -1Y lim Im / iEdG,a-"^! + iT,)Ef{x). (11) 

Thus we see that the force depends on the derivative of the Green's function.The chain rule for partial 
differentiation gives: 

dGia,{a{Z)     v dGia,ia(Z) 6^2     v dGicUZ) dy$ 

The derivatives of the Green's function with respect to the moments can be evaluated straighforwardly. 
The derivatives of the moments with respect to the atomic positions, however, are more problematic. 
Formally we can write down the derivative of the pth moment: 

8 $2 d V        rr rr rr -Q^   =    g^        2-,        Jiiaj1ß1Jihß1j,ß1..MJr_1ßr_ljla 

jißi--jp-ißr-i 

E \d-E^Hhßuhß2...Hir_iß,_uia + ..\. (13) 
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Unfortunately this expression is, in general, very slow to evaluate on a computer (though it can be used for 
very low order moment expansions [18]). The reason for this is that the nth moment needs to be evaluated 
n times for each component of force, and there will be SN components to be considered, where N is the 
number of atoms in the cluster from which the moment is evaluated. 

However, there is a way to greatly accelerate the evaluation of the derivatives, and that is to work with 
the global moments, rather than the local moments. The global moments (fi^n>) are defined by: 

iaj,0,...j,-,0,_, 

=    £<m | H" | ia) 

=    !>{//''}. (14) 

Because we can permute matrices inside a trace, the derivative of the global moment is given by: 

-gf^ = >' 2-, ~~ör — H'>e'^f>'-Hi'-^'-^ia- (15) 

iajißi   -Jr-ißr-i 

This is very easy to calculate efficiently on a computer [10], though it can only be evaluated in a stable 
manner for about the first 20 moments. In the global density of states method, the global moments are 
used to construct recursion coefficients from which the density of states, band energy and atomic forces 
arc evaluated. 

In summary, the use of the global density of states leads to a reduced rate of convergence of the 
energy with number of moments as compared with the local densities of states for inhomogeneous systems. 
Further, only about 20 moments can be used before the conversion of moments into recursion coefficients 
becomes unstable, and since all the moments arc stored, this method can be quite memory intensive. This 
has to be weighed against the chief benefit of using the global density of states, namely that the analytical 
forces are exact derivatives of the energy. This method can be implemented on a parallel machine with 
almost perfect scaling, as little information needs to be passed between processors. 

Bond Order Potentials 

There is an alternative approach to evaluating the forces to that described above. Rather than trying 
to differentiate the energy exactly, we can appeal to the Hellmann-Feynman theorem [19, 20] (see equation 
3). The forces are straightforward to evaluate if we can find the density matrix. The bond order potential 
method is a scheme for evaluating the density matrix. It should be noted that the Hellmann-Feynman 
forces will only equal the derivatives of the energy once the density matrix is well converged. 

To obtain the forces on the atoms, only the elements of the density matrix within the same range as 
that of the Hamiltonian matrix arc required. These can be evaluated from the off-diagonal elements of the 
Green's function: 

Pi«,jß = "- lim Im IdEGiaJß(E + ir,)/(x). (10) 
■K i-n       J 

It has been shown that in general, 

Pia,jß ■ ■ £ xj„,„o(*o||)ioj(. + 2 £ X?„,(„-,)o(«n)i» J/>. (17) 

where the response functions for a given total number of electrons, A'e, and electron temperature, T, arc 
defined by 

xLnn(Nc,T)= ! lim Im ( G0m{E + \r))Gn0(E + \ti)f(x)dE. (18) 
7T 1 — 0 J 

The terms (*<»„)■<».; 0 an<l (^n)>«,iß arc linear combinations of interference terms of the form {ia \ H" | jß). 
For more information, see Aoki [7] and Horsfield et a/ [21]) 

The key features of this method are: it provides a rapidly convergent expansion for the density matrix in 
terms of moments; it requires only modest amounts of memory to implement; there are errors in the forces 
that follow from dependence on the Hellmann-Feynman theorem. This method has been implemented on 
a parallel machine, and almost perfect scaling is found, as little information needs to be passed between 
processors. 
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Fermi Operator Expansion 

The Fermi operator expansion is an expansion for the density matrix in terms of powers of the Hamil- 
tonian matrix [22, 23]. It is conceptually the simplest of the moments methods. We can expand the Fermi 
function, f{x), in powers of E: 

oo 

f(x) = YJCPE". (19) 

We can then write (using p = f((H - H)/ICBT)): 

oo 

PiaJfi^CpiiclHUJfl. (20) 

From this we can see the following: a polynomial expansion for the Fermi function in powers of E corre- 
sponds to an expansion for the density matrix in terms of the moments of the Hamiltonian; the polynomial 
expansion only need apply over the range of the eigenvalues. 

The prescription for this method is then as follows. A polynomial is fit to the Fermi function in powers 
of E. A polynomial of order l.5W/kBT, where W is the bandwidth (the difference between the highest 
and the lowest eigenvalues), is found to give well converged results. The density matrix is then constructed 
from the moments of the Hamiltonian matrix. 

If the simple moments of the Hamiltonian are used, the method very quickly becomes unstable. Thus 
in practise Chebyshev moments are used [22, 23]. 

It should be noted that this method requires the use of a finite electron temperature: an infinite 
number of moments would be needed to reach T = 0. Since the electron temperature tends to be rather 
high (typically of the order of leV) to obtain an accurate representation of the Fermi function with a 
given number of moments, results can depart significantly from the T = 0 ones. This can be partially 
corrected for [24, 25] by using the energy functional U - \TS, where U is the internal energy, and S is 
the electron entropy. This functional approximately extrapolates the energy back to the T = 0 value. It 
is used throughout this paper for FOE. Note that this is very similar to the method of Voter et ai [23]. 

The use of a finite range for the density matrix introduces errors into the forces. This can be corrected 
for [23], but in practice is found to be unimportant. 

The utility of this approach lies in the following: the forces are easily obtained by direct differentiation 
of the energy since the total energy is given in terms of the global moments; the memory requirements 
are modest; the algorithm can be implemented very efficiently on a computer; addition of extra moments 
stable up to very large numbers (at least 400). These benefits, however, need to be weighed against the 
rather slow energy convergence with respect to number of moments. This method has been implemented 
on a parallel machine, and almost perfect scaling is found, as little information needs to be passed between 
processors. 

RESULTS 

Tests have been performed for energy convergence, force convergence and computational efficiency for 
an insulator (carbon [26] in the diamond structure), a semiconductor (silicon [27]), a metal (titanium - 
described by a canonical d-band model) and a molecule (benzene [28]). The full set of results is published 
elsewhere [29]. Here only the computational efficiency of the various methods is considered. 

Figures 1 and 2 show the time per atom (per iteration for DMM) for a single total energy evaluation 
required to achieve a given level of accuracy for the vacancy formation energy for the four methods for 
carbon and titanium. It should be noted that DMM takes 2 iterations per MD step in the implementation 
used for this work (though for metals many more iterations may be necessary). The conditions under 
which the timings were taken are as follows. For DMM, the cluster size was varied. For GDOS and BOP, 
the calculations were performed with exact moments only. For FOE, a cluster of size four hops was taken, 
and the number of moments taken within the cluster was varied. Note that this will never lead to exactly 
converged results (a larger cluster is needed for that). However, good enough convergence for many MD 
simulations can be obtained in this way. For diamond, DMM is in a class all its own, being superior by far 
to the moments methods (see also Ref. [30]). For titanium, the exact opposite is the case. A logarithmic 
time scale had to be used to allow the DMM results to appear. 
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Figure 1: The error in the carbon vacancy formation energy against the time taken per MD step per atom 
for each of the different methods. Note the logarithmic time scale. 
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It is interesting to note how FOE increases its accuracy very significantly with minimal gain in time 
for both carbon and titanium. This follows from the simplicity of the algorithm, allowing a highly efficient 
implementation. It should be noted that further reduction in the times is possible by making careful use 
of the specific machine architecture. However, it is important to note also that a cluster of size four hops 
is not large enough to give the correct limiting value. This is because the addition of extra moments 
corresponds to a reduction in the electronic temperature, which in turn results in the increased range of 
the density matrix. When the density matrix extends beyond four hops, then the surface of the cluster 
is sampled, leading to wrong results. Increasing the cluster size will improve the accuracy, but will also 
increase the time of a simulation. 

CONCLUSIONS 

The background to the density matrix method, the bond order potential method, the global density 
of states method and the Fermi operator expansion have been given. There are three main points which 
become clear from the results of simulations: for a system involving energy gaps, DMM is the method 
of choice, giving excellent force and energy convergence. However, the moments methods can also give 
good energy convergence in reasonable times, and give sufficiently good force convergence that reliable 
relaxations can be performed. For liquid materials, any of the moments methods (BOP, GDOS or FOE) 
will give good energy convergence. However, for molecular dynamics GDOS should be used because of the 
high quality of its forces, and the few moments required to reach convergence. For metallic systems GDOS 
and BOP are suitable. FOE never gives the best performance, but also never fails. Its basic merit is that 
it is a reliable method that is straightforward to implement efficiently. 
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ABSTRACT 

We describe linear scaling methods for electronic structure calculations and quantum 
molecular dynamics simulations, which are based on an orbital formulation of the electronic 
problem. In particular, we discuss some open problems which need to be addressed to 
improve the performances of these methods, and briefly review some applications to carbon 
and silicon systems, within a Tight-Binding framework. 

INTRODUCTION 

Quantum simulations are aimed at modeling materials at the microscopic level, by 
solving numerically the equations governing the atomic motion. In order to obtain an 
accurate microscopic description of most materials properties, the interaction between 
atoms must be described using the laws of quantum mechanics. Interatomic forces can be 
computed by solving the Schrödinger equation for electrons, thus determining the electronic 
ground state at given positions of the nuclei. In many cases of interest the nuclei can 
be considered as classical objects. Once atomic trajectories are determined, using, e.g., 
molecular dynamics, a variety of materials properties can be calculated. 

The computer time required by a quantum simulation, and ultimately its feasibility, are 
mainly determined by the time necessary to solve the Schrödinger equation for electrons. 
Standard approaches[l] to the solution of this equation require a workload proportional to 
the cube of the number of atoms involved in the simulation: Doubling the size of the system 
amounts to multiplying by eight the computing time. This unfavorable scaling poses severe 
limitations to the kind of problems which can be tackled with quantum simulations. 

Recently new methods for solving the Schrödinger equation have been developed, which 
imply a workload growing linearly with the system-size. These approaches, called linear 
scaling methods[2], allow one to simulate systems much larger than previously accessible, 
widening the range of materials science issues that can be addressed. At present, linear scal- 
ing methods using Tight-Binding Hamiltonians allow one to perform simulations involving 
up to thousands of atoms on small workstations, and up to ten thousand atoms for tens 
of picoseconds when using supercomputers. This has made it possible to study problems 
such as large organic molecules in water[3], thin film growth[4, 5], extended defects[6] and 
dislocations[7] in semiconductors. Although the implementation of first-principles linear 
scaling methods is less advanced than that of semi-empirical methods, promising results[8] 
have already appeared in the literature. 

In this paper we first summarize the key features of quantum simulations based on 
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linear scaling approaches (section I), and then discuss technical problems involved in linear 
scaling electronic structure calculations, such as convergence in iterative minimizations 
(section II). Then we address specific issues involved in molecular dynamics simulations 
(section III), and give a brief review of applications within a Tight-Binding framework 
(section IV). 

ORBITAL BASED LINEAR SCALING METHODS 

So far quantum simulations based on linear scaling methods have used molecular dy- 
namics as the methodology for the calculation of statistical properties of an ensemble of 
classical ions. The interaction potential between ions is then derived from the ground state 
of the quantum many body system of electrons, by solving the single particle Schrödinger 
equations, in a mean field fashion. At each MD step the forces (Fj) acting on ions are 
determined by computing the gradient of the total energy (E) of electrons in the field of 
ions, with respect to the ionic degrees of freedom: 

F, = -V,£[{R,}]. (1) 

Here {R/} represent ionic coordinates. First-principles theories can be used to compute 
E, e.g. the density functional theory within some local approximation, or semiempirical 
single particle Hamiltonians can be adopted to compute E. Within a semiempirical Tight- 
Binding (TB) formulation, 

£ = £,« + £ VR(|RL-RL.|)- (2) 

The term VR is a repulsive two body potential which can be derived from fits to first- 
principles calculations or experimental data. In standard approaches the band structure 
term EBS is written as 

£ß.9=i:/i<V'Ä, >, (3) 
i 

where H is a TB Hamiltonian and Vi are its eigenstates, i.e., the single particle wave 
functions minimizing the functional EBs- The total number of electrons is TV and the total 
number of single particle states is TV/2, assuming double occupancy for each state (/, = 2). 
The direct diagonalization of H needed at each step of an MD simulation requires a number 
of operations scaling as the third power of N, i.e. a computational workload of order N3 

(0(/V3)-scaling). This limits the number of atoms that can be studied in conventional 
TB-MD simulations to less than a few hundreds using workstations and to less than 1000, 
when using powerful supercomputers. 

As mentioned in the introduction, in order to extend quantum MD studies to larger 
systems and thus to a broader class of problems, many so called 0(Ar) methods have 
been introduced in recent years[2], O(N) meaning that their computational cost grows 
linearly with N and thus with the system size. Some of these approaches are based on 
an orbital formulation of the electronic properties[9, 10, 11] whereas others arc based on 
the calculation of the Green's function[12, 13], the density matrix[14, 15, 16, 17] or the 
density[18]. In this paper wc summarize the basic features of an orbital based 0{N) 
method[10]; a review of both orbital- and density matrix-based linear scaling methods is 
given in Ref. [2], where differences and similarities of the two approaches are discussed in 
detail. 
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A key point of O(N) methods is the evaluation of total energy and forces without com- 
puting the eigenvalues and eigenstates of H. This evaluation is accomplished by dividing 
the full system into subsystems and then defining electronic orbitals which are localized in 
the subsystems[19]. Schrödinger-like equations are then iteratively solved for these local- 
ized degrees of freedom. The subsystems are overlapping portions of the full system, which 
we call localization regions. The important point is that the extension of a localization 
region depends on the physical and chemical properties of the system but not on the entire 
volume of the system. As we will see in detail in Section II, the size of a localization region 
is the parameter controlling the accuracy of the calculation. Using localized functions is 
necessary but in general not sufficient to achieve 0(N) scaling. Another key ingredient 
is the definition of an appropriate energy functional whose minimization requires neither 
explicit orthonormalization of electronic orbitals, nor the inversion of an overlap matrix 
(S) between single particle wavefunctions. Such a functional is in general different from 
the functional EBS of Eq. 2, but it has the same absolute minimum. 

It has been shown in Ref. [10] that an energy functional satisfying these requirements 
is: 

M 

EGBSIW, p, M] = 2 £ (2% - S{j) < hlH - ii\<t>i > +pN (4) 
ij=l 

The matrix (2 I - S) is the truncated series expansion of S_1 to the first order, with 
Sij =< </>i\<j>j >. The functional (4) depends on M orbitals - with M in general larger than 
the number of occupied electronic states N/2 -, and on a global variable ß, determining 
the appropriate filling of the electronic orbitals. In order to find the ground state energy, 
this functional is minimized with respect to electronic orbitals {</>}, which are localized in 
appropriate regions of real space, the localization regions. We call these orbitals localized 
orbitals (LOs). By definition, the orbitals {</>} have finite components only inside the 
localization regions (LRs) and are zero outside. While the number and centers of LRs 
are arbitrary, typically one choses a number of LRs equal to the number of atoms, each 
centered at an atomic site (I). A localized orbital is then specified by its localization region, 
i.e. the region of space where it has finite-components, and its center, i.e. the center of 
the LR. 

Within a TB picture, the localized orbital fa, whose center is the 7th atom, is expressed 
as 

&=  E EC>JI, (5) 
Je{LR,}  l 

where otji's are the atomic basis functions of the atom J and the index I indicates the 
atomic components (e.g. s,px,py or pz for a carbon system). Here {Li?/} indicate the set 
of atoms belonging to the localization region of the orbital </>;. 

When using localized functions, the number (n;,) of basis orbitals needed to express the 
electronic degrees of freedom </>; becomes independent of the system size, being determined 
only by the extension of the localization region. Therefore the evaluation of the total 
energy, and of the gradients of the total energy with respect to electronic and ionic degrees 
of freedom, amounts to computing products of sparse matrices and thus becomes of O(N). 
Indeed all double sums entering, e.g. the energy expression of Eq. 4 run over orbitals defined 
in neighbouring localization regions. In particular, in iterative minimisations (see section 
II) the evaluation of the energy gradient, which in conventional iterative minimizations 
requires 0(N2) operations, scales as nt,0(N). Furthermore no orthogonalisation of orbitals 
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is needed, since one minimises a functional with implicit orthogonalisation constraints, nor 
inversion of overlap matrices, and therefore the whole calculation is of 0(Ar). 

ELECTRONIC STRUCTURE CALCULATIONS 

Total energy minimizations 

The functional of Eq. 4 can be minimized using a conjugate gradient (CG) procedure, 
where the derivative 

^p = 4£[|(ff - Mi > Wa - sfi) - \*> >< *&H - ")l* >1 (6) 
a<Pi j 

is evaluated at each iterative step. This derivative needs to be evaluated only in the 
localization region of fa. During the functional minimization ft is varied until the total 
charge of the system equals N; thus when convergence is achieved, i.e. the ground state is 
attained, the value of ß coincides with the electronic chemical potential. The variation of fi 
during the minimization procedure allows for long-range charge transfer in the minimization 
process, irrespective of the extent of the LRs. Therefore, the variation of \i during the 
minimization procedure helps to avoid being trapped at local minima, which were found 
in minimizations using a number of LOs equal to the number of electronic states[10]: 
M = N/2. 

An example of possible traps at local minima is illustrated in Fig. 1, where we present 
the results[10] of a series of TB calculations using localized orbitals, for a 256 carbon 
atom slab. The slab, consisting of 16 layers, represents bulk diamond terminated by a 
C(lll)-2 x 1 Pandey reconstructed surface on each side. Localization regions extend 
up to second neighbors and therefore contain about 20 atoms. First, conjugate gradient 
minimizations of the electronic structure have been performed, using two localized orbitals 
per LR; for carbon, having four valence electrons, this corresponds to M = N/2 in Eq. 4. 
These minimizations were carried out by starting from different wave function inputs. 
The only calculation which lead to a physical minimum was the one started with orbitals 
containing symmetry information about the system, as shown by comparing the results 
of Fig. 1C, left panel, with those of direct diagonalization, reported in the right panel of 
Fig. 1. The other calculations lead to unphysical minima: when starting with a totally 
random input (Figs. 1A), a local minimum with charged sites was obtained, with these sites 
located predominantly in the surface layers and in the middle of the slab. When starting 
from an atom by atom input (Fig. IB) a local minimum was found, which corresponds to 
two differently charged surfaces, one positively and the other negatively charged. On the 
contrary, when using M > N/2, in particular M = N/2 + AT/4 = ZN/4, all minimizations 
were found to converge to the same minimum, irrespective of the initial choice for input 
wavefunctions, and to yield a physical ground state charge density. This is shown in the 
right panel of Fig. 1, where the results obtained by direct diagonalization are compared 
with those of an iterative minimization with M = 3N/4. 

Convergence of iterative, minimizations 

One of the major technical problems of the total energy minimizations described above 
is the large number of iterations needed to achieve convergence. This is substantially 
larger (10-100 times) than in calculations using extended states. A possible solution to the 
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Figure 1: Differential atomic charge (Ap) on each atomic site of a 256 carbon atom slab. 
The slab, consisting of 16 layers, represents bulk diamond terminated by a C(lll)-2 x 1 
Pandey reconstructed surface on each side. The ionic index indicates individual atomic 
sites belonging to the slab, which are ordered layer by layer, starting from the uppermost 
surface. The arrow indicates the slab center. &pK = pK — p°, where pK = 2£^=1 £( < 
<j>i\ctKi > (2(5y — Stj) < ai(i\<j)j >, p° = 4, and K is the atomic site (see Eq. 4-5). Ec is the 
cohesive energy of the slab. On the right side, in panels A, B and C we show the results 
of calculations performed with two localized orbitals per atomic site, i.e. M = N/2 in 
Eq. 4, and with three different wave function inputs. Random input: the wave function 
expansion coefficients (C},, see Eq. (5)) on each site of a localization region (LR) are random 
numbers, and orbitals belonging to the same LR are orthonormalized at the beginning of 
the calculations. Atom by Atom input: each orbital has a non zero C%

n only on the atomic 
site to which it is associated, and for each atomic site this coefficient is chosen to be the 
same. Layer by Layer input: each orbital has a non zero C}( only on the atomic site to which 
it is associated, and the value of this coefficient is chosen to be the same for each equivalent 
atom in a layer. In the case of atom by atom and layer by layer inputs, the initial wave 
functions are an orthonormal set. On the left side, in the upper panel we report the results 
of a calculation carried out with three orbitals per atomic site, i.e. M = 3iV/4 > N/2 in 
Eq. 4, and with a totally random input for the initial wave functions. In this case Ec= 
-6.978 eV/atom. In the lower panel, we show results obtained by direct diagonalization 
(Ec= -7.04 eV/atom). Contrary to the calculation started from a totally random input 
and performed with M = N/2 (see right side), the calculation with M = 3./V/4 gives a 
ground state charge density very close to that by diagonalization. Prom Ref. [10]. 
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Nh NLR E   (eV/atom) 

2 17 -7.186 
3 41 -7.244 
4 83 -7.253 

DIAG -7.255 

Table I: Cohesive energy (E ) of C in the diamond structure computed with a supercell 
containing 1000 atoms as a function of the number of neighbor shells (Ar/,) included in 
the definition of the localization region; the number of atoms belonging to a localization 
region (NLR) is given in the second column. Results obtained with supercells containing 
216 atoms are identical to those reported in the table. The value of E is quoted with three 
decimal digits to show its convergence as a function of the localization region size. The 
results are compared to those obtained by direct diagonalization (DIAG). Already with 
about 40 atoms per localization region, the error on E  is less than 0.5%. 

problem could come from the use of an energy functional at finite temperature[20], such 
as: 

F = EGBSM, ß, M] - k„T £(I - S)ySy (7) 

where the term k})TY,ij(I — S)ySy mimics an entropy term while preserving the linear 
scaling of the method. Preliminary tests using the F functional for electronic structure 
calculations have shown a decrease in the number of iterations needed in total energy 
minimizations[20]. This also implies a better conservation of energy in microcanonical 
molecular dynamics simulations (see section III). However the improvement is not dramatic 
and new schemes are needed to achieve convergence in a number of iterations comparable 
to those of conventional approaches. 

Size of localization regions and accuracy of the calculations 

The accuracy of orbital based linear scaling calculations is controlled by the size of the 
LR's, e.g. by their radius Rc, if LR's are chosen to be spherical. In general min^ior E[(j>toc} = 
Eloc > min,,, E[i>\ = E0, but 

lim (min EUk min EM 
V' 

(8) 

By choosing appropriately the size of the localization regions, the error A£ior = (E]
0
OC - E0) 

can be made acceptably small, as it has been shown for a variety of systems in practical 
calculations [9, 11, 10, 21]. Selected examples are given in Tables I-HI for diamond, amor- 
phous carbon and trans-polyacetilene, respectively. 

The density matrix of systems with a gap decays exponentially with separation whereas 
that of metals decays with an inverse power of the separation. This was rigorously proven 
for one dimensional systems[22] and suggests that the error A£ior goes to zero exponentially 
for insulators and algebraically for gapless systems, as the radius Rc is increased. This is 

430 



Nh NLR E   (eV/atom) 

2 17 -6.241 
3 34 -6.289 
4 64 -6.299 

DI AG -6.307 

Table II: Cohesive energy (E ) of C in an amorphous carbon structure containing a mixture 
of sp2 and sp3 sites, computed with a supercell containing 512 atoms, as a function of the 
number of neighbor shells (Nh.) included in the definition of the localization region; the 
number of atoms belonging to a localization region (NLR) is given in the second column. 
The value of E is quoted with three decimal digits to show its convergence as a function 
of the localization region size. The results are compared to those obtained by direct 
diagonalization (DIAG). Similarly to diamond, when using localization regions with ~ 40 
atoms, the error on E  is smaller than 0.5%. 

40 60 
ITERATIONS 

40 60 
ITERATIONS 

Figure 2: Convergence of the total energy as a function of the LR's size for 7r- and a- 
2D graphite for a supercell containing 576 carbon atoms. The left hand graph shows the 
convergence from a random start for the CT-2D graphite for localization regions containing 
between 19 and 64 atoms (The value of the total energy obtained by direct diagonalization 
of the Hamiltonian is 10.66 eV). The right hand graph shows the convergence for -K graphite 
for localization regions containing between 19 and 85 atoms starting from an initial state 
that has been converged for 100 steps with a localization region containing 19 atoms. (The 
value of the total energy obtained by direct diagonalization of the Hamiltonian is 7.28 eV). 
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Nh E/CH unit (cV) 

1 -24.679 
2 -25.002 
3 -25.04G 
4 -25.064 
5 -25.073 

DIAG -25.089 

Table III: Total energy per CH unit of infinite <ran.s-polyacetylcne (tPA) as function of the 
size of the localization regions, TV/,, evaluated for a fixed geometry. For these calculations 
we set the Hubbard term of the Tight-Binding Hamiltonian to zero and used three localized 
Orbitals per LR (i.e. M — 3/V/4 in Eq. 4). A unit cell with periodic boundary conditions 
containing 40 CH units has been used. DIAG denotes results obtained by diagonalizing 
the Hamiltonian. From Ref. [23]. 

illustrated in Fig. 2 where we present the convergence of the total energy as a function of 
the LR's size for ir- and <r-2D graphite. 7T-2D graphite is a metallic system, while CT-2D 

graphite is a model, insulating system built of C atoms with only 3 valence electrons. The 
profound difference in the convergence of the two systems is apparent. 

MOLECULAR DYNAMICS SIMULATIONS 

In MD simulations using the functional E (Eq. 4) the ground state wavefunctions {</>} 
can be obtained either by evolving the electronic states according to a Car-Parrinello [24] 
dynamics (see, e.g. Rcf. [25]), or by minimizing the energy functional E at each ionic move. 
In general the atomic sites belonging to a given localization region vary as a function of 
time, when, e.g. atoms diffuse or change their local coordination. This implies an abrupt 
modification of the basis functions used for the expansion of the LO's {<f>} and therefore a 
discontinuity of {<f>} as a function of the ionic positions. When the set of atoms belonging 
to a LRi change, E must be minimized with respect to the electronic degrees of freedom. 
Therefore, in most cases it is convenient to minimize the energy functional at each ionic 
step, irrespective of whether the LR changes at that step, instead of using a Car-Parrinello 
dynamics. 

Within a Tight-Binding picture, when performing MD simulations particular care must 
be taken in preventing unphysical charge transfers between neighboring atoms. An ap- 
proximate way to control charge transfers consists in adding to the Hamiltonian H an 
Hubbard-likc term [26] Hv = U E/(<7/ _<?/)2> where qr is the Mulliken population at atomic 
site /, q° equals the valence atomic charge and U is a constant chosen on a semiempirical 
basis. The Mulliken population is given by <?/ = 2£,J(2<5/J - Stj) < (f>i\Bi >< Ri\(j>j >, 
where < (j>i\Ri > indicates the projection of the localized orbital <f>i onto the localization 
region associated to atom /. In the presence of a Hubbard like term, the line minimization 
required in a CG procedure amounts to the minimization of a polynomial of eight degree 
in the variation of the wave function along the conjugate direction. In the absence of the 
term Hy the polynomial is of third degree. The line minimization can be performed by 
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Figure 3: Energy per atom (Econst) as a function of the simulation time (t) for constant 
temperature molecular dynamics (MD) simulations of liquid C. The simulations was per- 
formed using a Nose thermostat. We used a supercell containing 64 atoms. Econst=Ek;n + 
EGBS + Ethrms, where Ekin is the ionic kinetic energy, EGBS is given by Eq. (4) and Ethrms 
is the sum of the potential and kinetic energies associated to the Nose thermostat. The 
LRs contain about 20 atoms. Lines (a) and (b) correspond to MD runs with M = 3N/4 
(M > N/2, ns = 3) whereas line (c) corresponds to a simulation with M = N/2 (ns = 2). 
Line (b') corresponds to the same simulation as line (b) but performed using the functional 
F (see Eq. 7), with KBT = 1 eV. The time step used in the three MD runs was 30 a.u.(0.73 
fs). At each step, the electronic structure was minimized by a conjugate gradient procedure 
with a fixed number of iterations (Niter). The simulations represented by lines (b) and (c) 
require the same computational cost. 

evaluating the coefficients of the polynomial. We note that the 0(N)-TB method is 
particularly well suited to MD simulations in which the number of particles changes during 
the run. An extra-particle can be added to a A^-particles system, at a distance where it 
does not interact with any of the Nc particles, because of the localization constraints 
imposed on the electronic orbitals. Thus the set of LO's minimizing the total energy 
of the (JVC + l)-particle system is initially given by the union of the sets of LOs {<j>}'s 
minimizing respectively the EQBS of the Nc and that of the extra-particle systems. A 
subsequent gradual approach of an extra-particle to the Nc particle system only weakly 
perturbs its electronic ground state. Therefore the minimization of the TB-Hamiltonian 
for the (Nc + l)-particle system takes only a small number of steps, i.e. much smaller than 
any optimization from scratch of the energy of the (Nc + l)-particle system. This has been 
used, e.g., in Ref. [5] to study the growth of a small fullerene film in the gas phase and in 
Ref. [4] to study the growth of a thin film on a surface. 

In general, in MD simulations using linear scaling methods conserved quantities (such as 
the total energy in a microcanonical simulation) are obtained to a lesser degree of accuracy, 
compared to simulations using diagonalization procedures for the electronic ground state. 
This reflects the problem of the large number of iterations needed to minimize EGBS when 
using localized orbitals (section II). We show an example in Fig. 3, which displays the 
energy per atom as a function of simulation time for constant temperature MD of liquid 
carbon[10], which is a disordered metallic system, i.e. a system rather difficult to treat 
within a O(N) scheme. The conservation of energy is satisfactory when using a reasonable 
number of iterations (i.e. 50 iterations/steps) but not as good as the one usually obtained 
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Figure 4: Right panel: 'Weak scaling' of the 0(N)-Tight-Binding Molecular Dynamics(MD) 
code implemented in Ref. [28] for a bulk diamond system of 2048 to 32768 atoms running 
on 32 to 512 processors of a cray T3D. The localization region for each orbital contains 
45 sites. The curce of circles and squares show the performance for the conjugate gradient 
(CG) minimization and for a full MD run, respectively. The ideal scaling is shown for the 
CG curve. Left panel: 'Strong scaling' of the same code for two bulk diamond systems of 
2048 and 4096 atoms, and an inhomogeneous system of fullerenes deposited on a diamond 
surface (sec Fig. 5). All orbital localization regions are taken up to third nearest neighbors. 
Similar speed up curves were found for the Cray T3E900 with the overall speed being 3.2 
to 3.5 times faster than the T3D, depending on the system size. 

with diagonalization techniques. The picture also shows the improvement obtained when 
using a finite temperature energy functional of Eq. (7). 

RECENT APPLICATIONS 

So far, most large-scale applications with O(N) methods have been carried out using TB 
Hamiltonians. Molecular dynamics simulations involving about one thousand atoms can 
routinely be performed on workstations [5, 27], while the efficient implementations of the 
0(N)-TB algorithm on a massively parallel computer[28, 29] allows one to simulate 5000- 
10000 atoms for tens of picoseconds[4]. The performance of a parallel code[28] implemented 
on a T3D/E is shown in Fig. 4. 

Here we briefly review applications of linear scaling methods to the study of carbon 
and silicon systems, in particular carbon clusters on surfaces and defects in silicon. 

Regarding clusters on surfaces, two simulations have appeared in the literature: The 
simulation of CG0 impacts on a semiconducting substrate[27], involving more than 1000 
atoms and carried out on a small workstation, and the study of C28's thin film deposi- 
tion on a non-metallic surface, involving about 5000 atoms and carried out on a parallel 
supercomputer^]. 

In Ref. [27], Tight-Binding molecular dynamics simulations of Cco impacts on the recon- 
structed diamond(lll) surface were presented, which provided a detailed characterization 
of the microscopic processes occuring during the collision, and allowed one to identify three 
impact regimes: A regime in which the molecule bounces off the surface (for incident ki- 
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Figure 5: A snapshot of the full system (4472 atoms) at the end of a molecular dynamics 
simulation of the deposition of C2s cages on a diamond substrate, showing the undamaged 
clusters. From Ref. [4]. 

Figure 6: Projection on the {011} plane of an extended {311} defect in Silicon. This 
{311} defect is formed by condensation of the interstitial chains along the [Oil] direction 
(I) side by side in the (233) direction. In Ref. [6] it was shown that the defect structure is 
energetically more favorable than isolated interstitials due to: (i) very low dangling bond 
concentration and (ii) small bond length and bond angle distortions by introducing five- 
and seven-member rings upon the insertion of the interstitial chains. From Ref. [6]. 
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netic energies, Ein, smaller than 120 eV), another one in which the molecule can be either 
adsorbed on or leave the substrate, being undamaged, and a third regime (Ein 240 eV 
where the molecule breaks up after the impact and pieces of the broken cage form stable 
bonds with the substrate. 

In Ref. [4], it has been shown that C28 fullerenes can be deposited on a surface to form a 
thin film (see Fig. 5) of nearly defect free molecules, which act as carbon supcratoms. These 
findings help clarify the structure of disordered small fullerene films and also support the 
recently proposed hyperdiamond model for solid C2n- Disordered and ordered solid forms 
of C28's have been studied in detail in Ref. [5]. 

Recently the 0(N)-method has also been used to study defects[6] and dislocations[7] in 
Si. An example of an extended defect studied in Ref. [6] is presented in Fig. 6. 

CONCLUSIONS 

The linear scaling methods described here are a promising framework for the study of 
broader classes of problems than is affordable with conventional techniques. The imple- 
mentation of O(N) methods for tight-binding and semiempirical Hamiltonians has already 
given remarkable results, including the study of thin films[4, 5] and large organic molecules 
in water[3]. 

One of the major technical problems of 0(7V) calculations based on localized func- 
tions is the large number of iterations needed to converge the electronic structure at. each 
molecular dynamics step. This is significantly larger than in calculations using extended 
states[10]. A possible solution to the problem could come from the use of finite temper- 
ature calculations. A more fundamental problem concerns the computation of spectral 
properties, since eigenstates and eigenfunctions are not computed when using 0(7V) meth- 
ods. This might be accomplished by combining the present 0(Ar) methods with inverse 
iteration approaches[30]. 

As a final remark, we note that as the size of the system which can be simulated in- 
creases, the time scales involved in the problem can change considerably and become unaf- 
fordable using conventional simulations schemes. Therefore the development of approaches 
extending the application of quantum MD to larger systems must be accompanied by the 
developments of methods capable of handling slower time scales, in order to build efficient 
simulation tools. 
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TIGHT BINDING SIMULATIONS OF DISORDERED SYSTEMS 
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ABSTRACT 

Carbon allotropy allows the formation of a large variety of disordered structures whose 
properties depend on the density and on the preparation technique. Computer simula- 
tions, based on quantum mechanics, can reproduce the essential features of these systems. 
We first assess the reliability of the amorphous carbon structures generated by molecu- 
lar dynamics simulations based on a semi-empirical Tight Binding hamiltonian. Then we 
attempt to understand of the path followed by diamond to reach the amorphous phase 
via a direct crystalline-to-amorphous transformation. Results concern the large variety 
of structures which can be obtained and a general adequacy of the semi-empirical Tight 
Binding hamiltonian to reproduce the essential features of amorphous carbon structure. 
Moreover, it is shown that the process of direct transformation from the crystalline into 
the amorphous phase occurs continuously. The formation of three-fold coordinated sites is 
not followed by an immediate site re-hybridization. When this process takes place, a large 
strain sites associated with the mis-coordinated sites is released. 

INTRODUCTION 

Allotropy is at the origin of the intriguing topology of the disordered forms of carbon. 
The reproduction of the various chemical bonds in amorphous carbon (a-C hereafter) is 
a challenge for simulation studies based on microscopic models [l]-[8]. The complex na- 
ture of the carbon chemical bond makes simulation models based on empirical interatomic 
potentials [9] inadequate to reproduce the basic properties of the a-C structures (radial 
distribution function, bond distribution, coordination). A better agreement with exper- 
imental results has been achieved, in turn, by the Car-Parrinello (CP) method [1, 6, 7]. 
Recent studies [10] have pointed out the good qualitative agreement between the experi- 
mental electronic density of states (EDOS) and the corresponding functions evaluated on 
simulated systems using the CP approach. However, the study of disordered structures 
compels the use of large model systems (N ~ 103). Such large size systems are computa- 
tionally too expensive for ab-initio techniques. In this respect, it is important to assess the 
reliability of amorphous structures produced by approximate quantum-mechanical model 
hamiltonians, such as semi-empirical [2, 4, 8] and ab-initio Tight Binding (TB) [5] and to 
deploy them for more systematic studies. 

The need for systematic studies is related to the large variety of structures and proper- 
ties which have been measured on a-C samples at different densities [11, 12, 13]. It is, thus, 
important that simulation methods produce manageable representations of the amorphous 
structures in the whole density range which favourably compare to experimental results. 

Among the problems which simulation studies must face is the preparation of the amor- 
phous structure. This task is usually performed by heating a crystalline solid above the 
melting point and by subsequently quenching it down to room temperature with a given 
quench rate. This technique has, however, several drawbacks: (a) it is very demanding 
from the computational point of view, in particular when adopted in conjunction with 
sophisticated model hamiltonians; (b) the structure resulting from this process depends on 
the quench rate [8]. 

The two major goals of this work will be 
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1. assessing the limits of usability of Tight Binding to produce a-C structures which 
could be compared to ab-initio results, to review the attempts made so far on this 
topic and to discuss the obtained results; 

2. trying to address a more fundamental question concerning the way a diamond crys- 
talline structure reaches its amorphous phase. Given the cited propricrty of allot ropy, 
it is relevant to understand the path followed by a system, which has many different 
ways to accomodate the presence of disorder, when undergoing a transition from a 
crystalline to a fully disordered phase. 

We will then study the amorphization process during a direct transformation from the 
crystalline to the amorphous phase. The transition is triggered by inserting an increasing 
number of dissociated Frcnkel pairs (i.e. an interstitial-vacancy pair) into a diamond lattice. 
This technique has the advantage of allowing a constant monitoring of the response of the 
crystalline phase to the presence of structural disorder and to correlate the occurrence of 
the transition to the critical behavior of some physical quantity. This approach should 
answer several questions: 

1. to what extent carbon allotropy allows the system to retain more symmetric crys- 
talline structures with respect to transformation into a disordered structure? 

2. which is the role played by the strain imposed to both the ionic and the electronic 
structure? 

3. does a continuous re-hybridization of low coordination sites occur as disorder in- 
creases or the formation on sp2 sites takes place at once at the crystallinc-to-amorphous 
transition? 

The scheme of the paper is as follows: in the next section, the characteristics of the 
amorphous structures resulting from different simulation techniques, which make use of 
a semi-empirical Tight Binding hamiltonian [14, 15] (quench of a melt, combination of 
Reverse Monte Carlo and simulated annealing, direct amorphization from the crystalline 
phase via introduction of Frenkel pairs) will be shown. Results will be discussed and com- 
pared to corresponding structures generated via other model Hamiltonians (in particular 
via CP technique). In the subsequent section, the path followed by the crystalline structure 
to reach the limit of instability, in the case of Frenkel pairs insertion, will be shown and the 
corresponding behavior of relevant quantities (i.e. local pressure) will be correlated to the 
onset of the transformation. The presence and the characteristics of the electronis states 
which appear in the gap as a consequence of the onset of disorder will be also investigated. 
The properties of gap states will be related to the structures of the disordered regions 
where such states are localized. 

All the computations reported in this study were performed by semi-empirical Tight 
Binding Molecular Dynamics (TBMD) simulations [15] using the TB parametrization by 
Kwon et al. [16]. 

AMORPHIZATION TECHNIQUES 

In most simulation studies amorphous structures are generated by rapidly quenching 
the system from the molten state to room temperature. The quench rates are slow enough 
to allow the system to undergo the liquid-to-amorphous transition. However, the compu- 
tational workload required to firstly produce a molten phase and, then, to perform the 
subsequent quench of the liquid rapidly increases with the system size and the complexity 
of the Hamiltonian. Less common techniques to prepare amorphous systems are based on 
the introduction of a non-equilibrium concentration of interstitial atoms into crystalline 
structures [17, 18] or antisite defects in binary or multi-atom systems [19], whose presence 
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destabilizes the structure thus triggering the onset of a crystalline-to-amorphous transition 
[20]. The Reverse MonteCarlo technique [21] has been also used to produce a-C struc- 
tures [22, 23]. In the following, we will discuss the results of three different amorphization 
techniques used to produce a-C structures. 

Quench of a melt 

A diamond structure, containing N = 216 atoms, arbitrarily set at a density of 3 
gr-cm-3 was firstly heated to T = 5000 K at fixed volume. At this temperature and density 
the crystalline solid melts. The system was subsequently equilibrated at fixed volume and 
temperature for a few thousands time steps. The system was then quenched down to room 
temperature with different quench rates. The results reported in table 1 show that the 
amorphous structures reached by fast quench rates are characterized by a larger fraction 
of sp3 sites with respect to those obtained by slow quench rates [8]. Moreover, it can be 
be noted that the system undergoes a complete re-hybridization for quench rates as low 
as q ~ 1014 K sec-1. This leads to a complete sp2 bonded structure forming a disordered 
graphitic-like network [8]. The tendency of the system to assume an increasing three-fold 
coordination with slow quench rates was discussed also in [7]. A direct comparison between 
TB and CP data put in evidence the general tendency of TB to underestimate the fraction 
of sp3 sites which form in the structure at the given density, independently on the quench 
rate. Despite this partial disagreement, the EDOS resulting from TB can be favourably 
compared to that obtained by CP technique, as far as the position of the main peaks is 
concerned. In particular, it has been shown the origin of the small peak appearing at the 
upper edge of the valence band related to the presence of 7r-electrons [7, 10, 24]. 

Reverse Monte Carlo 

Several authors have noted the ability of the Reverse Monte Carlo (RMC) technique 
[21, 22] to produce 3-dimensional (3D) structural models of disordered materials which 
agree with available diffraction data. In essence, the RMC algorithm is an optimization 
technique which consists of displacing point particles in a box of given dimensions (fixed by 
the requirement of the overall number density) until the derived radial distribution function 
G{r) matches the experimentally measured data. This technique is totally divorced from 
interaction schemes and allows complete data sets from different sources (neutron or X-ray 
diffraction, chemical constraints) to be fitted. In the RMC technique, starting from an 
initial guess configuration to which is associated the model radial distribution function 
Gmod(r), a "quality of hit" value II2, defined by the function 

n2 = Y, «AGmoAn) - Gexp(ri)}
2 (1) 

i—\,n 

can be associated to the guess structure. In eq.(l) n is the number of data points in the 
experimental radial distribution funtion Gexp{r) and a; suitable weighting factors to help 
convergence in the different regions of the distribution. 

The RMC technique consists in randomly displacing the positions of the atoms with 
the constraint of minimizing the value of Ü2. The quality of hit can be then modified by 
introducing, into the optimization procedure, further requirements inferred from experi- 
mental data (e.g. bond angles, bond lenghts etc.). Recent applications of this technique 
to the determination of the tetrahedral a-C structure have introduced further geometrical 
constraints, such as the presence of different types of C atoms in the structure related to 
the different bonding configurations. [22, 23]. The simultaneous fulfillment of many differ- 
ent constraints largely increases the computational workload of the algorithm but allows 
a rather good agreement with the available experimental data. In this form, the method 
entirely relies on the availability of different experimental data. 
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Figure 1: Experimental radial distribution function G(r) (circles) [13], compared to that of 
an as-prepared structure from RMC (full line) and to that resulting from the subsequent 
structure relaxation performed via TBMD (dotted line). 

In a recent work [24], in turn, a different strategy was adopted. The RMC algorithm is 
applied, in that case, in its simplest form, by using only a limited set of experimental data. 
Other than the radial distribution function, the only further constraint was to produce a 
structure with a desired ratio of sp2 and sp3 sites. The aim was to use RMC to produce 
starting configurations to be subsequently used in MD simulations based on a accurate 
model Hamiltonian scheme [16]. This strategy has, at least, three advantages: 

1. it relies ein very reliable data (radial distribution function) and makes no further 
assumption on the topology of the structure; 

2. coupled with an accurate model Hamiltonian, it can be predictive, as it produces a 
set of structural data which can help the interpretation of further experimental data 
(e.g. electronic structure) not included in the optimization strategy; 

3. it considerably reduces the computational time required to produce an amorphous 
structure (with respect to that needed with usual techniques, e.g. quench-from a- 
melt). 

This implementation of the RMC technique was further optimized by using a simulated 
annealing strategy to find the global minimum of the function If2 of Eq.l [24]. 

At the end of the RMC procedure, the system is found within a given basin of solutions, 
which is very similar to that reached by the qucnch-of-a-mclt technique [8, 24], 

The system was subsequently equilibrated, with TBMD, at room temperature. Figure 
1 shows a typical Gmod{v) of a structure resulting from the RMC optimization process 
(full line) and that which results after a subsequent equilibration period (dotted line). 
These curves are compared with the experimental curve [131. Results in terms of potential 
energy, bond angle distribution, equilibrium fraction of sp2 and sp3 sites agree with the 
corresponding values calculated on a-C structures obtained by quenching the melt with 
q ~ 1015 K sec-1. 
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32.8 

from 
TBMD 
liquid 

ql=8.8 10" -7.418 -7.622 5.2 70.4 23.6 

q2=8.8 10" -7.683 -7.699 2.8 71.3 25.9 

q3=1.7 10" -7.795 -7.794 1.4 70.4 28.2 

q4=4.4 lO'4 -7.877 -7.876 3.7 94.4 1.8 

CP 

dynamics 

Ref.[7] 

from ab- 
initio 

MD liquid 

q5=6.5 10" - 35.0 65.0 

q6=2.61016 34.0 66.0 

q7=9.4 1011 - 40.0 58.0 

Table I: Relevant thermodynamic and structural data for amorphous structures obtained 
by the quench of a melt technique. The rows comprised under "TB dynamics" contain 
the results of the quench of liquid structures obtained via a TBMD formalism, starting 
from ab-initio (CP) liquid [6] (shaded region) and from TB liquid (lower region). The 
rows comprised under "CP dynamics" simply report data collected from Refs.[6, 7]. Uq 

and Ur are the energy per particle of the as-quenched and "aged" amorphous structures, 
respectively. The nQ values (in percent) are the fraction of a-coordinated sites after the 
T = 300K relaxation process. 

Introduction of Frenkel pairs 

A diamond structure containing N = 216 atoms has been firstly equilibrated at T = 
300K at fixed temperature and vanishing external pressure. Starting from the resulting 
configuration, several structures, containing an increasing concentration c of dissociated 
Frenkel pairs ( c = 0.5%, 1%, 3%, 5%, 8%, 12%, 15%, 18% ) have been produced. Dissoci- 
ation have been imposed by avoiding the insertion of the interstitial in nearest neighbour 
position of some vacancy (to inhibit direct recombination). 

We have then equilibrated at constant temperature and pressure the disordered struc- 
tures during nearly 10,000 time steps. At the end of the equilibration period, the system 
has been monitored for a few thousands time steps. The results refer to the average values 
of thermodynamic, structural and electronic properties during that period. 

From the thermodynamic point of view, the simulation cell undergo an increasingly 
large distortion. This effect induces a potential energy increase (fig.2) and a continuous 
density decrease (fig.3). Both these quantities saturate at large c to values typical of high 
density a-C structures (see, e.g. table 1 and ref.[23]), although a fully-developped a-C phase 
is achieved only for c ~ 0.15. Below this value, indeed, the structure retains its crystalline 
character, although presenting a diffuse disorder. The potential energy per atom at c=0.18 
has values in the same range as those resulting from other amorphization procedures (see, 
e.g. Table 1). At that c value, also the bond angle distribution (fig.4) is quite similar 
to those reported in [6, 24]. Aside from the information on the thermodynamic behavior, 
MD simulations allow to study structural properties of the system during the disordering 
process. Figure 5 reports the pair correlation functions of the systems at c=0, 0.08 and 
0.18. At c=0.08 the structure is still crystalline, although presenting a diffuse disorder. In 
the case of c=0.18, in turn, the structure is amorphous. 
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Figure 2: Potential energy per atom of the carbon system as a function of the concent rat ion 
c of Frcnkel pairs introduced into the structure. All simulations have been performed at 
T = 300K and vanishing external pressure. 
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0.20 

Figure 3: Variation of the density 8 (expressed in gr CITT3) of the disordered phase as a 
function of the concentration of Frenkel pairs introduced into the structure. All simulations 
have been performed at T = 300K and vanishing external pressure. 
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Figure 4: Bond angle distribution P(0) of the relaxed c=0.18 configuration. Full line= 
total distribution, dotted line=bond angle distribution of three-fold sites; dashed line= 
bond angle distribution of four-fold sites. 
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Figure 5:  Pair correlation functions of diamond during the disordering process, at c=0 
(perfect crystal at T=300K), c=0.08 and c=0.18 (above the amorphization threshold). 
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Figure 6: EDOS evaluated at equilibrium on systems at different values of c ( c=0. 0.01 
0.08, 0.18). 

AMORPHIZATION PATH 

The electronic structure of the disordered systems shows the presence of a sparse set 
of electronic states within the band gap. Figure 6 shows the EDOS of disordered systems 
at different values of c. The edges of both the valence and conduction band are hidden 
by both the band broadening and by this set of states. In order to evaluate the band gap 
width as a function of c, the Taue construction [25] has been used in the cases where a 
large'amount of disorder was already established. All the structures, at different values 
of c are characterized by a concentration of the three-fold coordinated sites proportional 
to the disorder parameter c. The width of the band gap and of the homo-lumo gap. as 
a function of c, has been reported in fig.7. The fraction of three-fold coordinated sites is 
also reported in fig.7. These data confirm the empirical rule that, the optical (Taue) gap 
depends linearly on the sp2 fraction [26]. The homo-lumo gap appears to drop to small 
values (~ 0.5 eV) since the beginning of the disordering process. 

The gap states, recently studied also by Robertson [26, 27], are characterized by a large 
value of the participation ratio A,- (expressed as A,= Ej=i,„ /*,■ where t}i are the elements of 
the eigenvector matrix) of the corresponding eigenvalues. These states are, in fact, localized 
around the atomic sites with coordination different than four-fold. In fig.8 two different 
plots relative to the case c=0.05 arc shown: the lower one represents the EDOS region 
containing the gap; the upper one reports the localization value A, of the corresponding 
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Figure 7: Behavior of the width homo-lumo gap (empty circles) and Taue (optical) gap 
(full circles) as a function of c. The number appearing near the full circles represents the 
concentration of the three-fold sites in the system. 

eigenvalues. The larger values of A,- express the localization of the eigenvalues localized on 
three-fold coordinated sites. 

As noted above, the system reacts to the insertion of Frenkel pairs by creating a number 
of three-fold coordinated sites (nearby the introduced vacancies). The formation energy of 
the dissociated Frenkel pair resulted to be Ep =17.3 eV, in agreement with previous ab- 
initio calculations [28]. The structure relaxes around the introduced defects (vacancies and 
interstitials) so as to mantain the four-fold coordination throught the rest of the system. 
However, the appearence of three-fold coordination sites is not related, at least in the early 
stages of the disordering process, to a site re-hybridization. This fact can be put in evidence 
by looking at the bond-angle distribution P{8) of the three-fold coordinated sites. In fig.9 
the P(8) of the three-fold sites for c = 0.01 is shown. A peak at 8 ~ 109° (typical of sp3 

sites) dominates the distribution, pointing out that the system is still able to keep the sp3 

hybridization by creating dangling bonds and by partially distorting the hybrid structure. 
The distortion is also indicated by the minor peak at 8 ~ 145° in the distribution, related 
to distorted sp3 hybrids which tends to assume a nearly planar form typical of sp2 bonds 
with asymmetric lobes at 8 ~ 104° and 8 ~ 150°. 

A useful measure of the local state of hydrostatic stress around the mis-coordinated 
atoms is represented by the so called "local pressure", derived from the trace of the atomic- 
level stress tensor [29]. The effect of the lattice distortion associated with three-fold coordi- 
nated atoms on the overall stability of the crystalline structure is shown in fig.10, where the 
local pressures are displayed as a function of the site number. The mis-coordinated sites 
which could not perform a complete re-hybridization show anomalous levels of local pres- 
sure with respect to undistorted, four-fold coordinated sites. As soon as re-hybridization 
occurs, the local pressure level associated with mis-coordinated sites decreases, as the 
electronic-structure rearrangement releases the strain. 

As soon as the degree of disorder increases, above c = 0.03, the 8 = 109° and 8 = 145° 
peaks disappear and the dominant peak becomes 9 = 120°. This transition testifies the 
occurrence of a complete re-hybridization of the three-fold sites and the appearence of 
"true" sp2 hybrids. At a critical level of disorder, estimated to be at c ~ 0.15, the struc- 
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Figure 8: Panel (a): participation ratio of the different eigenvalues in the region of the 
gap. Panel (b) shows the corresponding part of the ED0S. Both the results refer to the 
case of c =0.05. 
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Figure 9: Bond distribution function P(0) of the three-fold coordinated sites in the case 
of c =0.01. Compare this distribution with that reported in fig.4 (dotted line), relative to 
the case c=0.18. 

ture udergoes to a crystalline-to-amorphous transition, as testified by the pair correlation 
function reported in fig.5. 

CONCLUSIONS 

The present results can be resumed in the following points: 

1. Semi empirical TBMD, in the used parametrization [15] allows, a qualitative repro- 
duction of the a-C structures. We have underlined the inadequacy of the parametriza- 
tion to correctly estimating the concentration of four-fold coordinated sites in the high 
density (8 = 3 gr cm-3) systems, when they originated by fully disordered structures 
(e.q. liquid). In the case of structures which undergo a progressive disordering pro- 
cess, in turn, the used TB parametrization is able to retain into the system a large 
fraction of sp3 sites ; 

2. The EDOS resulting from the calculations qualitatively agrees with experimental 
data [10], although the relative peak intensities are affected by the problem pointed 
out above; 

3. The optical (Taue) gap decreases linearly with the increase of the sp2 fraction, in 
agreement with [27]; 

4. The crystal-to-amorphous transition, triggered by the introduction of dissociated 
Frenkel pairs in a diamond lattice, occurs continuosly. This transition is induced by 
the presence of large local strains associated to three-fold coordinated sites which 
retain the sp3 hybridization (dangling bonds). These structures, characterized by a 
"quasi" planar configuration, transform into "true" sp2 hybrids. It can be conjectured 
that this process occurs as soon as the local concentration of strain exceeds some 
instability threshold; 

5. A complete a-C system has been found when the concentration of introduced Frenkel 
pairs exceeds the value of 0.15. 
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Figure 10:   Local pressure on the atomic sites in system with c =0.005.    Pressures are 
reported in eV A-3. Full squares indicate the three-fold coordinated sites in the structure. 
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ABSTRACT 

We show that a simple tight binding model with a repulsive potential describes the Peierls 
distortions in covalent systems and the well-known octet rule. The existence and the intensity of 
the Peierls distortion is mainly related to the hardness of the repulsive potential as demonstrated 
both by theoretical calculations and by the experimental systematic analysis of liquid structures. In 
particular, As is threefold coordinated and Sb is sixfold coordinated in the liquid, the qualitative 
difference is explained by the ratio of the distortion energy AE to the thermal energy kßT. The Asx 
Sbi.x alloys show continuously varying average coordination numbers showing: the 
semiconductor-metal transition is continuous with concentration. 

In addition, we illustrate in the case of liquid Se that, tight binding Monte Carlo simulations 
are able to describe quantitatively the structure of liquid elements provided the Van der Waals 
potential is added. 

INTRODUCTION 

The first aim of this paper is to show that a simple tight-binding model is able to explain the 
crystallographic structures of phases that are driven by electronic instabilities as well as their phase 
transitions. In the first part, we address the general question of the stability of covalent systems, 
whose structure is essentially governed by directional p bonding, resulting in open structures. 

The Peierls distortion is an electronic instability that produces an alternation of short and long 
bonds following a rule that depends on the band filling ratio. The process is largely independent of 
the details of the model. In the simplest case, the tight binding method allows to obtain simple - 
sometimes analytic- expressions or simple relations between the quantities of physical interest e. g. 
between the total energy and the compressibility or the Einstein oscillator frequency. We stress 
upon the fact that the repulsive potential plays an important role, and we show that its variation 
with distance is a relevant parameter that determines the type of stable structure. 

Elements of the columns V, VI and VII of the Mendeleiev table satisfy the Z = 8 - N rule, with 
a limited number of exceptions, i. e. the coordination number Z is equal to eight minus the number 
of s and p valence electrons. In particular, As and Sb atoms are three-coordinated in corrugated 
planes while Se and Te atoms are two-coordinated in helicoidal chains. These structures are 
described as Peierls distortions of the simple cubic structure as shown in Fig. 1. 

We have shown that these structures result from an electronic instability (or symmetry 
breaking mechanism) that shortens and elongates the bond length with a periodicity that depends 
on the band filling ratio [1]. Simultaneously, an energy gap appears at the Fermi energy and the 
shift of the occupied states close to the Fermi energy towards more bonding energies produces an 
energy gain. This energy gain is counterbalanced by an increase of the repulsive energy, and it is 
understandable that the balance depends on the hardness of the repulsive potential. An interesting 
question is the robustness of this distortion with respect to pressure and temperature. It is well 
known that the pressure reduces the long bond distance and so the Peierls distortion is reduced up 
to disappearance. It is clearly understandable that the repulsive term plays an important role in the 
existence or the absence of a Peierls distortion. In particular we have shown that smooth repulsive 
potentials leads to distorted structures whilst the "hard sphere" case does not. In this paper, we 
discuss the stability of the distortion with respect to the temperature, in framework of a simple 
model. From the experimental side, in AsxSbi_x alloys an extensive set of diffraction data exists 
that are in full agreement with the model predictions [2]. 
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Figure 1. Simple cubic structure and structures of As, Se and Te. Short bonds arc 
indicated by heavy lines and long bonds by light lines. 

In a second part, we show that a more elaborate tight binding model provide a quantitative 
description of the structure of matter under extreme conditions of temperature (and pressure). The 
example considered here is liquid selenium whose structure and electronic properties from the 
melting point to supercritical conditions have been extensively studied in the past few years [3]. 
One of the main reason for this interest is that the high temperature liquid phase is metallic [4], with 
an average coordination number lower than that of the liquid just above the melting point, which is 
semi conducting, like crystalline and amorphous selenium. This is a rather unexpected behaviour, 
as the semi conductor to metal transition that occurs in the Peierls distorted covalent elements when 
applying temperature or pressure is usually accompanied by an increase of the number of first 
neighbours. A well known example for this behaviour is tellurium [5]. Moreover, recent EXAFS 
measurements [13] have shown that this transition is accompanied by a significant broadening of 
the first neighbour shell towards small distances, which is consistent with an increase of the 
number of one-fold coordinated atoms (ends of chains or molecules) in the melt. Various 
theoretical explanations have been proposed, using either simple tight binding models [6] to 
analyse the electronic properties or ab initio techniques [7] to study the crystalline and liquid 
phases. The computer simulation approaches, the only able to deal quantitatively with the physics 
of liquids, face a challenging problem due to the nature of the bonding in selenium. The bonds 
within the chains are clearly covalent with an energy of the order of 2eV/atom, whereas the bonds 
between the chains are an order of magnitude weaker, an energy range where dispersion forces are 
no longer negligible and must be taken into account, either directly by adding a Van der Waals term 
in the semi empirical models, or by including corrections beyond the standard LDA in ab initio 
approaches. In the liquid state, specially at high temperature, the density is much lower than in the 
crystal (typically .026 atom/A' vs .036 atom/A'1) and this problem becomes crucial. Although it has 
been possible to simulate liquid selenium at the melting point with a very crude model neglecting 
the dispersion terms [8], such an attempt leads to unphysical large concentration fluctuations in the 
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high temperature conditions, where the density is low. The present work includes of a Van der 
Waals term, in addition to the tight-binding hamiltonian, of course at the expense of an increase of 
the number of parameters. 

QUALITATIVE TIGHT-BINDING 

In this section ,we present a simple statistical model that accounts for the variation of the 
coordination number with temperature. The model is as follows: we assume that the atoms are 
sitting on a simple cubic lattice but the distance is artificially modified by varying the interatomic 
resonance integral ß. The integral ß can even be put equal to zero. This a simple and useful 
technique for changing the distance without changing the angles. The energy is calculated and 
equilibrated along any pair of neighbouring atoms. The attractive energy is treated in a second 
moment approximation. In a simple cubic structure and including only pprj interactions, the three 
directions of space are decoupled and the total energy writes, per direction: 

^--Vz/j-L+f ifr-L CD 

Z is the coordination number equal to 0, 1 or 2 in a given direction. The first term is the attractive 
band term and the second term describes a pairwise addition repulsive contribution. Let is recall 
that p > q to insure structural stability [1]. For p > 2q the structure with Z =2 (per direction) is the 
most stable while for p < 2q, an electronic instability occurs and Z =1. Using formula (1), it is 

easy to show that the total energy, at equilibrium, is proportional to Z  ^p~1'. Formula (1) or its 
extension to two different distances rs and rj has an important artefact: at zero pressure, the 
equilibrium distance of the long bonds is infinitely long i. e. the bond is broken. In order to get a 
finite equilibrium distance ri, one has either to fix the total volume or to take the dispersion forces 
into account as we do in the next section. 

Roughly, the larger the number of core electrons, the harder the repulsive potential and the 
larger the p value. This is illustrated by the case of AsxSb].x alloys. This series is interesting as it 
varies continuously the hardness parameter within the interval [pAs, psb]- 

On the other hand, the leading entropy term, treated as a collection of Einstein oscillators, is 
proportional to kß In (V/Vrj) where Vo is some reference volume and V is the volume of the 
vibration ellipsoid. The sampled volume increases at high temperature in the case p < 2q due to the 
anharmonicity of the effective potential. As a consequence, temperature increases the average 
coordination number (Fig. 2 and, 3 and 4). 

As a result of a series of neutron diffraction experiments, we find out that there is an increased 
number of coordination with the concentration in the heaviest element (Sb here), from 1 to 2 per 
direction, or from 3 to 6 for the three directions of space (Fig. 3). This is clearly illustrated by the 
case of Asx Sbi_x alloys. The crystalline structures of arsenic and antimony are isostructural. the 
two structure differs from the intensity of the Peierls distortion which decreases from the top to the 
bottom of the fifth column of the periodic table. This result in variation of the rhombohedral angle 
and a relatively larger separation between corrugated planes of three-coordinated atoms in As, 
compared to Sb. The strength of the Peierls distortion decreases with the atomic number or, in 
other words, the energy gain of a Peierls distortion is smaller when going down the periodic table. 
At high temperature the thermal energy can be equal to the Peierls distortion energy and the 
distortion is washed out. Neutron diffraction experiments have shown that the coordination 
number increases gradually from 3 in liquid As up to 6.3 in liquid Sb [2]. Figure 3 shows the 
variation of the coordination number with the concentration, just above the melting temperature. 
The evolution can be understood as a destruction of the Peierls distortion. Monte Carlo simulations 
of the liquid phase of As and Sb using a classical tight-binding description of bonding with a 
pairwise repulsive potential V = C rP have shown the importance of the p exponent of the 
interatomic repulsion [3, 6]: As has a larger value of p that Sb. The structure of liquid Asx Sbi-X 
alloys can then be easily simulated using the geometrically averaged values of the repulsive 
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potentials of the individual elements. By using the entropy approximation and the lattice model 
described here above, we can estimate the behaviour of the alloys with temperature. 

Free energy        p < 2 q 

Figure 2. Free energy (schematic), as a function of temperature, of 1-coordinated 
and 2-coordinated structures for hard spheres (left) and soft spheres (right). 
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Figure 3. Coordination number at 980 K, as a function of the hardness parameter 
p/q of the repulsive potential. 

Fig. 4 shows the comparison between the coordination number, measured as the total number 
of short bonds around an atom, for the lattice tight binding calculation and for the neutron 
diffraction data, as a function of the p/q ratio at the temperature of 980K. Of course, the result of 
our model cannot fully agree with the experimental curve since the maximum coordination number 
is, by construction, limited to six in the model. A more detailed analysis of the coordination 
number is given on Fig. 4. Starting from 100% of three coordinated atoms in liquid As, we see 
that the four coordinated atoms become majority for p/q values between 1.4 and 1.55, and then the 
same for five coordinated atoms up to p/q equal to 1.7. Coordination six is then predominant for 
higher p/q values. 
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Figure 4. Probability distribution of 3, 4, 5 and 6-coordinated atoms as a function 
of the hardness parameter p/q of the repulsive potential. 

This example shows clearly how our simplified tight-binding model, combined with an 
estimation of the entropy, describes qualitatively the evolution of the most simple Peierls distorted 
systems as a function of the hardness of the repulsive potential or the temperature. 

QUANTITATIVE TIGHT-BINDING AND MONTE-CARLO SIMULATION 

In a second step, we put forward a quantitative method for the accurate determination of the 
structure factor of liquids with two different bonding mechanisms (covalent and Van de Waals). In 
the tight binding method, which is semiquantitative, we anchor the parameters to different 
measurable quantities such as the total energy, the equation of state V(P) and the band structure 
obtained by a LMTO technique. Both energetic and spectroscopic parameters are used in the fitting 
procedure. 

The model 

The total energy of the system is the sum of three terms : a band structure term, an empirical 
pairwise additive repulsive term and a third term, which is also pairwise additive, includes the 
dispersion forces. The total energy writes : 

Etot = Eband + Erep + EydW 

aband =   I   E m 
J — CO 

(E) dE 

(2) 

(3) 
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The band energy is calculated using a fourth moment approximation of the density of states. 
Although crude, this approximation retains the essential physics of the system (the quantum nature 
of the chemical bond, the directional character of the covalent bond, the gap at the Fermi level for a 
Peierls distorted element). More details are given in [8]. The method allows relatively fast 
computations on large systems (up to some thousands of atoms on a workstation). Moreover, a 
more accurate description of the DOS is irrelevant considering the crude approximations made on 

the other terms. The damping terms Ft (r) = [1 + exp( '-)]    ensure a smooth cancellation of 
°i 

the first two terms at the cut-off distance. The damping of the Van der Waals term (1 -F2(r)) allows 
a smooth transition between the long range regime, where the approximate expression of the 
dispersion term (5) is valid, and the short range regime where the covalent bonding term given by 
(3) and (4) is physically dominant. The parameters (otj, 8j) of these damping functions as well as 

the parameters defining the hopping integrals ßx = ßx° exp (-qx r) (ßx stands for the ssc, spa, 
ppa and ppTt interactions considered here) and the repulsive term must be carefully fitted in order 
to obtain realistic results. 

E-Ec(eV) 
r 

Figure 5 : Electronic density of states of Sei at 0 GPa. Full curve : tight binding; 
dash-dotted curve : FP-LMTO; dotted curve : ref [12]. 

The fitting technique proceeds in two steps. First, the tight binding parameters p0 >MX are 

obtained by fitting the first moments of the electronic densities of states (DOS) that have been 
calculated using the FP-LMTO method [9] on different crystalline trigonal (Se ) selenium structures 
in the pressure range 1-10 GPa. The interest of considering various pressures is that it provides 
one with the distance dependence of the hopping integrals, and hence q>w . The structural 
parameters used for these calculations are the experimental ones [10, 11]. The resulting DOS for 
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Selenium at 0 GPa is plotted on Fig. 5, compared with our FP-LMTO calculations and the 
calculations of Schlüter et al. [12]. The tight binding density of states is calculated using 40 exact 
moments. In a second step, the remaining parameters (repulsive term, damping functions) are 
calculated by fitting the experimental equations of state [10]. The structural parameters for the 
phases Se  and Se   are not available, so we restrict ourselves to the Se1 and Se   phases. The 
experimental curve for the Se1  phase has been calculated assuming a direct transition pressure 
between Se and Se   at 25 GPa. The resulting energy versus reduced volume curves are plotted in 
Fig. 6. It can be seen that the agreement is rather good for the Se1 phase around its equilibrium 
volume at 0 GPa, and less satisfactory for high pressures. As our simulations are done in the liquid 
state at low densities, these problems are expected to remain negligible. 
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Figure 6. Total energy vs reduced volume. ( ) experimental [10], circles and 
triangles : tight binding fit. 

With the parameters determined in this way, (N,V, T) Monte Carlo simulations have been 
performed under the density and temperature conditions indicated in Table 1. Apart from the lowest 
temperature, they correspond to the conditions (P = 600 bars) under which the EXAFS 
experiments of Soldo et al. [13] have been performed. The results presented here have been 
obtained for a system size of 144 atoms, and up to 10000 Monte Carlo steps / atom have been 
necessary to reach equilibrium. 

Results 

The pair correlation functions g(r) and structure factors S(q) calculated under these conditions 
are plotted on Fig. 7 and 8 respectively. The structure factor at the lowest temperature is in very 
good agreement with the experimental results of [14]. Moreover, the temperature dependence of 
the structure factor displays the characteristic features observed in [1]: a gradual decrease of the 
first peak around 2 Ä" , accompanied by an overall damping of the large q oscillations with 
increasing temperatures. 

The detailed analysis of the distribution of the coordination shells (Fig. 9 and Table 1) shows 
that the average coordination number <N\> , that decreases with increasing temperature, is an 
average of various fractions of 1-fold, 2-fold and 3-fold coordinated atoms. Table 2 presents upper 
and lower bounds on the measured quantities : they have been calculated for two different cut-off 
values (2.60 Ä and 2.85Ä) that are reasonable bounds for this quantity. The amount of 2-fold 
coordinated atoms is approximately constant (around 60%), whereas the number of 1-fold 
coordinated atoms gradually increases and the number of 3-fold coordinated atoms decreases with 
increasing temperature. The bond of one-fold coordinated atoms (ends of chains) is shorter than 
the bonds between 2-fold and 3-fold coordinated atoms, hence the gradual shift of the first peak 
position. This shift, clearly apparent on Fig. 7, can be measured by calculating the average of the 
first peak position ( <Rj> : normalised first moment of the first peak). 
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Figures 7 and 8. Pair correlation function (g(r), left) and structure factor (S(q), 
right) of liquid selenium at 890, 1075, 1180, 1350, 1510°C (from bottom to top). 

Figure 9. Partial pair correlation function r2 g(r) corresponding to the six first 
neighbours (left to right). 
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Table 1 - Upper and lower bounds on the average coordination number <N1>, the 
distribution of the coordination and the average first peak position <Ri>, calculated 
with cut-off distance at 2.60Ä and 2.81Ä. 

Temperature 
(°Q 

Atomic density 
(A"3) 

<Nj> %CNi %CN2 %CN3 <Rl> (Ä) 

890 .0259 1.90-2.11 23-15 64-61 13-24 2.35-2.38 

1075 .0249 1.85-2.07 34-18 54-59 12-23 2.34-2.38 

1180 .0244 1.77-2.00 33-24 57-54 11-22 2.34-2.37 

1350 .0236 1.82-2.06 29-19 60-58 11-23 2.34-2.38 

1510 .0229 1.67-1.90 40-28 53-54 7-18 2.32-2.36 

The tight binding calculations predict a metallic behaviour on the basis of the electronic 
densities of states calculated at 1180°C and 1510°C. A more elaborate electronic structure 
calculation on characteristic configurations would certainly be more reliable but is beyond the scope 
of this preliminary work. Nevertheless, it turns out that the electronic density of states near the 
Fermi level depends crucially on the (broad) distribution of third neighbours (distances between 
2.5 and 3.5 Ä) that appears in the liquid state, as can be seen on Figure 10. This part of the real 
space atomic distribution that corresponds to the gap between the first and second peaks of the pair 
correlation function, is rather difficult to sample correctly, even with the rather long simulation 
times used here. In this region, two competing effects take place. The effect of the temperature that 
tends to fill the gap between the first and second peaks of g(r) is counter balanced by the effect of 
the decreasing density that tends to set the chains (or segments of chains) apart, as confirmed by 
the tendency to lower the number of three-fold coordinated atoms with increasing temperature. It 
would probably be more reliable to let the system adapt its density to the temperature by using a 
more time consuming N, P, T algorithm for the Monte Carlo simulations. 
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Figure 10. Electronic density of states of liquid Se at 1075° (full curve) and 1510°C 
(dash-dotted curve). 

Liquid selenium is intermediate between a purely covalent and a molecular system, and the 
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efficient sampling of the phase space of a system where two different energy scales coexist is not a 
trivial matter and requires further work. 

CONCLUSIONS 

Although semi-quantitative, the tight binding method is important not only for the qualitative 
understanding of bonding mechanisms but also to obtained a detailed and accurate description of 
the liquid structures, from which various parameters can be calculated. In the case where an 
electronic instability occurs, the dispersion (Van der Waals) energy has to be taken into account in 
a parametrized form in order to get quantitative results for the liquid structure. The advantage of 
this method over the ab initio technique is a reduced amount of computing time that allows either to 
treat thousand of atoms or to have good statistics on smaller samples. 
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ABSTRACT 

By combining tight-binding (TB) molecular dynamics (MD) with the recently-proposed 
activation-relaxation technique (ART), we have constructed structural models of a-GaAs 
and a-Si of an unprecedented level of quality: the models are almost perfectly four-fold 
coordinated and, in the case of a-GaAs, exhibit a remarkably low density of homopolar 
bonds. In particular, the models are superior to structures obtained using melt-and-quench 
TB-MD or quantum MD. We find that a-Si is best described by a Polk-type model, while a- 
GaAs resembles closely the mechanical model proposed by Connell and Temkin, which is free 
of wrong bonds. In this paper, the structural, electronic, and dynamical properties of a-GaAs 
based on this approach will be reviewed, and compared to experiment and other structural 
models. Our study provides much-needed information on the intermediate-range topology of 
amorphous tetrahedral semiconductors; in particular, we will see that the differences between 
the Polk and Connell-Temkin models, while real, are difficult to extract from experiment, 
thus emphasising the need for realistic computer models. 

INTRODUCTION 

The energetics, and thus the physical properties, of multicomponent materials is no- 
tably difficult to describe accurately using simple empirical potentials because of the large 
number of interactions involved. Because of this, with perhaps the exception of water and 
SiÜ2 (and related chalcogenide glasses), very little effort has been spent in developing such 
potentials. In light of this, model calculations based on a tight-binding (TB) or ab-initio 
description of the interactions are no luxury but, rather, a much-needed first step in the 
study of innumerable, and important, multicomponent systems. 

However, the computational cost of ab-initio calculations, and to a lesser extent TB, 
increases rapidly with system size. This becomes a serious problem for systems which ex- 
hibit little (or no) symmetry, such as nano-structures, surfaces or disordered (chemically 
or topologically) materials, where large models are required and for which, therefore, the 
number of relevant configurations increases rapidly. One possible solution to this problem is 
the use of different approaches at various stages of a calculation. Thus, for instance, a first- 
approximation structural model for a particular material might be generated using a set of 
classical empirical potentials, which can then be improved or confirmed a posteriori through 
further relaxation using more appropriate (semi-empirical or first-principles) interactions. 
This is the philosophy we adopt here. 

Mixed approaches have been used with some success in the study of disordered mate- 
rials, such as a-Si, a-C, etc.[l]. Although leaving open a priori the possibility that the 
empirical potentials bias the results in a significant manner, these approaches probably pro- 
vide, at present, and until computers and methodology improve substantially in speed, the 
most efficient method for optimising complex structural models. A posteriori, the struc- 
tural models can be checked against experimental data and/or other models, when available. 
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We give here an example of a mixed-approach calculation as applied to the study of amor- 
phous silicon (a-Si) and amorphous gallium arsenide (a-GaAs): A starting point structure is 
constructed using empirical potentials and the activation-relaxation technique, then relaxed 
using TB forces in a molecular-dynamics (MD) simulation. The resulting structural models 
are found to be superior to structures obtained using the conventional melt-and-quench, TB- 
or quantum-MD approaches. 

The standard Polk continuous-random-network (CRN) model [2] is often considered to 
represent the ideal structural model for amorphous elemental semiconductors such as o-Si, 
a-Ge and fourfold o-C. For compound semiconductors, such as the III-V GaAs, the Polk 
model is likely not ideal: it contains a macroscopic proportion of odd-membered rings which 
are absent in the crystal. The presence of such rings in a binary mixture such as GaAs would 
necessarily result in the presence of both hetero and homopolar (wrong) bonds. At best, the 
Polk model would still possess at least 12% of wrong bonds [3]. These are very expensive in 
GaAs because of the partly ionic character of the interactions. This cost, however, must be 
balanced against that for elastically deforming the network to eliminate the bonds between 
like atoms. 

Connell and Temkin (CT) [4] have demonstrated that it is quite possible to construct a 
CRN without, odd-membered rings, thus allowing for the construction of chemically-ordered 
binary semiconductor models. The (mechanical) CT model, however, suffers from a large 
surface and cannot address the question of the elastic cost arising from the elimination of 
wrong bonds, or, equivalently, odd-membered rings. With computer models, it is possible to 
suppress surfaces, through the use of periodic boundary conditions, but eliminating wrong 
bonds in a material such as a-GaAs, which is relatively weakly ionic (compared, e.g., to 
SiO^) [5], is difficult because the timescale for chemical ordering to take place is longer than 
can be afforded in MD simulations with TB or first-principles interactions. 

Experimentally, the situation is not much clearer. Because the interatomic distances for 
the different pairs (Ga-Ga, As-As and As-Ga) are almost identical, probes such as EXAFS 
yield very little information about the local environment of each type of atoms. Indirect 
measurements conclude to the near absence of homopolar bonds in this material but, as we 
will show here, these conclusions are not warranted by our simulations, which indicate that 
wrong bonds affect very little average quantities. 

The solution we adopt in this work proceeds from the mixed approach discussed earlier: 
First, we use the activation-relaxation technique (ART) of Barkema and Mousseau [6, 7], cou- 
pled with empirical (but modified) Stillinger-Weber potentials, to prepare two216-atom mod- 
els with periodic-boundary conditions, corresponding to the Polk (P) and Connell-Temkin 
(CT) CRN's, respectively. Second, both models are relaxed with the Goodwin-Skinner- 
Pettifor TB potential for Si [8] and the Colombo-Molteni TB for GaAs [9]. We find that 
o-Si is best described by a Polk-type model, while o-GaAs resembles closely the CT model. 
The differences between the two models, while real, are however difficult to extract from 
experiment, thus emphasising the need for accurate computer models. 

EMPIRICAL APPROACH 

Satisfactory models of a-GaAs are extremely difficult to construct for two reasons: (i) 
There exists, to our knowledge, no empirical potential which can provide a realistic descrip- 
tion of the atomic interactions in this material; one therefore has to resort to TB or ab initio 
forces, (ii) As mentioned earlier, a-GaAs is (relatively) weakly ionic and the timescale asso- 
ciated with chemical ordering is therefore beyond the reach of conventional MD simulations 
(in contrast to, e.g, Si02), especially if TB or ab initio forces are to be used. 

As a first step, prior to relaxing using TB forces, and in order to generate computer 
structures which are akin to the Polk and Connell-Temkin CRN's, we carried out ART 
calculations (see below) using modified Stillinger-Weber potentials, where the three-body 
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term is enhanced by a factor of 2 (i.e., A = 42 compared with 21 in Ref. [10]; the standard 
SW parameters cannot lead to a 4-fold CRN [6]). Since all 216 atoms are equivalent in 
this model, the resulting structure corresponds to the Polk model and does possess odd- 
membered rings; the model will be referred to as CRN-P. To eliminate (or at least minimise) 
the number of odd-membered rings, and thus obtain a CT-type CRN (hereafter referred to 
as CRN-CT), the atoms are labeled either A or B, and the model relaxed subject to an 
additional short-range repulsion between like-atoms (keeping full symmetry between A and 
B): 

^rep —    /  j  sxij£ 
<ij> 

1 + COS ( TT-^r (1) 

where the sum is over all pairs of atoms, e is the Stillinger-Weber energy scaling factor, 
S{j = 3.6 A, and Aij = 1.2 for like particles and zero otherwise. 

The optimisation of the two CRN's was performed using ART, a Monte Carlo procedure 
which forces the system to "jump" from one local minimum to another via a saddle point. 
ART reduces the configurational energy landscape to a discrete (but infinite) network of lo- 
cal minima connected by paths going through first-order saddle-points. Since the algorithm 
is local in the configurational energy landscape, ART proceeds through a random-walk on 
this network. New moves are accepted modulo a Boltzmann factor whose fictitious temper- 
ature follows a simulated-annealing procedure. Although local in the configurational energy 
landscape, ART is non-local in real space, leaving full freedom for the type of excitation 
and atomic moves involved in the passage from one minimum to another. Thus, collective 
relaxation mechanisms can take place without restriction, enhancing the efficiency of the 
algorithm. Full details of ART can be found in Refs. [6, 7]. 

In both cases, the initial configuration consisted of 216 atoms placed at random in a 
cubic box of appropriate density. ART was then invoked repeatedly until the configurational 
energy converged to a state from which it is difficult to escape for a fictitious temperature 
of 0.25 eV. In the case of CRN-P, the relaxation is purely topological, and a well-relaxed 
configuration can be obtained within a day or so on a SGI-R8000 workstation. For CRN-CT, 
chemical ordering requires longer-range atomic displacements and, in practice, runs took on 
the order of a week to converge. 

There are concerns, with such optimisation schemes, that final structures might be partly 
crystalline (rather than amorphous). The method was tested on a 64-atom unit cell and in 
all cases, crystallisation was found to occur. However, crystallisation was never observed on 
216-atom unit cells, which converged, based on visual inspection, to "smooth" amorphous 
structures. The reason for this difference in behaviour, which actually demonstrates the 
power and efficiency of the method, is that ART is local in configuration-energy space; 
for a small system, the probability of finding the global minimum (the crystalline state) is 
relatively large, and thus readily accessible on the timescale of the simulations. 

TIGHT-BINDING RELAXATION 

In order to sit the above empirical models on physically more robust grounds, further 
relaxation was carried out using MD with tight-binding interatomic potentials, more specifi- 
cally the Goodwin-Skinner-Pettifor (GSP) model for Si [8], and the Molteni-Colombo-Miglio 
(MCM) model for GaAs [9]. TB models are to some extent empirical (weighting of the 
matrix element as a function of distance, form of the repulsive interactions, cutoff radii, 
etc.), and thus have their limitations, but are nevertheless essential in the present context: 
First, there exists, to our knowledge, no empirical potential that can provide a reliable de- 
scription of a-GaAs (we could not obtain satisfactory structures using the Tersoff potential 
[11]). Second, first-principles simulations are hardly feasible on such large systems as those 
considered here, on the timescale needed to achieve full relaxation.  The TB method is an 
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Network Si GaAs GaAs (SL) 
CRN-P -13.172 -13.450 
CRN-CT -13.163 -13.561       -13.450 
Crystal -13.389 -13.802       -13.802 

Table I: Energy (eV/atom) of the two networks relaxed with TB potentials at 0 K. 
For GaAs, we also give the results from the TB-MD simulations of Seong and Lewis 
(SL), Ref. [12]. 

excellent compromise between these two extremes, as it offers the transferability needed to 
describe accurately the various atomic environments encountered in disordered materials, in 
particular subtle details of the nearest-and second-nearest neighbour distributions, while, at 
the same time, providing information on the atomic structure of the material. 

The models discussed in Section 2 assume the particles to be either all of the same type 
(CRN-P) or symmetric (CRN-CT). It is the purpose of the present article to assess the 
relevance of each model for fi-Si and o-GaAs. We therefore relaxed each of the two models 
with both the GSP-TB model for Si and the MCM-TB model for GaAs, so that we have, 
in total, four different models: CRN-P-Si, CRN-P-GaAs, CRN-CT-Si, and CRN-CT-GaAs. 
In the case of CRN-P-GaAs, prior to relaxing, the sites of the network were labeled in such 
a way as to minimise the number of wrong bonds, leaving about \A% of them, close to the 
theoretical limit of about 12% [3]. 

RESULTS 

Energetics 

The four models were first brought to their ground state through static relaxation at 
0 K. Surprisingly, it is found from Table I that models CRN-P-Si and CRN-CT-Si have 
essentially the same configurational energy, i.e., the elastic cost of eliminating odd-membcred 
rings is very small, if present at all. However, there are many more ways of constructing a 
Polk network than a constrained Connell-Temkin network, and this is why the latter does 
not come out "naturally" from computer models. Also, this result indicates that there is 
really no competition between elastic strain and chemical ordering and that both can be 
fully accommodated by a CT-CRN. Indeed, the chemically-ordered CRN-CT-GaAs model 
is favoured over the CRN-P-GaAs by about 0.11 eV/atom (cf. Table I). 

We have compared the energy of CRN-CT-GaAs with that of a 64-atom model obtained 
using the conventional melt-and-quench MD approach and the siraif set of TB parameters 
[12]. As can be seen in Table I, CRN-CT-GaAs lies a good 0.1 eV/atom in energy below the 
melt-and-quench model, indicating that the ART approach leads to a much better model 
than the usual MD thermal cycle; we will see more evidence for this below. In fact, for 
216-atom models such as those considered here, detailed TB-MD simulations would hardly 
be feasible on the timescale needed to reach full convergence. 

Following the static relaxation phase, the models were submitted to a dynamic annealing 
procedure in order to check for stability. We started with a 7.0 ps run at 300 K, followed by 
an 8.8 ps run at 800 K, after which the temperature was taken back at 300 K for another 
3.5 ps, then at 10 K for a final 0.9 ps. This thermal cycle reveals the inadequacy of the Polk 
model for describing a-GaAs: Strong deformations of the CRN-P-GaAs model were observed 
at 800 K and the final structure lies 0.06 eV/atom above the initial one at the end of the 
cycle. Clearly, the system is not stable with respect to CRN-P, and got trapped (owing to 
the finite simulation time) into a high-energy state on its way to the ground state, which 
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CRN-P CRN-CT 

Figure 1:  Ball-and-stick representation of models CRN-P and CRN-CT for GaAs; 
small white circles are As and larger grey circles are Ga atoms. 

we argue is the CRN-CT-GaAs model. The latter, indeed, remained essentially unchanged 
during the annealing procedure, indicating that the structure lies in a minimum significantly 
deeper than CRN-P-GaAs. In view of these results, the discussion that follows pertains, for 
each model, to the initial 7.0-ps relaxation run at 300 K. 

The two models for GaAs were analysed in detail in order to identify the effects of 
chemical (dis)ordering on the structural, electronic and dynamical properties and to assess 
them against available experimental data. Thus, in the remaining of this paper, we are 
concerned only with GaAs, and the models will be simply referred to as CRN-P and CRN- 
CT. A ball-and-stick representation of the two models is given in Fig. 1. 

Structural properties 

We compare in Table II the structural properties of models CRN-P and CRN-CT — 
both after the initial static (0 K) optimisation and after the 300 K relaxation run — with 
models obtained using either ab initio or TB MD. Since As and Ga atoms are treated in a 
symmetric manner during the ART optimisation, the local environments of the two types of 
atoms remains very similar even after the TB relaxation. This, in fact, is also observed in 
MD simulations of the material. 

Table II shows that both CRN-P and CRN-CT are close to ideal realisations of the CRN, 
i.e. almost perfectly fourfold coordinated and a very narrow bond-angle distribution. These 
quantities compare favourably to those from the quenched samples. Moreover, CRN-CT is 
found to possess less than 4% of wrong bonds at OK, and about 5% at 300 K, much less 
than the 14% of model CRN-P. Thus, CRN-CT probably constitutes the closest realisation 
of a CT-type CRN with periodic boundary conditions ever built. It should be noted that 
at 300 K, thermal agitation makes the identification of nearest-neighbours (and defects) 
difficult; we define them by using, as cutoff distance, the minimum between the first and 
second-neighbour peaks, indicated in Table II. 

Recently, an EXAFS (extended x-ray absorption fine structure) study of a-GaAs pro- 
duced by ion implantation was reported [15]. The average nearest-neighbour distance was 
found to be 2.451 ± 0.005 A, a bit larger than in the crystal (2.442 A), in agreement with 
density measurements [16]. This is a bit smaller than our own value of 2.51 A and proba- 
bly reflects some limitations of the model (incomplete relaxation, transferability of the TB 
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CRN-P CRN-CT SL MCM CP 
OK 300 K OK 300 K OK OK OK 

Z = 3 0.046 0.128 0.051 0.118 0.242 0.14 0.219 
Z = 4 0.954 0.845 0.944 0.830 0.598 0.66 0.781 
Z = 5 0 0.026 0.005 0.045 0.129 0.18 0 
Z = 6 0 0.001 0 0.004 0.024 0 
Z=l 0 0.000 0 0.002 0.007 0 
<z> 3.95 3.90 3.95 3.95 3.94 4.09 3.83 
rNN (Ä) 3.0 3.1 3.0 3.1 3.0 3.0 2.8 
»-i(A) 2.508 2.505 2.517 2.507 
An (Ä) 0.075 0.117 0.073 0.103 
Wrong bonds (%) 14.1 14.2 3.9 5.2 12.2 12.9 10.0 
AÖ (deg.) 11.0 14.1 10.8 15.0 17.0 17.0 

Table II: Structural characteristics of the two models for GaAs discussed in the text, 
at both 0 and 300 K: distribution of coordination numbers, Z (and nearest-neighbour 
cutoff distance, r^x), first nearest-neighbour distance, T] (and width, Ar]), density 
of wrong bonds, and width of the bond-angle distribution, A0. Also given are the 
corresponding numbers from other simulations, all at 0 K: SL — TB simulations of 
Ref. [12]; MCM — TB simulations of Ref. [13]; CP — Car-Parrinello simulations of 
Ref. [14]. 

model, etc.). For the average (total) coordination number, Ridgway et al. find 3.85 ±0.2. 
This is certainly consistent with our own value of 3.95. However, coordination numbers are 
notably difficult to extract from EXAFS measurements; it would be of interest that x-ray 
measurements be carried out on ion-implanted o-GaAs, as has been the case for a-Si [17]. 

We show in Fig. 2 the total and partial structure factors for both models. The partials are 
not available from experiment, but the total is. We find the CRN-CT model to be in slightly 
better agreement with the data than CRN-P, but the differences are small and probably not 
very meaningful. Further, the experimental samples suffer from inhomogeneities and more 
accurate data are probably needed for a meaningful comparison to be made [18]. Likewise, 
the partial structure factors differ in many ways, but no signature of the presence of wrong 
bonds can be found in CRN-P: there are no feature present in CRN-P that does not show 
up also in CRN-CT. 

While the partial static structure factors do not reveal qualitative differences between 
the two networks, the partial radial distribution functions (RDF's) do provide a direct way 
of probing the local environments and in particular measuring the density of wrong bonds. 
The partial pair correlation functions are however not available from experiment because of 
the similarity between As and Ga. This is quite unfortunate because the differences between 
the two topological models get almost completely washed out when averaging into the total 
RDF as can be seen from Fig. 3. 

The partial RDF's are also displayed in Fig. 3. It is clear that CRN-CT is chemically 
ordered (i.e., wrong bonds are rare): the Ga-As correlation exhibits a strong first-neighbour 
peak, but the second and fourth peaks are very weak. In contrast, the like-atom functions, 
Ga-Ga and As-As, have no nearest-neighbour peak, but exhibit strong second and fourth- 
neighbour peaks. Thus, chemical ordering filters out the shell structure of the material. 

The large split peak in the range 3.5-7 Ä in the Ga-As RDF contains information about 
the distribution of dihedral angles. From it we can infer that dihedral angles of 60 and 180 
degrees are present in significant numbers in both structures. This can actually be seen from 
a direct calculation of the distribution of dihedral angles, shown in Fig. 3 together with the 
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Figure 2: Left: Total static structure factors for CRN-P (dashed line) and CRN-CT 
(solid line); the dots are the experimental data of Udron et al., Ref. [18]. Right: 
Partial static structure factors for the two models, as indicated; the dotted, dashed, 
and solid lines are for the Ga-Ga, Ga-As, and As-As partial correlations. 

distribution of bond angles. The width of the bond-angle distribution, about 11 degrees at 
0 K, is somewhat smaller than that obtained in previous models (cf. Table II) agrees quite 
closely with experiment, and is comparable with that measured in fully-optimised Wooten- 
Winer-Weaire models for Si [19]. The distributions of bond and dihedral angles are thus 
almost the same in the two models. This disagrees somewhat with the results of Connell and 
Temkin, who's mechanical model was found to differ significantly from Polk's model in this 
regard and can probably be attributed to the presence of surfaces in the mechanical models. 

Electronic and vibrational properties 

Although chemical ordering can be said to be essentially structural, it should manifest 
itself also on the electronic and vibrational properties of the material. X-ray photoemission- 
spectroscopy (XPS) measurements on a-GaAs have been interpreted as indicating almost 
complete chemical order [20]. Though the present study confirms this conclusion, as discussed 
above, it also suggests that the density of electron states (EDOS) is not a good probe of 
the presence of wrong bonds: As can be seen in Fig. 4, the EDOS for the two models are 
almost completely identical. (The three valence bands can be ascribed roughly as follows: 
A is composed of As and Ga p states, B arises from Ga s and some As p states, and C 
corresponds to the As s states [21, 22]). Although the ionicity gap (at -9 eV) and the 
conductivity gap are slightly larger for CRN-CT than for CRN-P, the general features of 
the two EDOS are similar enough that they probably could not be distinguished by an XPS 
experiment. 

A similar situation is found with the vibrational properties. The vibrational density 
of states (VDOS) for both models CRN-P and CRN-CT, displayed in Fig. 4, give similar 
agreement with the VDOS extracted from Raman spectroscopic measurements [23]. The 
TA and TO peaks are roughly at their right position but the respective weights of the two 
peaks differ: experimentally, the weight of the TA peak is slightly smaller than that of the 
TO peak. This would indicate that the number of coordination defects in both CRN-P and 
CRN-CT still remains greater than that of the real material [24, 25].   Such conclusion is 
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Figure 3: Left: partial RDF's for the two models, as indieated; the dotted, dashed, 
and solid lines are for the Ga-Ga, Ga-As, and As-As partial correlations, respectively. 
The lower panel gives the total (unweighted) RDF for CRN-P (dashed line) and CRN- 
CT (solid line). Right: Distributions of (a) bond and (b) dihedral angles for CRN-P 
(dashed lines) and CRN-CT (full lines). 
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Figure 4: Left: Electronic densities of states for the two models, as indicated. The 
identification of the peaks is discussed in the text. Right: Partial and total vibra- 
tional densities of states for the two models, as indicated. Dashed lines are for Ga 
atoms, solid lines for As and dotted lines are the totals. The lower panel presents a 
comparison of CRN-P (dashed line) and CRN-CT (solid line) with the crystal (dotted 
line). 
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also supported by the fact that the TO peak calculated from a TB-MD/melt-and-quench 
simulation of a-GaAs, which contains a higher density of defects than our models (cf. Table 
II), is almost nonexistent. The coordination of o-GaAs must therefore be almost exactly 4, 
with only a very small density of defects. 

CONCLUSION 

Using the activation-relaxation technique of Barkema and Mousseau in conjunction with 
empirical potentials, we have constructed almost-perfect model structures for continuous 
random networks exhibiting a significantly different intermediate-range character. Because 
of the generic approach used here, the physical relevance of the models is not determined 
a priori but, rather, a posteriori through detailed relaxation under realistic tight-binding 
potentials. This, further, has enabled us to examine the energetics and stability of the 
networks. We have found, in this way, that a Polk-type model for GaAs is not stable even 
under a modest heat treatment, while a Connell-Temkin model can support annealing (on 
the MD timescale) without going through structural changes. Though we cannot claim to 
have found the ultimate structural model for a-GaAs, these observations, together with the 
fact that both models are energetically equivalent in the case of Si, strongly support our 
conclusions. 

This mixed-approach used here have allowed us to compare the properties of two different 
models for a-GaAs in the hope of finding a possible signature of the presence of wrong 
bonds. It is unfortunate that very few quantities are sensitive to the presence of wrong 
bonds, even at such levels as 5—15%. Electronic and vibrational densities of states are 
essentially undistinguishable for the two networks. It appears that only direct measurements 
of partial correlation functions by diffraction can provide the information needed to establish 
the density of wrong bonds in a-GaAs and, therefore, the nature of the intermediate-range 
topology of amorphous semiconductors. 

For many optimisation problems in materials science, a single approach is not practical. 
We have shown here that a combination of techniques and potentials can provide significant 
insights into some problems. In particular, it was possible to limit ourselves to relatively 
short TB-MD runs in order to establish the stability of our models and thus achieve a 
state of convergence which would be prohibitively expensive through direct TB or ab initio 
simulations. 
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ABSTRACT 

We present a simple and informationally efficient approach to electronic-structure-based simu- 
lations of large material science systems. The algorithm is based on a flexible embedding scheme, 
in which the parameters of a model potential are fitted at run time to some precise informa- 
tion relevant to localised portions of the system. Such information is computed separately on 
small subsystems by electronic-structure "black box" subprograms, e.g. based on tight-binding 
and/or ab initio models. The scheme allows to enforce electronic structure precision only when 
and where needed, and to minimise the computed information within a desired accuracy, which 
can be systematically controlled. Moreover, it is inherently linear scaling, and highly suitable 
for modern parallel platforms, including those based on non-uniform processing. The method is 
demonstrated by performing computations of tight-binding accuracy on solid state systems in the 
ten thousand atoms size scale. 

INTRODUCTION 

Modelling materials at the atomic level via Molecular Dynamics (MD) techniques is often a 
computationally intensive task. In spite of the ever-increasing availability of computer power, 
all known MD techniques are bound to be limited. The limits concern e.g., the size of the 
systems studied, the physical times simulated, and the precision of the force-models used. The 
exact balance of the simulation parameters depends on the nature of the specific application, 
and is often a compromise between the competing requirements of large enough simulated sizes, 
sufficient accuracy, and sufficient amount of accumulated statistics. Broadly speaking, the most 
accurate (e.g. first principles) simulations are limited to systems of a few hundred atoms and 
to simulation times in the picosecond range. Simulations using classical model potentials can 
currently deal with several million atoms (see e.g., ref. [1]) and with the nanosecond time range. 

Our discussion of the current status of MD techniques starts by looking at how the computed 
information is normally used to determine the simulated trajectories. It turns out that for a broad 
range of high-accuracy applications, once a concept of a non-uniform tolerable error is specified, 
it is possible to speed up the computations by a non-negligible factor. This can be achieved 
by saving on the amount of redundant computed information. Redundancies occur if the MD 
algorihm used is not flexible enough to evaluate new information only wherever and whenever 

this is really needed. 
An appealing scheme to introduce such flexibility can be developed from the concept of teach- 

ing on the flight to a classical model potential about all the "difficult" situations occurring any- 
where in the system during the simulation run. The "difficult" situations correspond in practice 
to those local atomic arrangements for which the model alone is not a priori sufficiently accurate. 
For them, a more precise (and "costly") technique is used to develop support information. In 
this way, all the necessary information is fed into the calculation, while computer intensive tasks 
are performed only where and when this is really needed. 
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A central feature of the scheme is that these computer intensive tasks need not to identify 
with calculations on the entire (and, may be, very large) original system, or on exact subsets of 
it. Rather, they are calculations on small systems whose only requirement is to be relevant to the 
dynamical history of the original system, but which can otherwise be designed for computational 
convenience. A possible procedure will be briefly discussed in the next sections, describing how 
these features are included into a practical MD implementation. A detailed account of the method 
will appear separately.[2] Here we only note that, from an abstract point of view, lowering the 
amount of computed information to the minimum compatible with the required precision is the 
only way to achieve a given description of a physical system (the atomic trajectories in MD) in a 
shorter time at fixed computing power. 

HANDLING OF ACCURACY IN MD SCHEMES 

Most MD techniques adopt by construction a uniform accuracy in space and time: the same 
force routines are called at every time step, throughout the whole system1. A known way to 
improve on this situation consist of eliminating from the calculation some frequency-decoupled 
degrees of freedom, which can be neglected as irrelevant to the physical problem under study. 
This is usually done by using constraints, as e.g. in those classical simulations on water where the 
geometry of the molecule is kept fixed. If a subset of the forces in the system is much larger than 
the rest -but constraining the "fast" variables is a too crude an approximation- some multiple 
time scale methods exist which integrate separately, with different time steps, the slow and fast 
degrees of freedom. This may be done e.g. by exploiting an appropriately chosen analytically 
solvable reference system for the high frequency motion (cfr. ref. [3] and references therein). 

A different class of MD applications are those in which the focus is on some specific part 
of the system, usually the "central" one, whose surrounding regions are of less importance, and 
typically are represented only to provide the correct (chemical, dielectric, elastic) termination. 
The atoms in the central region are moved according to forces calculated with some high precision 
scheme (e.g. an ab initio scheme) while the surrounding region is described by an appropriate, less 
sophisticated model. In this class of schemes (known as "embedding" schemes) the computations 
at different levels of accuracy are, in other words, performed directly on appropriate subportions 
of the system studied. The success of a particular embedding strategy is achieved by making an 
appropriate choice of the model for the outer region and by overcoming the difficulties of matching 
different schemes on the interface region.2 

There is, however, no immediate reason why achieving a high level of accuracy on a portion 
of a physical system should imply matching problems. Suppose for example that a force model 
capable of "learning" from a high-quality ("exact") source of information (say, a "black box 
ab initio engine") were fed data concerning preeminently a particular portion of the system. 
Taking those data into account, the model would then produce a time evolution which would be 
particularly precise in that specific portion of the system where precision is sought for (but not 
necessarily elsewhere). The needed "importance sampling" of precision would be automatically 
achieved. The difficulties of matching different models on border regions would be removed as 
long as the "learning" procedure were sufficiently smooth in merging apprehended information 
with previous knowledge. 

:In the special case of first principles simulations based on the momentum-space formalism, the uniform accuracy 
in representing the electronic degrees of freedom is extended to the whole simulation box. regardless if the system 
only occupies a part of it 

2A very interesting approach is the recently introduced Quasicontinuum Method, aimed at the study of multiple- 
scale phenomena in crystalline solids. The method offers a way to merge the atomistic description with a finite 
element formalism, thus allowing for the high level of accuracy of the Newtonian dynamics in chosen "refined" 
regions[4]. The transfer of heat and linear momentum from fully refined regions to the far-field regions can be per- 
formed by e.g. constrained dynamics[5], while the merging can be analytically described by appropriate hamiltonian 
elastic formalisms[6]. 
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Moreover, highly expensive information could be fed into the model in larger proportion 
during the specifically interesting steps of the simulated process, and much less before or after. 
This would be a straightforward way to perform importance sampling of computed information 
throughout the time variable. We can refer to this as "time embedding", as opposed to the "space 
embedding" considered above.3 From what seen to this point, the use of a force model capable of 
learning may allow to compute "exact" information only if necessary: only if the model cannot 
guarantee high precision when and where such precision is really needed by the scope of the 

calculation. 

CLASSICAL MODELS, PRECISION, AND "ON FLIGHT" TEACHING 

For the purpose of this section we can define as our "exact" scheme any arbitrary computa- 
tional scheme which takes explicitly into account the electronic degrees of freedom of the system. 
(The scheme may be based, e.g. on a tight-binding or on a first principles single particle formula- 
tion.) Computing the inter-atomic forces with a technique of this kind is inherently much slower 
than using a classical model, where the forces are obtained analytically from a parametrised 

potential form Fp({Ri}, {a\}). 
A classical potential able to reproduce reliably the "exact" forces for any given atomic con- 

figuration of the system would clearly be an ideal MD tool. Indeed, classical potentials are often 
constructed so to reproduce "exact" computed data (and/or experimental data). However, a vast 
body of experience shows that not all materials are easy to model with classical potentials and 
that for a given material a normally well-behaved potential may well fail miserably in particular 
circumstances (indicating a problem of transferability). This is most likely to happen when the 
system visits a configuration very different from those contained in the model fitting data base, 
or when the analytic form of the potential simply cannot capture (for any fixed choice of the 
potential parameters) the essence of the physical processes taking place. Transition states, bond 
breaking, and hybridisation changes in covalent materials, localisation and delocalisation of elec- 
trons in 7r-bonded structures are typical "difficult" situations in which classical potentials may 

be expected to fail. 
Obtaining reliable inter-atomic forces with a given parametrised potential form and an appro- 

priately fixed set of parameters can thus be a difficult task. The main problem is that although 
most potentials are known to be very good in some region of the system's phase space, the exten- 
sion of this region of validity is never perfectly well known[7], and very hard to control. This is a 
crucial issue when fitting model potentials: if the applications require that the validity region be 
considerably wide, this poses extreme demands on the potential form. A safe procedure during a 
MD run would be to check the model versus the exact forces each time the system passes through 
a critical point of the simulated process, i.e. one in which the potential may a priori fail. The 
whole MD trajectory would have to be rejected if any of such tests failed 4. 

This kind of "on flight" testing is very rarely done, and for large system sizes it would be, any- 
way, unfeasible. Even when feasible, testing with the exact model would be likely to take (much) 
more time than the classical MD run itself. Still, the procedure suggests a further development 
in which, instead of rejecting the trajectories, the exact forces evaluated are introduced as new 
knowledge into the classical potential. To do this, it is necessary to release the constraint of a 
fixed set of parameters {Ql} in the model potential Tp({Ri}, {a,})- Indeed, the parameters can 
be made to vary along the trajectory, and become a function of time {a-,(t)}. This can be done 
e.g. by a fitting procedure in parameter space at different times. The optimal set of parametric 

3We have assumed here that the potential model can learn and correctly reproduce information which is "local" 
in space and/or in time. This is not too difficult to achieve e.g., by using time dependent "local" parameters in 
the model, as explained in the next sections. 

4A more complete analysis of these problems, here only summarised in the text, can be found in ref.[7] 
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functions {«[(i)} is in this case that which best reproduces the exact forces at all times along the 
atomic trajectory Ri(t). 

The scheme can be summarised as follows: (i) during a classical simulation using the potential 
Vp({Ri},{a;}), "difficult" subsystems are identified in the whole system studied (the "difficult" 
event could be e.g., a chemical bond breaking at some time to; the subsystem would then contain 
the atoms located in a region immediately surrounding the bond-breaking site); (ii) a new small 
system is constructed for each of these subsystems, incorporating the subsystem's relevant features 
but otherwise designed to be treated efficiently by an exact computation. This small system may 
be constructed in various ways (it could be a cluster centred on the breaking bond and composed 
of its nearest neighbouring atoms taken at the positions they occupy at time to. The cluster could 
be chemically terminated, or a few more atoms could be added to it, to give a small periodic 
system5). An exact computation is at this point performed on each small system.6 (iii) The exact 
results are "taught" to the model. (Using a short-range potential form, this will mostly influence 
the values of those parameter functions {a;(()} which are relevant to the region surrounding the 
breaking bond, for t ~ to). The model should now be able to tackle successfully the difficult 
configurations encountered in the original MD simulation. 

In this scheme the exact computations can be expected to take most of the computer time. 
Although some overhead is implicit in point (ii) above (e.g. if an exact calculation on a full cluster 
is performed to help representing the breaking of a bond between two atoms), the flexibility and, 
as discussed, the informational efficiency of the method should more than compensate for this in 
several situations of interest. Moreover, accuracy can be tested and tuned in any circumstance 
(e.g., by increasing the cluster sizes), and exact models are trivially easy to include, substitute, 
or combine as desired in a given application. Also, the computations required by the scheme scale 
linearly with the size of the system studied. Finally, we note that even a simple parametrised 
potential form can be expected to provide accurate forces if the parameters are adjusted "on the 
flight" for the scope. With the enhanced "representation" power due to parameter varying, a 
straightforward potential expansion up to the three-body term can e.g. represent successfully 
the forces of a system as complicated as a covalent liquid (see next section). As noticed above, 
keeping the parameters fixed may simply never guarantee very high accuracy for such a system, 
even using fairly complicated analytical form. It is only in some cases that an enormous range 
of configuration space can be well described by a simple model with fixed parameters, as in the 
case of the 'glue' model potentials for metallic systems[9], where inter-atomic potentials of very 
good quality can be constructed by e.g. force-matching procedures on very large data bases of 
first-principles data[10]. 

A SIMPLE APPLICATION 

The frequency with which exact computations have to be performed depends on the initial 
quality of the model potential and on the history of the studied system. However, once the 
model has been chosen and a tolerable error has been mathematically specified, it is only a 
matter of computing enough 'exact' information, and transmitting it efficiently to the model. As 
an example, we report here some result on liquid Si obtained by a practical implementation of 

This second option may be convenient to optimise size-convergence, and especially so if the exact technique 
adopted works optimally in periodic boundary conditions, as is the case for standard plane-wave first principles 
implementations. 

6Here we make the crucial assumption that an exact quantum mechanical calculation on a small system can 
be relevant to the local properties of the original extended system. There may be difficulties with this (e.g., if 
the original system is a metal at T=0, even if the "small" system is periodic), but the problem can be handled 
e.g., by using finite electronic temperature schemes. A discussion of a "nearsightedness" principle underlying these 
considerations can be found in reference[8]. 

476 



the approach so far described. A full account of these results and a detailed description of the 
implementation will be included in a more systematic technical report[2]. 

Liquid Si is a prototypical case in which the results of a method based on the explicit descrip- 
tion of the electronic wave functions are difficult to reproduce with classical potentials. We choose 
as our 'exact' model the tight-binding model of ref.[ll] and as classical model the Stillinger-Weber 
(SW) potential (containing two- and three-body terms) with initial parameters as in ref.[12]. Since 
the system has a uniform behaviour in both space and time, so that no "embedding" strategy 
can be exploited to save on computations, we choose here to perform an 'exact' computation on 
each atom in the system every Ns ~ 10 dynamical steps. This is done by computing the force 
on the atom when surrounded by a cluster of its neighbours "carved" out of the original system 
and chemically terminated with H atoms (the Si-H tight binding model was taken from ref.[13]). 
A force matching fit of the SW parameters is then performed to determine the parameters {a?} 
for which the model forces Fjn = -dVp({Ri},{ain})/dKj match the forces computed exactly 
by the cluster calculation at time step n. 7 Note that the latter constitute only incomplete infor- 
mation about the true forces in the original system. For example, the "exact" forces computed 
using clusters will not in general add up to exactly zero, while the fitted ones Fjn will (for an 
isolated system). The model potential is used at this point to generate Ns more MD steps before 
a new fit is performed (a time step of 10 a.u., and a Nose thermostat were used to simulate liquid 
Si at 2000K). 

Notice that to each set of parameters in the sequence {a?}, j = n,n + Ns,... corresponds 
a domain of high accuracy in the space of atomic coordinates. We can think this domain as 
centred on the configuration space point {Ri(t,)} for which the set was fitted, and to include 
atomic configurations {Rj.'(i,-)} =* {Ri(tj)} which are close but slightly off those of the fit. 
This can be exploited to improve the atomic trajectories by simply repeating the N3 MD steps 
preceding the latest fit (note that classical MD steps are computationally inexpensive). This 
time, the parametric function values {ai{tj)} which determine the repeated steps via the inter- 
atomic potential are generated by interpolation of fitted values. This gives enhanced accuracy 
and slightly corrected trajectories without introducing the need of additional fits. Using these 
recipes, preliminary tests indicate that an average relative error of ~ 10% or less is made on 
atomic force components larger than ~0.5 eV/A in liquid Si, if H-terminated clusters of about 
one hundred atoms or larger are used. 

Figure 1 shows the pair distribution function g(r) computed for a 216-atom system of liquid Si 
at bulk density at a temperature of 2000K (solid line). The dotted line corresponds to the results 
obtained with the exact model dynamics, i.e. by diagonalising the tight binding hamiltonian 
of the full system at each time step. The residual differences of the two curves are due to the 
errors introduced by the cluster scheme and time interpolation procedure. The dot-dashed curve 
corresponds to the g(r) one would obtain by the SW potential alone, without fitting it to the 
tight binding model. Test on dynamical properties such as the velocity autocorrelation function 
show an agreement similar to the one in the figure. 

rThe a; parameters of the two-body and three-body terms are allowed to differ for different couples and triplets 
of atoms in the system, so that the individual parameters acquire a "local" meaning in the short ranged SW form. 
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Figure 1.    Pair correlation function in liquid Si (see text). 

The MD approach presented in this work is aimed at the study of processes in which multiple 
scales may be involved, so that it may be necessary to perform computations on large systems. 
To investigate the feasibility of these computations, we coded a parallel implementation of the 
algorithm described above. We tested the code by performing calculations reproducing the tight- 
binding 'exact' results with the same accuracy as above on systems up to about 20000 atoms. A 
typical simulation geometry is illustrated in figure 2, showing a 11200-atom system of crystalline 
bulk Si in a tetragonal cell of about 220 nm3 volume.8 The figure also shows the plot of the 
system's temperature vs. time for a time span of about 0.4 ps after thermalisation at 500K. 

The parallel coding of the algorithm proved particularly simple. Efficient linear scaling algo- 
rithms for implementing classical MD are readily available in textbooks (for the system sizes of 
interest here, setting up a classical MD application docs not require extreme sophistication on 
the currently available machines). Virtually all the computer time is spent in exact computations 

For production runs on such a geometry we typically use eight SGI 195MHz RS10000 processors. 
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even using as "exact" model the relatively simple tight-binding model. 
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Figure 2.    The 11200 atom test system, and temperature vs. time plot. 

The exact computations are logically decoupled, and their individual core memory require- 
ments do not add up to determine a total workload.9 The data which need to be stored in mem- 
ory, like the atomic positions and the fit parameters, are used for CPU inexpensive operations, 
while the CPU-intensive and memory intensive information, related to the electronic degrees of 
freedom, is developed as processor-private data, and never broadcasted. Thus the algorithm is, 
in practice, "embarrassingly parallel" for its almost negligible requirements of communication 
bandwidth, and very moderately requiring in terms of memory. This makes it suitable for pro- 
duction on massively parallel computing platforms with high row power and comparatively low 
communication performance, and on smaller parallel platforms equipped with a (even only mod- 
erately performing) shared memory option.  Finally, dynamical load balancing can be achieved 

9 An O(N) memory complexity may be introduced by developments of the algorithm requiring Fermi energy 
alignment between different exact quantum mechanical computations. See the discussion in ref.[14] in the context 
of a well established O(N) method whose "divide and conquer" spirit has some point of contact with the method 
presented here. 
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by unevenly distributing across processors the "exact" computations, which makes the scheme 
efficient on platforms based on non-uniform processing (heterogeneous clusters of workstations, 
or departmental parallel machines whose processors work in time sharing). 

t Also at DIMCA, via A. Valerio 2, 1-34127, Trieste. 
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ABSTRACT 

Atomistic modelling of Materials Science problems often requires the simulation of sys- 
tems with an irreducibly-large unit cell, such as amorphous materials, fullerites, or systems 
containing extended defects, such as dislocations, cracks or grain boundaries. Large-scale 
simulations with the Tight-Binding approach must face the computational obstacle rep- 
resented by the 0(iV3)-scaling of the diagonalization of the Hamiltonian matrix. This 
bottleneck can be overcome by parallel computing techniques and/or the introduction of 
faster, 0(iV)-scalmg algorithms. We report the activities performed in the frame of a 
collaboration among several research groups on the porting of TBMD codes on parallel 
computers. In particular, we describe the porting of a 0(iV3) TBMD code on different 
MIMD computers, with either distributed or shared memory, by using appropriate soft- 
ware tools. Furthermore, preliminary results obtained in the porting of an O(N) TBMD 
code on an experimental, hybrid MIMD-SIMD computer architecture are reported. The 
new perspective of using specialized platforms to deal with large-scale TBMD simulation 
is discussed. 

INTRODUCTION 

The Tight-Binding Molecular-Dynamics (TBMD) approach is becoming widespread in 
the atomistic simulation community. The success of TBMD stands on a good balance 
between the accuracy of the physical representation of the atomic interactions and the 
resulting computational cost. TBMD implements an empirical parametrization of the 
bonding interactions based on the expansion of the electronic wave functions on a very 
simple basis set. Thus, contrarily to classical Molecular Dynamics (MD) [1], TBMD allows 
to evaluate both ionic and electronic properties. 

Although being much simpler than so-called ab-initio approaches [2], the computational 
complexity of TBMD algorithms is still considerable. The main limitation arises from the 
0(N3) scaling of the diagonalization of the Hamiltonian ma.trix at each time step. As a 
consequence, the practical size of the simulated systems cannot exceed the limit of 3-400 
atoms on a workstation. While such a figure already allows the study of a number of 
relevant problems in semiconductor physics, it still leaves a large gap towards the true 
domain of Materials Science simulations, e.g. grain boundaries, dislocations, interfaces, 
nanostructures and so on. 

This computational bottleneck can be overcome by either (a) the introduction of more 
efficient algorithms, having a more convenient 0(7V2) or O(N) scaling, or (b) the use 
of parallel platforms to perform the diagonalization procedure. In this way, the study of 
systems in the range of about 103 atoms could become accessible. Furthermore, coupling of 
efficient O(N) algorithms with parallelization techniques would allow to reach even larger 
size limits, in the range of 104 atoms. 
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In this paper wc report two examples of porting of 0[N3) [3] and O(A') [4] TBMD 
codes on parallel computers with very different architectures. In particular, the 0(A'3) 
code was ported on two MIMD (Multiple Instruction Multiple Data) parallel computers 
using in each case different languages and mathematical libraries. The O(A') code, in turn, 
was ported on a hybrid MIMD-SIMD (Single Instruction Multiple Data) parallel platform 
with the aim of assessing the usability of this new kind of high-performance computer 
architecture in large-scale simulations. 

The paper will be divided into two parts: in the first one, the 0(Ar3) and the 0(N) 
TBMD codes will be analyzed from an algorithmic point of view, enlightening the main 
issues involved in the parallelization. In the second part, the implementation of the two 
codes on the different architectures will be discussed. 

0(N3) AND O(N) TBMD: FROM THE SERIAL TO THE PARALLEL CODE 

The main difficulties in the parallelization of such codes are: (1) the system cannot be 
mapped on a regular grid (atoms can move inside the simulation box); (2) in the case of the 
0(N3) code a diagonalization of a large sparse matrix is involved (parallel math libraries 
for sparse matrix diagonalization are not yet available); (3) in the case of the 0(Ar) code 
on the particular SIMD computers which has been considered, problems arise from the 
lack of local integer addressing on the processing nodes. 

OfN3) TBMD code 

In a way completely similar to a classical MD code, the 0(N3) TBMD code can study 
atomistic systems in different thermodynamic ensembles when coupled to the Parrinello- 
Rahman-Nose (PRN) boundary conditions [5]. 

In the adiabatic approximation the Hamiltonian of a system of atoms and electrons in 
a solid can be written as [3] 

U tot = T,■ + Tc + Uce + U„• + Uu (1) 

where T,,e is the kinetic energy of ions and electrons, (/„, Uei, U„ are the electron-electron, 
electron-ion and ion-ion interactions, respectively. 

Referring to the theory of one electron moving in the presence of the average field due to 
the other valence electrons and ions, the reduced one-electron Hamiltonian can be written 
h = T + UCc + Uei, giving the eigenvalues (energy levels) e„ and the eigenfunctions |*n >. In 
a TB scheme, the eigenfunctions are represented as a linear combination of atomic orbitals 
\<t>ln  > 

l*n>=£CrJ<^.> (2) 
la 

where / is the quantum number index and a labels the ions. The expansion coefficients c"v 

represent the occupancy of the l-th orbital located at the Q-th site. 
In the present TB approach, the elements of the h matrix, < <t>rp\h\4>i„ >, and their 

dependence on the distance rap between the two ions a and ß are fitted from first-principles 
results [6]. As a further approximation, a minimal basis set is usually adopted: four basis 
functions (s, px, py, p2) per atom are known to be sufficient for a satisfactory description 
of the valence bands in the case of elemental semiconductors. In order to obtain the single- 
particle energies e„ and the eigenvectors cfa it is necessary to solve the secular problem at 
each MD time-step. This implies repeated diagonalization of the matrix ft, which introduces 
the 0(N3) scaling of this TBMD formulation. The rank of the matrix is determined by 
N = M * nb where Af is the number of atoms in the simulated systems and nb is the 
dimension of the basis set (nb = 4 in the case of covalent semiconductors). Because of 
current hardware and software limitations, the maximum rank of the matrix that can be 
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diagonalized on a workstation, provided with a large RAM, is of about N = 2000, thus 
implying a maximum system size of about 500 atoms. 

Once the eigenvalues and eigenvectors are known the attrattive potential energy can 
be computed and summed to the repulsive part derived from a many-body approach [7]. 

The main difficulties in the parallelization of such codes are: (1) the system cannot 
be mapped on a regular grid (atoms can move inside the simulation box); (2) in the case 
of the 0(N3) code a diagonalization of a large sparse matrix is involved (parallel math 
libraries for sparse matrix diagonalization are not yet available). 

Of AO TBMD code 

The O(N) scheme which will refer to is that developed by Colombo and Goedeker 
[4]. The main point of this approach consists in expressing the band-structure energy as 
Ets = Tr[ffF] where F is the Fermi matrix FßiT F^T = f[{H - n)/kT] and / is Fermi- 
Dirac distribution. Given that the trace operation scales linearly, the main burden of this 
TBMD implementation lies on the calculation of the Fermi matrix. The Fermi matrix can 
be approximated by a sum up to order npi of Chebyshev polynomials f,- with h as the 
argument 

c       ""' 
^..T^f+ EcA-W (3) 

where c,- are the coefficients of the expansion in Chebyshev polynomials of the erfc function 
that well approximates the Fermi-Dirac distribution shape. 

In order to evaluate each column of the Fermi matrix, npi matrix-vector products be- 
tween h and \<j>ia > are required. It is important to note that the columns of the Fermi 
matrix are fully independent on each other and can thus be computed in parallel. 

At this stage the TBMD code has scaling 0(N2) because the computational complex- 
ity is proportional to (n(,A/-)2npin0//, where nol! is the number of non-zero off-diagonal 
elements of the Fermi matrix. 

The linear scaling is a consequence of the observation that, in strongly covalent materi- 
als, the atomic orbitals are spatially localized with fast exponential decay as a function of 
the interatomic distance raß. Then, the matrix is also sparse with only m\oc non-zero off- 
diagonal elements, where m\oc is the number of atoms inside the localization region. When 
this physical cut-off is introduced, the computational complexity to calculate the Fermi 
matrix becomes proportional to nbmi0Cnpin0fjAf, hence the O(N) scaling of this TBMD 
formulation. 

Once the Fermi matrix has been obtained, the band-structure energy is calculated as 

Ei. = Tv[HF] = £ < H4>la\F\^la >= £ < H<ha\f,a > (4) 
la la 

This calculation can be performed independently for each atom a. Hellman-Feynman 
forces can be easily obtained from this expression. The repulsive potential contribution is 
calculated in the same way as in the 0(N3) TBMD formulation. 

PARALLEL COMPUTERS 

In the following we will review the most important classes of high performance parallel 
computers [8], namely MIMD (Multiple Instructions Multiple Data), SIMD (Single Instruc- 
tions Multiple Data) and a new hybrid MIMD-SIMD architecture which has been realized 
in the frame of a collaboration between ENEA [9] and QSW (Quadrics Supercomputers 
World) [10]. 
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Parallel computers with MIMD architecture 

A MIMD computer consists of a network of processors that arc loosely synchronized 
and can work, at the same time, on different chunks of a code. MIMD computers can be 
further divided into distributed memory (DM) and shared memory (SM) architectures 

In DM-MIMD computers the processors, each having its local RAM, are connected via 
a fast network or a switchboard. In SM-MIMD computers (also called Symmetric Multi- 
Processors, SMP), in turn, the processors are grouped into clusters and share a unique 
very large bank of RAM, typically several GBytes. DM-MIMD computers require explicit 
message (MP) passing libraries (such as MPI [11] and TCGMSG [12]) to perform the allo- 
cation and exchange of data between different processors; such operations are not necessary 
on SM-MIMD computers because the memory is in common among the processors 

Differently from DM-MIMD platforms, where the computational load distribution re- 
quires the explicit distribution by the programmer of the data and tasks among the proces- 
sors, in the SM-MIMD platforms, due to the availability of a shared memory, the compiler 
is capable of automatic parallelization. The strategy adopted by the compiler consists in 
dividing the tasks in threads, each thread being automatically sent to a different processor 
which "concurs" on the same memory board. 

The SM architecture can be emulated on a DM computer by using specific software 
such as the High Performance Fortran (HPF) [13] and the Global Array (GA) library [16] 

HPF is essentially a Fortran 90 with parallelization directives oriented to ease data 
distribution among the different processors. Several versions of HPF are available, either 
public domain or proprietary. All of them are related to the standard developed 'bv the 
International Forum for HPF (HPFF) [13]. 

/D-T1,16 Gi1°bal xArray (GA) to°lkit' devel°Ped at the Pacific Northwest National Laboratory 
(Richland, WA) provides a machine-independent, portable "shared-memory" programming 
interface for distributed memory computers. Each process in a MIMD environment can 
asynchronously access logical blocks of physically distributed arrays without need for ex- 
plicit cooperation by other processes. 

Parallel mathematical libraries are usually available on MIMD platforms. They can 
be called either in a code using explicit message passing or in codes written with a HPF 
or GA. Such libraries are available on the market (NAG [141, IBM PRSSL [15]) or miblir 
domain (ScaLAPACK, PEIGS). 

Parallel computers with SIMP architecture 

In a SIMD computer the processors arc arranged in a tightly synchronized network and 
must perform, at the same time, the same instruction on different values of the variables 
Because the processors of these machines operate in lock-step, i.e., each processor executes 
the same instruction at the same time (but on different data items), no external synchro- 
nization among processors is required. This greatly simplifies the design of such systems 
A control processor issues the instructions that must be executed by the floating-point pro- 
cessors in the processor array. All the currently available SIMD machines use a front-end 
processor to which they are connected by a data-path to the control processor. 

A good example of this class of computers is the Quadrics/APEIOO [9. 10], which 
is currently used in a wide variety of computational fields and is produced by Quadrics 
Supercomputers World (QSW) [10]. The floating-point processors are arranged on a three- 
dimensional mesh with periodic boundary conditions, and are synchronized by a control 
processor. Quadrics can be programmed by an easy-to-use proprietary parallel program- 
ming language, called TAO: a Fortran-like language with instructions for data communi- 
cation among the nearest-neighbour processors. This platform stands out for easy pro- 
gramming, good scalability and peak computational power (100 GFlops in the maximum 
configuration). 
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The next generation, called APEmille, will be available in the middle of 1998 [10]. The 
APEmille is based on the Quadrics architecture of which improves some key features (the 
local integer addressing will be available). The processing nodes are also much improved, 
being capable of peak powers of 528 MFlops (66 MHz) or 800 MFlops (100 MHz). The 
latter will be the building block for the maximum configuration, constitued by 32x8x8 
nodes resulting in a peak computational power of 1.6 TeraFlops.. 

Parallel computers with MIMD-SIMD architecture 

In view of extending the capabilities of the TBMD approach to very large scale systems, 
one should be able to fully exploit the benefits of both MIMD and SIMD architectures. 

MIMD computers stand out for the flexibility of use. Indeed, they have been used 
in many different applications with a good computational efficiency and a relatively small 
programming effort. Both message-passing libraries and high-level programming languages 
can be used as simple extension of the standard Fortran and C tools. However, the perfor- 
mances that can be obtained on DM-MIMD computers, on one hand, are limited by the 
typically complex arrangement of interprocessor communications. Today experience tells 
that the saturation limit, where a cross-over occurs between the communication overhead 
and the actual computation time, is reached, depending on the particular application, well 
below machine sizes of the order of 100 processors. Given the typical computing power 
of RISC processors, in the range of ~500 MFlops, the practical peak performances on 
MIMD computers cannot be expected to exceed a few tens of GFlops. On the other hand, 
SM-MIMD computers, which in principle do not require explicit interprocessor communi- 
cations, are limited by technological constraints to relatively small machine sizes, typically 
up to 64 processors. 

Compared to MIMD computers, the SIMD can easily be scaled up to extremely high 
computational power. For example, the Quadrics is already capable of peak powers of 100 
GFlops based only on a relatively old-fashion design of the individual processors. The next 
generation APEmille will be capable of breaking the TeraFlop barrier still with relatively 
low-price processors. However, SIMD computers usually find their limits in a comparatively 
more rigid programming scheme, imposed by the synchronized operation of the processors. 

In order to get the best of both worlds, a prototype MIMD-SIMD platform has been 
recently assembled in the ENEA Casaccia Computing Center. The MIMD part of this 
computer consists of a Meiko-CS2 with eight SUN SPARC nodes and a fast fat-tree inter- 
connection network. The SIMD part is represented by 8 Quadris/APEIOO towers with 128 
to 512 processors each, linked to the MIMD part via fast HIPPI channels (20 MBytes/sec) 
in such a way to connect each MIMD node to a SIMD partition. This hybrid MIMD-SIMD 
computer should reach a theoretical peak power of about 75 GFlops. The software em- 
ployed is the same used on the respective computers plus communication libraries which 
allow to dynamically interconnect the different portions of the machine, by using Fortran- 
like I/O calls. 

This experimental, hybrid architecture is furthermore ready for the future developments 
of the individual hardware components: in 1998 we expect to replace the CS2 processors 
with a QSW Meiko New Machine (called QM1), and the Quadrics/APE100 with APEmille 
processors; a parallel coordination language is also under development (SKIE) that will 
allow the compiler to decide the optimal distribution of data and tasks on the MlMD and 
SIMD parts. 

PRACTICAL EXPERIENCES OF PORTING OF TBMD CODES 

The operation of matrix diagonalization in the 0(N3) TBMD code requires each pro- 
cessor to know all the elements of the matrix at once. For this reason, a purely DM-MIMD 
computer is of little help in diagonalization, because the matrix elements are scattered 
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among the local RAM of each processor and a purely message-passing parallelization would 
have an exceedingly low efficiency. Then, a solution must be sought in either a true SM- 
MIMD computer or in a DM-MIMD with SM emulation (i.e., using HPF or GA toolkits). 

The 0(A) TBMD code, in turn, is relatively easy to parallelize on a DM-MIMD com- 
puter. However, in order to demonstrate the capability of attaining the limit of very-large- 
scale TBMD simulations we will rather present preliminary results of the porting of this 
code on the high-performance experimental MIMD-SIMD hybrid computer. 

Exp. 1: 0(A3) TBMD on the IBM SP2 with HPF 

Using the HPF parallel language, the programmer can port his own serial code on a 
parallel MIMD computer by simply introducing suitable directives for the distribution on 
the different nodes of the data and the tasks which require the largest computational effort. 
Thus, the routines parallelized are: calculations of distances among the atoms, construction 
of the TB matrix, diagonalization of the TB matrix, calculation of the attractive part of 
the force and calculation of the repulsive part of the force. 

In particular, the calculation of the eigenvectors and eigenvalues of the TB matrix is 
performed in parallel using the routine SYEV of the IBM PESSL mathematical library. To 
optimize the use of the math routine and because the TB matrix is generally greater (A' * 
A*8 Bytes) than the processor RAM (128 MBytes per node on SP2 at ENEA Frascati), the 
TB matrix is distributed among the processors. As a consequence, the eigenvector matrix 
and the eigenvector array are also distributed. Furthermore all the atomic coordinates, the 
attractive and repulsive forces are distributed among the processors. 

In this way the target of simulations with a number of atoms of order 103 is reached: 
the parallel code can perform simulations in a reasonable amount of wall clock time and 
the RAM occupancy of the whole code can be managed. 

In Fig.l is clear a good speedup till about 8 nodes. The point at one processor is real 
only for the 216 and for the 512-atoms case and extrapolated for the 640 case. Some points 
corresponding to two processors lie below unity because the time to run on two processors 
is greater than that to run on a single processor. This is due to the large RAM occupancy 
of the code when the number of atoms increases. 

Exp. 2: Of A3) TBMD on the IBM SP2 with GA 

The GA toolkit allows to emuate a shared memory The matrix to be diagonalizcd and 
some workspace arrays are stored in global arrays, while all the other arrays and variables 
are local (i.e. replicated) to each processor. 

The developed code uses a rcplicated-data paradigm for the calculations relative to the 
ionic coordinates in real space (predictor and corrector, time averages of observables. etc.). 
This part makes use of the standard message-passing TCGMSG libraries [12]. On the con- 
trary, the "electronic" part, i.e., the set up of the hamiltonian matrix, diagonalization and 
calculation of the Hcllmann-Feynman forces, is based on a force-decomposition paradigm 
(each processor takes care of the construction and operates on a patch of the total matrix, 
not necessarily delimited by a spatially-contiguous group of atoms). This part is performed 
entirely within the GA environment. The eigensolver is a general-purpose routine for real- 
symmetric matrix diagonalization from the parallel PeIGS library [16], which is one of the 
linear algebra packages compatible with GA. 

Fig. 2 shows the results obtained with this implementation of the 0(Ar3) TBMD code 
on the IBM SP2 at the MCS Division of the Argonne National Laboratory. The data 
points are relative to the speedup, expressed as the ratio between the computing time for 
the scalar code and the wall-clock time for the parallel runs at fixed system size. 

It can be seen that, also in the case of public domain software the speedup is good 
allowing to study systems as large as 1000 atoms, reaching the top of the efficiency on 16 
nodes. 
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Exp. 3: 0(N3) TBMD on the DEC4100 with NAG parallel libraries 

In this section we would like to underline the usability of parallel mathematical libraries 
on SM computers. In this case only one processor is in charge for running the application: 
thus all the routines are performed by one single processor. Parallelization comes about 
only for the diagonalization of the TB matrix that is done in parallel with a call to the NAG 
parallel libraries. The philosophy of this subroutine is the following: the whole matrix is 
in the common memory bank and when the processor reaches this point it activates new 
processes that automatically take care of a portion of the data. These new processes are 
spread on all the nodes in the SMP cluster taking into account the total load distribution 
on the computer. In this case for systems with a number of atoms M ranging from 216 to 
1000, the maximum value for the speedup is at 4 processors. 

Exp. 4: Of AO TBMD on the Meiko-Quadrics hybrid MIMD-SIMD 

As already stated in the previous sections, the most computationally-intensive part of 
the 0{N) TBMD code is the recursive evaluation of the Fermi matrix. This task can 
be performed independently for each atom, i.e. in parallel. This part of the code, being 
the most computational intensive, is performed by the hardware part with the higher 
computational power, i.e. the SIMD part of the hybrid computer. 

The manipulation of the datasets, to be prepared and reorganized for allowing an 
optimal workload distribution for the SIMD part, is perfromed by the MIMD part. Thus 
the MIMD part takes care of the input, the inizialization of the arrays, the construction of 
lists where atoms and their, nearest neighbours and atoms inside the localization region, 
are stored. The MIMD part reorganizes these data to built a suitable dataset to be sent to 
the SIMD part. In turn, the SIMD part takes care of the complete calculations of the forces 
on each atom and of the integration of the equations of motion. At this stage the SIMD 
part sends back the results to the MIMD part for the calculations of physical averages and 
the output. 

The porting has revealed some interesting results. With the available hardware (CS2 -f 
Quadrics/APEIOO) the following constraints are been detected in developing the parallel 
code: (1) all the information must be replicated on the nodes as Quadrics processors 
cannot handle local integers; (2) for the same reason, localization neighbours and nearest 
neighbours are indistinguishable; (3) the computational power of single node is too small 
to perform the task on a number of atoms sufficient to minimize the dataset; (4) scaling 
with N is no long linear, but slightly worst. 

On the contrary, this kind of machine has revealed a large computational efficiency 
in the evaluation of localized orbitals (12 GFlops sustained on a 512-nodes machine). 
Furthermore, this work has demonstrated the usability of hybrid architectures to deal 
with TB simulations. The results of this attempt will be used in the portingto port the 
0(N) TBMD code on next generation of hybrid machine based on the new SIMD platform 
APEmille. 

CONCLUSIONS 

In this paper we have reported the results of the porting of two different implementa- 
tions of TBMD code on several parallel computers. In particular we have described the 
porting of the 0{N3) TBMD code on the MIMD computer IBM SP2 with two different 
software tools (HPF and GA) and the porting of the 0(N3) TBMD code on a Shared 
Memory computer (DEC4100) using parallel libraries. Furthermore we have showed the 
porting of an O(N) TBMD code on a hybrid MIMD-SIMD computer where flexibility and 
high computational power are joined for very large scale simulations. 

In particular we can outline the following results: 
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• both with proprietary parallel language (HPF) or public domain parallel environment 
a good scalability till 16 nodes is easily reached. It is important to underline that 
the parallel tools utilized are high level parallel tools. In fact, contrarily to message 
passing libraries, where the programmer must explicitly manage the inter-node com- 
munications, HPF and GA help programmers to decide a general strategy for the 
distribution of the data among the processors in the parallel computer. 

• We have tested the functionality of the porting of the 0(A'3) TBMD code on a 
SM computer using only proprietary NAG mathematical libraries. It is resulted a 
good scalability and also in this case, where only the diagonalization is performed in 
parallel, the feasibility of 1000-atoms systems. 

• In the case of the 0(A) TBMD code we have ported the code on a very powerful 
MIMD-SIMD computer assessing the limitations induced by the lack of local integer 
addressing, used very often in the 0(A) TBMD code, of the SIMD part. Neverthless, 
we have obtained good performance in the most computational intensive routine: 
about 12 GFlops sustained on the 512-nodes SIMD part. This is an optimal base for 
the porting of this code on the next generation of the hybrid computer composed by 
a QM1 and an APEmille. 

We would like to acknowledge the contribution of drs. B.Di Martino (VCPC, Vienna), 
M.Briscolini and S.Filipponc (IBM Italia) and their support in the development of the 
HPF+PESSL TB code. 
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ABSTKACT 

A method is presented that allows, in principle, the prediction of the 
existence and structure of (metastable) compounds. We show the results of this 
approach for two examples of binary and ternary ionic compounds that have not 
been synthesized yet, but should stand a fair chance of being kinetically stable. 

INTRODUCTION 

The ability to predict the existence of hypothetical compounds under given 
thermodynamic boundary conditions, and also to develop realistic routes for their 
synthesis, is a major step towards one of the main goals of chemistry, the detailed 
planning of the synthesis of new compounds. In this paper, we concentrate on the 
first aspect of the planning of syntheses, the determination of hypothetical com- 
pounds that are capable of existence. 

Our approach[l,2] is based on the analysis of the energy landscape of a 
chemical compound, using global and local optimisation methods, together with 
algorithms for the investigation of the phase space structure near local minima of 
the potential energy, and the analysis and characterization of the structure candi- 
dates. The current implementation focusses on ionic compounds, using empirical 
potentials for the evaluation of the energy function in the global optimisation 
stage, and a Hartree-Fock-algorithm[3] for refinements. We present results for 
two compounds, Na3N and Ca3SiBr2, that have not been synthesized yet, but should 
at least be kinetically stable. 

STRUCTURE PREDICTION AND ENERGY LANDSCAPES 

Energy Landscape Concepts 

In principle, the prediction of metastable compounds of a chemical system 
should consist of two steps: First, we solve the Schrödinger equation of the system, 
and then we analyze the statistical mechanical properties and the stability of 
these solutions. Since this direct approach is not feasible in the case of solids, we 
simplify the problem by separating ionic and electronic degrees of freedom (Born- 
Oppenheimer-approximation[4]). Thus, we can construct an (electronic ground 
state) potential energy hypersurface as function of the classical ionic configura- 
tions alone. The prediction of metastable compounds consists in the exploration of 
this energy landscape. 

For T = 0 K, it is very clear what constitutes a (meta)stable structure: It is 
the one, and only one, configuration that is associated with a local minimum of the 
energy hypersurface. In contrast, for T > 0 K, each configuration "i" with energy Ei 
has a non-zero probability 
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p(i) = exp (- Ei/kBT) / Z ,   Z = X exp (- Ej/kBT) (1) 
j 

of being present at a given time. Therefore, a metastable compound corresponds to 
some (as yet unidentified) region R of the energy landscape, and the structure of 
"R" is given by the time-average over all the configurations within R. The equili- 
brium probability that the system will be found in some configuration belonging to 
R is given by 

igR 
z        expf-F/kuT) 

Here, Z(R) is the partition function for the region R, and F(R) = - kßT ln(Z(R)) is 
defined as the "free energy" for structure R. Clearly, finding the most likely struc- 
ture representing the system at temperature T corresponds to a) identifying 
appropriate (kinetically stable) regions R and b) calculating the restricted free 
energy F(R) and finding the region R* which minimizes F(R). The compound belon- 
ging to the region R* would be termed "thermodynamically stable". However, for 
T > 0 K, it is not at all obvious, how to identify physically reasonable regions R. 
For this, we need to define kinetic stability of a compound, based on three relevant 
time scales: the equilibration time Tcq(R) that is defined as the time the system 
requires to reach equilibrium inside the region R of the energy landscape, the 
escape time xesc(R), which is defined as the time it takes the system to leave R and 
move into the rest of the energy landscape, and the time scale on which we 
perform our experiments (e.g. a powder diffraction measurement), t0bs- If now 
tesc(R) > tobs ^ tcq(R). then R is associated with a kinetically stable (locally ergodic) 
compound. 

Stepping-Stone Approach to Structure Prediction 

Obviously, the determination of such locally ergodic regions R, and the calcu- 
lation of their local free energy F(R), are very expensive computationally. At low 
temperatures, a shortcut is possible, if the region R is surrounded by energy 
barriers of height EB, since then TCSC(R) ~ exp (+Eß/kBT). This leads to the following 
recipe for the prediction of metastable compounds: First one finds the local minima 
of the hypersurface of the potential energy, called "structure candidates". This is 
followed by the determination of the energy barriers Eß around these minima, in 
order to judge their kinetic stability. Finally, one can determine the thermo- 
dynamically preferred region R* by computing F(R) for each kinetically stable 
region R and finding the minimum of F(R). 

When implementing this concept, one is faced with the quandary that on the 
one hand one would prefer to compute the energy very accurately without any free 
parameters, e.g. using ab-initio methods, while on the other hand the global opti- 
misation procedures needed for the determination of as many as possible of the 
low-lying minima of the potential energy require many millions of energy calcula- 
tions. Therefore, we proceed in a modular fashion: First, empirical potentials are 
used during the global optimisation, where we have been employing the simulated 
annealing algorithm[5]. Since these parameters might not be completely appro- 
priate for the unknown compound one investigates, one needs to repeat the opti- 
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misations for slightly changed values of the parameters, in order to check the 
robustness of the structure candidates[6]. Next, the physically and chemically 
most reasonable structure candidates are refined using the Hartree-Fock pro- 
gram[3] CRYSTAL92. This is followed by the determination of the energy barriers 
around the most important local minima on the energy landscape using the 
threshold algorithm[7,8], where, because of the high computational effort, it is 
again necessary to stay within the emipirical potential approximation. These cal- 
culations also provide information about the local density of states and possible 
entropic barriers. Finally, the structure candidates are analyzed with respect to 
their geometrical and topological properties[9], in order to allow a comparison with 
known structures in possibly related compounds. 

Within the ionic model, the only input into these potentials are average[6] or 
environment dependent[10] ionic radii, and the hardness of the ions. The approxi- 
mate potentials for the description of ionic systems consist of three terms, a 
screened Coulomb term, exp(-ccr)/r, a repulsive term, (rn, n = 12, usually), and an 
attractive dispersion term, (r6). If the convergence factor in the Coulomb-term is 
not present (a = 0), the energy function is evaluated using the summation method 
suggested by deLeeuw[ll]. 

Vljtr,j)        «teortj ,JUj)    ^Uij/ w- 

In addition to these two-body terms, the energy function contains "one-body 
terms" Eo(i) (the ionisation energy or the electron affinity, respectively), a term pv' 
when allowing volume changes, where p is the pressure and v' the volume per 
atom, and the chemical potential u(i), the latter being relevant, if the number of 
atoms is allowed to change during the optimisation. Thus, the energy function per 
atom we use takes the form 

g" = 2^ I Vijfej) + £ £ Eo(i) (+ PV) (+ £ £ m (4). 

Furthermore, we use simulation cells with periodic boundary conditions, in 
order to deal with the large number of atoms in a solid. Note that these periodic 
boundary conditions are not very restrictive, since size, shape and symmetry of 
the simulation cell can be freely varied during the many global optimisation runs 
necessary to achieve a sufficient statistic. In addition to the cell parameters, the 
location of the atoms and their ionisation state, a number of other parameters can 
be varied during the optimisation, e.g. the number of atoms and the composition of 
the system within the cell. The initial configurations for the optimisations usually 
consist of a cell of ca. 3 -10 times the volume of all the atoms taken together, with 
the (neutral) atoms (Natom = 4-40) placed at random positions within the cell. 

The determination of the energy barriers employs the threshold-algo- 
rithm[7,8], where one performs random walks below a sequence of prescribed 
energy lids, with periodic quenches, in order to detect the existence of neighbor 
minima. The geometrical and topological properties of the structure candidates are 
analyzed using the programs FINDPOLYEDER, FINDCELL and RGS[9]. 
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EXAMPLES 

This approach has been successfully tested for a large number of binary and 
ternary ionic compounds. Here, we will give results for just two examples, the not- 
yet-synthesized compounds Na3N and Ca3SiBr2. 

NS3.N 

In table (1), we show the crystallographic data for the seven most promising 
structure candidates for Na3N. 

Table 1: Most promising structure candidates for the hypothetical compound Na3N. 
Cell constants are given in A. Not-yet-observed structure types are given as (...)- 
M3N, where M represents one of the alkali metals. 
Structure Li3N Li3P I-Na3N II-Na3N I-K3N I1I-N33N Cr3Si 

SG 191 
P6/mmm 

194 
P63/mmc 

139 
I4/mmm 

59 
Pmmn(z) 

63 
Cmcm 

221 
Pm3m 

223 
Pm3n 

Cell a = 4.5 
b = 4.5 
c = 5.1 

a = 4.3 
b = 4.3 
c = 7.6 

a = 4.0 
b = 4.0 

c = 6.75 

a = 4.34 
b = 5.78 
c = 4.34 

a = 6.8 
b = 6.1 
c = 5.6 

a = 3.8 
b = 3.8 
c = 3.8 

a = 4.84 
b = 4.84 
c = 4.84 

Positions N(la) 
x = 0 
y = 0 
z = 0 

N(2c) 
x=l/3 
y = 2/3 
z=l/4 

N(2a) 
x = 0 
y = 0 
z = 0 

N(2a) 
x = 3/4 
y = 3/4 

z = 0.22 

N(4c) 
x=l/2 

y = 0.26 
z = 3/4 

N(la) 
x = 0 
y = 0 
z = 0 

N(2a) 
x = 0 
y = 0 
z = 0 

Na (lb) 
x = 0 
y = 0 

z=l/2 

Na (2b) 
x = 0 
y = 0 

z=l/4 

Na (2b) 
x=l/2 
y = l/2 
z = 0 

Na(2b) 
x = 3/4 
y = l/4 

z = 0.18 

Na(4c) 
x=l/2 

y = 0.31 
z=l/4 

Na (3c) 
x = 0 

y = l/2 
z=l/2 

Na(6c) 
x=l/4 
y = 0 

z=l/2 

Na (2c) 
x = l/3 
y = 2/3 
z = 0 

Na(4f) 
x=l/3 
y = 2/3 

z = 0.58 

Na (4d) 
x=l/2 
y = 0 

z=l/4 

Na(4e) 
x = 3/4 
y = 0.5 

z = 0.72 

Na(8e) 
x = 0.29 

y = 0 
z = 0 

When calculating the energy using the program CRYSTAL92, the energeti- 
cally most favorable structure candidates were Li3N, Li3P, Cr3Si, I-Na3N and II- 
Na3N. However, all of these modifications of Na3N exhibited a slightly positive 
enthalpy of formation with respect to the elements, suggesting that they might be 
metastable with respect to decomposition into the elements[12]. 

Cj^SiBQ 

In table (2), we show the crystallographic data for four of the most promi- 
sing structure candidates for Ca3SiBr2- 

When calculating the energy using the program CRYSTAL92, the energeti- 
cally most favorable structure candidates were No. 1 and 2. Both these modifica- 
tions of Ca3SiBr2 exhibited a negative enthalpy of formation with respect to the 
binary compounds Ca2Si and CaBr2, suggesting that they might be thermodynami- 
cally stable against decomposition into the binary precursors. 

492 



Table 2: Most promising structure candidates for the hypothetical compound 
Ca3SiBr2- Cell constants are given in A. The structure candidates are numbered. 
Structure 1 2 = a-MgCu203 3 = a-NaFe203 4 

SG 139 
I4/mmm 

71 
Irnmm 

164 
P3m 

166 
R3m 

Cell a = 4.5, b = 4.5 
c = 19.3 

a = 4.5, b = 6.3 
c=13.5 

a = 4.6, b = 4.6 
c = 11.0 

a = 11.5, b= 11.5 
c=11.5 

a = 90, ß = 90 a = 90, ß = 90 a = 90, ß = 90 a = 22.8,ß = 22.8 

Y=90 Y=90 7=120 Y = 22.8 
Positions Ca(2a) 

x = 0, y = 0 
z = 0 

Ca (2a) 
x = 0, y = 0 

z = 0 

Ca(lb) 
x = 0, y = 0 

z=l/2 

Ca (la) 
x = 0, y = 0 

z = 0 

Ca(4e) 
x = 0, y = 0 

z = 0.34 

Ca (4i) 
x = 0, y = 0 

z = 0.35 

Ca (2d) 
x = 1/3, y = 2/3 

z = 0.15 

Ca (2c) 
x = 0.88, y = 0.88 

z = 0.88 

Si(2b) 
x = 0, y = 0 

z=l/2 

Si (2d) 
x = 1/2, y = 0 

z=l/2 

Si(la) 
x = 0, y = 0 

z = 0 

Si(lb) 
x = 1/2, y = 1/2 

z=l/2 

Br (4e) 
x = 0, y = 0 

z = 0.83 

Br(4j) 
x = 1/2, y = 0 

z = 0.17 

Br (2d) 
x=l/3,y = 2/3 

z = 0.66 

Br(2c) 
x = 0.72, y = 0.72 

z = 0.72 

E    i 

-2.5 - 

< 

-3.0 

-3.1 

-3.2 

-3.3 

-3.4 

^x^"^        10 

-Cj ̂                 I 
194368752 

Fig. 1: Tree-graph of the barrier structure of Ca3SiBr2. Energies are given in 
eV/atom. Numbers 1 - 9 refer to single minima, 10 refers to many high-lying minima. 

An analysis with the threshold algorithm showed that the structures 1 and 
2 were separated by rather high energy barriers from the rest of the energy land- 
scape (Fig. 1), while structures 3 and 4 belonged to a larger basin containing many 
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local minima that were separted by relatively low energy barriers from each other. 
The local densities of state for the structures being rather similar, we can conclude 
that Ca3SiBr2 should be capable of existence, and that structures 1 and 2 are the 
most likely modifications to be found for this compound[10]. 

CONCLUSIONS 

We have presented a general approach to the prediction of crystalline com- 
pounds. The current implementation employs an ionic model potential for the con- 
struction of the compound's energy landscape that is used for the global optimisa- 
tion step, and the application of this modular approach to two not-yet-synthesized 
compounds, NaßN and Ca3SiBr2, has been demonstrated. 

Clearly, the choice of the model potential is the most troublesome limitation 
of the current implementation, since for unknown compounds no a-priori 
knowledge about their chemical bonding situation is available. Furthermore, in 
contrast to the typical simulations using empirical potentials[13,14], and related 
work using optimisation methods in the field of structure determination from 
powder diffraction data[14,15], the global optimisation requires that the potential 
must be physically and chemically reasonable everywhere on the energy 
landscape[l,2,10]. A possible step to ameliorate this situation is the application of 
computational methods intermediary between the computationally fast empirical 
potentials and the parameter-free but computationally expensive ab-initio- 
methods. In particu-lar, tight-binding approaches should be very promising in this 
respect, because of their general applicability and flexibility. One should note, 
however, that no symmetry adaption of the wave functions is possible during the 
explorations of the energy landscape, since the symmetry of the structure 
candidates is part of the optimisation. 
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COUPLED DYNAMICS OF ELECTRONS AND NUCLEI IN A MOLECULE 
INTERACTING WITH ULTRASHORT, ULTRA-INTENSE LASER PULSES 

S. KHOSRAVI, R.E. ALLEN 
Department of Physics, Texas A&M University, College Station, Texas, 77843 

ABSTRACT 

We have developed a technique for treating the coupled dynamics of electrons and nuclei 
in a molecule which is subjected to ultrashort and ultra-intense laser pulses. This technique 
has been employed in quantitatively accurate simulations for H}. Many interesting phe- 
nomena have been observed, including photodissociation, bond softening, above-threshold 
dissociation, ion-population trapping, electron-population trapping, sudden electronic tran- 
sitions, Rabi flopping, and harmonic generation. Some representative results are shown here. 

The interaction of ultrashort and ultra-intense laser pulses with molecules is a current 
frontier of science. In this paper we introduce a new technique for realistic simulations of the 
coupled dynamics of electrons and nuclei, when a molecule is subjected to arbitrarily strong 
electromagnetic radiation. The method involves a quantitatively accurate description of the 
relevant electronic states and their coupling to the time-dependent electromagnetic potential 
A„ (<). The time-dependent Schrödinger equation (for the electrons) and Newton's equation 
of motion (for the nuclei) are solved within the interaction picture. Other techniques are 
used to analyze phenomena such as harmonic generation. 

For the initial application to a chemical system, we have chosen H}- This is the simplest 
molecule in nature, but it exhibits remarkably rich behavior when subjected to an ultrashort 
and ultra-intense laser pulse [1 — 24]. It is, in fact, an excellent test system for understanding 
both the standard and the more exotic processes that transpire when a molecule interacts 
with an intense and time-dependent radiation field. 

In our detailed simulations, we have observed many interesting phenomena, including the 
following [25,26]: 

• Photodissociation. The promotion of an electron from a bonding state to an anti- 
bonding state can produce a repulsive interaction that leads to dissociation. 

• Bond softening. A very intense laser field deforms each adiabatic potential curve 
in the vicinity of a multiphoton crossing, causing the lower curve to be flattened or 
"softened". This effect can produce a dramatic lowering of the barrier to dissociation. 

• Above-threshold dissociation. The nonlinear effects associated with intense radi- 
ation can permit dissociation via various paths: for example, absorption of a single 
photon, absorption of three photons, or absorption of three photons followed by emis- 
sion of one photon. The products will thus emerge with a set of different kinetic 
energies. 

• Ion-population trapping. The radiation field can create an adiabatic potential well 
which is deep enough to trap the ions. 
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• Electron-population trapping. An intense laser field can hold an electron in an 
excited state. 

• Sudden electronic transitions. These are observed at multiphoton avoided cross- 
ings. Even though two dressed-state levels do not cross, there is an exchange of char- 
acter when they come near each other. As the electron adiabatically follows one curve, 
it is observed to suddenly undergo either an upward or a downward transition, corre- 
sponding to the absorption or emission of one or more photons. 

• Rabi flopping. In an intense field, an electron can rapidly oscillate back and forth 
between two accessible states. 

• Harmonic generation. Photons are radiated at frequencies which arc multiples of 
the fundamental laser frequency. 

Because of space limitations, we cannot show all of the above effects in the present paper. 
Further details of both the method and the results will be presented elsewhere [25,26], The 
main idea is to solve the time-dependent Schrödinger equation (for the electrons in the 
molecule), together with Newton's equation of motion (for the atomic nuclei), using the 
interaction picture. Suppose for simplicity that there is only one electron (as there is in the 
case considered below). One then has the following equations for the coupled dynamics of 
this electron and the nuclei: 

M7T2X    =    -Z\cn(t)\2^:-j:c'm(t)^(t)exp(kmnt)^-(m\V,nt(t)\n) 
dt2" ^i-nv-/,     dx        t,^HM,W-Krm.-,M 

dVti     dVcxt (t) 

' dX dX (1) 

* J7
C

»> (') = E("; I VM (t) I n) exp (j£mn<) cn (t) (2) 
®l m 

where emn = em — en and 

Hc, | n)  = £„ | n)    ,     | *) = £>„(<) I ")    ,    a„(t) = cn{t)exp{-ient). (3) 

Here X is any nuclear coordinate. The effective classical Hamiltonian for the molecule has 
the form 

H = £(* (0 | [Hd + Vint (t)] | * (0) + Vu + £ P?/2Mt + VCT, (i) (4) 
3 I 

where Hci is the one-electron Hamiltonian with no field, VJ„/ is the electron-field interaction, 
Vu is the ion-ion repulsion, Velt is the nuclei-field interaction, and the nuclei arc labeled by 
L 

For the present problem of an H% molecule, detailed considerations [2,6,25,26] give the 
following results for the energies of the lowest electronic states, and for their interaction with 
a field of intensity / and frequency Lü: 
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ei(iJ)   =   0.1025 {exp [-1.44 (Ä-2)]-2.00exp [-0.72 (Ä-2)]} (5) 

e2{R)   =   0.1025 {exp [-1.44 (R -2)] + 2.22 exp [-0.72 (R- 2)]}, (6) 

(1 \Vint(t) | 2)   =   7 cos (cut) 

7   =   5.3416 x lQ-gy/1 (W/cm2)ß 

p   =   (1 |z |2} =-8.93+ 10 exp [0.0396 (Ä- •2)]. 

(7) 

(8) 

(9) 

All these quantities are given in atomic units, with 0.529 Ä as the unit of length and 1 
Hartree as the unit of energy. Under the usual experimental conditions, only these two states 
(the bonding and antibonding states derived from the Is atomic orbitals) are important, and 
the only important nuclear degree of freedom is the internuclear separation R. 

20.0 40.0 60.0 
time (fs) 

80.0 100.0 

Fig. 1. Square of the amplitude for the ground state as a function of time. 

Figs. 1-3 show the results for a simulation in which there was one-photon absorption 
leading to dissociation. The initial internuclear separation was 1.3 A, the initial total energy 
was-1.95 eV, the photon energy is 2.33 eV, the peak intensity was 1.0 x 1013 W/cm2, and 
the pulse duration was 100 femtoseconds. At about 20 fs, the electron becomes partially 
excited, as can be seen in Fig. 1. There are then rather erratic oscillations in the amplitude 
<*i (t), or probability | at (t) |2= 1- | a2(t) |2, until it becomes dominantly in the excited 
state | 2) at about 80 fs. Since this is an antibonding state, the molecule then dissociates, 
after executing three vibrations in Fig. 2. The difference between final and initial energies 
is close to the photon energy of 2.33 eV, as one can see in Fig. 3. 

Notice that there is a richness of detail that is missing in conventional treatments based 
on approximations like Fermi's golden rule.   It is also interesting that the usual result of 
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one-photon absorption emerges automatically, even though the radiation field is treated 
semiclassically and without the usual approximations. In other simulations, we have observed 
multiphoton dissociation. 

40.0 60.0 
lime (fs) 

Fig. 2. Internuclear separation as a function of time, demonstrating one-photon absorp- 
tion. 

■a   -1.0 

40.0 60.0 
time (fs) 

Fig. 3. Total energy as a function of time. 
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Very unusual behavior has been seen in many simulations. For example, Fig. 4 provides a 
particularly dramatic example of ion-population trapping: The nuclei exhibit an extremely 
large excursion from their equilibrium distance, but do not dissociate. Instead, they are 
trapped by the effective potential energy barrier associated with the adiabatic curves for the 
dressed states. In this simulation, the molecule was assumed to be prepared in an initial 
state with an internuclear distance of 2.3 A and an energy of —0.1 eV. The intensity and 
photon energy were again 1.0 x 1013 W/cm2 and 2.33 eV, and the pulse duration was 80 fs. 

0.0 10.0        20.0        30.0        40.0        50.0        60.0        70.0        80.0 
«me (fs) 

Fig. 4. Internuclear separation as a function of time, demonstrating ion-population 
trapping in an intense field. 

In summary, we have devised a new technique for realistic simulations of the coupled 
dynamics of electrons and nuclei in an arbitrarily intense radiation field. We have ob- 
served many interesting phenomena for the H} molecule interacting with ultrashort and 
ultra-intense laser pulses. Two of these are shown here: one-photon dissociation and ion- 
population trapping. 
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ELASTICITY, THERMAL PROPERTIES, AND MOLECULAR DYNAMICS US- 
ING NON-EMPIRICAL TIGHT-BENDING 

RONALD E. COHEN *, LARS STIXRUDE **, AND EVGENY WASSERMAN*" 
'Carnegie Institution of Washington, 5251 Broad Branch Rd., N.W., Washington, DC 20015 
"University of Michigan, Ann Arbor, MI 
***Battelle, Pacific Northwest National Laboratory, Richland, WA 

ABSTRACT 

We have further developed and applied a new non-empirical tight-binding total energy model 
to properties of Si, Xe, and Fe at high pressures. We have studied elasticity of various phases of 
each of these, demonstrating that the new model is applicable to a wide range of materials, in- 
cluding semiconductors, rare gases, and transition metals. We have used the particle-in-a-cell 
method to study the thermal equation of state of hep Fe and find excellent agreement with the 
shock equation of state. A molecular dynamics code has been developed based on this method, 
and we have studied the properties of Fe liquid at high pressures. 

INTRODUCTION 

Self-consistent methods are being applied to ever-increasingly complex problems, including 
molecular dynamics simulations, but system sizes and number of configurations that can be ex- 
plored in a reasonable amount of time are still limited. Potential models generally lack what is 
needed to treat covalent and metallic systems well, except for limited parts of configuration 
space. Tight-binding total-energy models fit in the niche between potential models and self- 
consistent methods, being much faster than self-consistent methods and containing the essential 
physics to treat metallic and covalent systems. We have developed a tight-binding total-energy 
model which is fast and accurate [1], which we have demonstrated works well for semiconduc- 
tors (Si), rare gases (Xe), and transition metals (Fe) [2]. The method works well through coor- 
dination changes and metallization in Si and Xe, yet there are no explicit structure dependent 
terms. There is no fitting to experiment; it is first-principles in the sense that all parameters are 
obtained by fitting accurate Linearized Augmented Plane Wave (LAPW) computations [3]. Here 
we review the method and some recent results. 

METHOD 

The method is described in detail in Ref. [2], In brief the total energy is represented as the 
band structure energy, with no explicit pair potential terms. This is done by shifting the eigen- 
values of the band structure computations so that their sum is the total energy, plus a constant. 
This procedure removes ambiguity with respect to the energy zero for the band structures, 
which is structure and volume dependent for extended systems (i.e. periodic boundary condi- 
tions). Semi-core overlap can be accounted for with a pair potential using Gordon-Kim[4] for 
the overlap energy if necessary; we find this necessary at extreme pressures (>300 GPa) in Fe, 
but may be important in other systems at lower pressures if there is significant semi-core state 
overlap for states not included explicitly in the tight-binding fit. 
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We fit the individual off-diagonal interactions to a two-center form 

/> = (<i + Ar)cx|>[-c2r]f(r) (0 
where r is the distance between the two atoms and f (r) is a cut-off function that vanishes be- 
yond some distance. Onsite terms were fit using two different models. In the first case we used 

/> = e + ffp
2/J+Ap4/3+'>2 (2) 

where 

p = £cM)|-rf2rkr(r) (3) 

is the local density around an atom. This model did not work well for Si. In the second case, we 
accounted for the integrals <i[j|i> for diagonal interactions for a orbital on one atom with a po- 
tential on a second atom [5]. The formulation is given in ref [2]. This second method accounts 
implicitly for structure dependent shifts in the on-site terms, including eg - t2g splitting, etc. We 
simultaneously fit total energies and band structure eigenvalues for a set of structures and vol- 
umes. Much better results were obtained using a non-orthogonal basis, though an acceptable 
orthogonal model for Fe was obtained for more rapid molecular dynamics simulations. The pa- 
rameters we obtain are effective parameters due to the compromises necessary to obtain accu- 
rate energies and band structures with a minimal basis two-center representation over a wide 
compression range. Thus they may not be in perfect agreement with parameters obtained using 
an exact inversion scheme [6]. The non-orthogonal parameters for Fe, Si, and Xe are available 
[7]. 

RESULTS 

Si 

We fit 33 different structures and volumes for silicon, including fee, bec, hep, sc, and dia- 
mond, using s, p, and d states, with a total of 72 parameters fit to 32841 input data (33 total en- 
ergies and 32808 eigenvalues) from our LAPW computations. Figures 1 and 2 show the dia- 
mond and fee band structures. The fit for the occupied states is quite acceptable 
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Figure 1. Cubic diamond and structure. 
Solid lines arc LAPW and dashed arc the 
tight-hinding fit. 

Figure 2. Band structure for fee Si. 
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Figure 3 shows the total energy for differ- 
ent Si structures as functions of volume. The 
equation of state is reproduced over 62% 
compression. Elastic constants and the dia- 
mond Raman frequency are also predicted well 
by the model [2]. 

Xe 

At zero pressure xenon is a so-called van 
der Waals solid consisting of Xe atoms with 
correlation effects in the overlap giving the 
binding. Dispersion of the eigenstates is very 
small. With increasing pressure the bands 
widen, until 90 GPa in LDA where metalliza- 
tion occurs. We have found that our tight 
binding parametrization gives this behavior 

accurately (Fig 4). The equation of state is in excellent agree- 
ment with experiment over a four-fold compression (Fig. 5). 

Although we used only hep, fee, and bec structures for the 
fit, we find that the elastic constants agree well with experiment 
[8], and their pressure dependence is excellent as well (Fig. 6). 
This is true even though the elastic constants change drastically 
with pressure in Xe due to its high compressibility. 

Figure 3. Lines are from the tight-binding 
model. Points arc from LAPW computations. 
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Figure 5. Equation of state for Xc. Lines tight- 
binding (and LAPW); points, experiment.      Figure 4  LDA ban(| stnictures for hcp Xe ,t (>) „ 

GPa, (b) 20 GPa, and (c) 250 GPa. Solid lines arc 
LAPW, dashed arc tight-binding. 
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Figure 6. Elastic constants of Xc. Lines arc the 
tight-binding model, curves arc from experi- 
ment 
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As the third example we discuss Fe, a transi- 

tion metal. We used the GGA [9] since LDA 
does not give the correct ground state and the 
GGA gives an excellent equation of state [10] 
We have not yet developed a spin-polarized ver- 
sion of our parametrization, so we concentrate 
on the high pressure hep phase which is not 
magnetic. A magnetic model could be generated 
along the lines of Zhong et al if desired [11], or 
explicit spin dependence could be included in a 
significantly more complex model. The band 
structures we obtain are again in excellent 
agreement with the LAPW [2]. 

We have compared the elastic constants ob- 
tained using LAPW frozen phonon computations 
with the tight-binding model, and find excellent 
agreement, even for strains not directly explored 
in the input set of structures [12]. 

Using the tight-binding model for iron, we 
have computed the high pressure thermal equa- 
tion of state using the particle-in-a-cell model 
[13]. The partition function is estimated by inte- 
grating over motions of a single atom in a super- 
cell   This includes anharmonicity neglecting cor- 
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V (bohr3) 

Figure 7. Computed Hugoniot for hep Fc com- 
mircd with experiment 

relations between atomic motions, and 
should work very well at high tem- 
peratures. We used about 100 atom 
supercells for most computations, with 
tests for up to 256 atoms. The elec- 
tronic contribution to the free energy 
was obtained from the LAPW band 
structure, and thermal vibrational 
contributions from the particle-in-a- 
cell method. The computed Hugoniot 
is in excellent agreement with experi- 
ment (Fig. 7) [14], 

We   also   have   obtained   an   or- 
thogonal fit for Fe in order to perform 
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Figure 8. Equation of state points for liquid Fc from MD com- 
pared with the hep Hugoniot and geophysical inversion of the 
Earth's outer core. 

504 



o 
'■c 

Q 
1 t 
o- 

faster molecular dynamics simulations [15].  Figure 8 shows some equation of state points for 
liquid iron from the MD simulations compared with the Hugoniot for solid hep iron, and with 
the Earth's outer core, which is mostly liquid iron but contains some light elements as well. 

We have also computed the radial distribution function for liquid Fe under core conditions 
(Fig. 9). Using this we have 
developed a model for the vis- 
cosity of liquid iron at high 
pressures. We obtain about 4 
centipoise at 4000 K for densi- 
ties of 10-12 Mg/m3. 
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T=40nn K 

Distance, r (Bohr) 

Figure 9. Structure factor for liquid Fe under Earth's outer 
core conditions. 

SUMMARY 

We have developed and 
tested a tight-bonding model 
that works well for covalent, 
metallic, and rare-gas systems 
over wide compression ranges. 
This model holds promise for 
fast and accurate simulation of 
the dynamical properties of 
large systems. 
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Abstract 

We apply the frozen phonon and molecular dynamics methods within the semiempirical 
orthogonal tight-binding framework to study the anomalous behaviour of the (0001) optical 
longitudinal (LO) and transverse (TO) phonons in the low temperature hep phase of Ti, 
and the §[111]L and |[110]Ti phonons in the high temperature bec phase. We demonstrate 
that, in agreement with previous findings in Zr, the anomalous thermal frequency shifts in 
hep Ti are related to the strong coupling of the electron density of states (DOS) to the par- 
ticular lattice distortions. The distortions along the bec §[111]L and |[110]Ti phonons also 
significantly affect the DOS, resulting in the instability of these modes at low temperatures 
and triggering the bec-hep and bec-w phase transformations. 

Introduction 

The group IV transition metals (titanium, zirconium and hafnium) possess a number of 
unusual properties attributed to strong anomalies in their phonon spectra. These include 
crystalline polymorphism, a high temperature saturation of the electrical conductivity, rapid 
increase of the constant pressure heat capacity at high temperature, and marked anisotropy 
in diffusion and thermal properties. The vibrational anomalies manifest themselves by a 
strong (and sometimes inverse) temperature dependence of certain phonon frequencies, even 
at conditions far away from the phase transitions. For example, almost all the [0001JLO 
branch in the low temperature hexagonal a-phase of Ti and Zr exhibits substantial positive 
frequency shift with increase of temperature [1], while the frequencies of the TO branch 
decrease to an extent much larger than predicted by thermal lattice expansion. In the high 
temperature bec-structured /3-phase the [110]^ zone-boundary and [111]L (q = |) phonons 
are found to have frequencies below ITHz in the vicinity of the ß — a transformation (1055 
K in Ti) and to be strongly damped [2]. Further, the frequency of the [110]Ti zone boundary 
phonon is found to increase with temperature over the whole region of existence of the ß- 
phase (up to 1930 K in Ti), while the frequency of |[111]L, although overdamped, does not 
show appreciable temperature dependence [2]. 

Varma and Weber [3] suggested that the occurrence of the phonon anomalies in transition 
metals is connected to the sensitivity of the electronic bands near the Fermi-level to the 
particular lattice distortions, causing a reduction in electronic energy. This idea was further 
developed by Liu and co-authors [4] to the [0001]LO phonon anomaly in a-Zr. Using the 
frozen phonon (FP) approach within the local density functional theory they demonstrated 
that the lattice distortion along this phonon lifts the degeneracy of the energy bands in the 
Brillouin-zone boundary normal to the (0001) direction, thus resulting in a decrease of the 
density of states at the Fermi-level and LO phonon anharmonicity. 

The FP calculations for /3-Zr [5] revealed the intrinsic instability of the bec phase relative 
to the j[110]Ti and |[111]L phonons, which are correspondingly linked to the ß to a and ß 
to the high pressure w phase transformation mechanisms. 

In the present paper we study the phonon anomalies in a and ß phases of titanium using 
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the orthogonal tight-binding approach. We demonstrate the consistency of the phonon 
frequencies obtained by molecular dynamics and FP calculations. We also analyse how the 
phonon properties are coupled to the details of the electronic spectrum of the system. 

Calculation procedure 

We employ the frozen phonon method [4,5] for the calculation of phonon frequencies 
and third- and forth-order phonon force constants, and in the case of a-Ti we compare 
these results with the frequencies obtained from (NVE) molecular dynamics simulations by 
evaluating the power spectrum of the projected velocity autocorrelation function [6]. Both 
methods assume Born-Oppenheimer (full adiabatic) approximation, in which the electronic 
density of states instantly follows the changes in atomic positions. For the energy and force 
calculation we use the semiempirical orthogonal tight-binding (TB) method within the k- 
space formalism and within the O(N) bond order potential (BOP) method implemented in 
the OXON code [7]. The parameters for the hopping integrals and the pairwise repulsive 
part were developed by Girschik and co-authors [8], and have been fitted to reproduce the 
equilibrium lattice and elastic constants for a-Ti. Originally TB parameters were fitted with 
fixed number of moments within BOP formalism (9 moments in the electron DOS expansion) 
and finite electron temperature of 0.3 eV [8]. In order to control the effects of finite number 
of moments in the DOS evaluation, we have tested the paramctrization within the k-spaee 
method and zero electron temperature, and found it to give similar cohesive energies and 
static geometries to BOP for a-, ß-, fee, and w-phases of titanium. The static energies 
give the following sequence in stability of titanium polymorphs: a (ground state), u> (almost 
degenerate to a), fee, ß, which is in agreement with the full potential muffin-tin local density 
functional calculations. However, the calculated static lattice constant for /3-Ti, ap = 3.20 
Ä is lower than the experimental value a"v = 3.28 Ä. This results in the predicted density 
of the /?-phase being the same as of the high-pressure w-phasc, while experimentally the 
latter is higher. This discrepancy is due to the absence in the TB scheme of the explicit 
environmentally-dependent terms, and thus a poor account for the variation of interactions 
with a change in local coordination. Having these limitations, the TB paramctrization 
developed in [8] reproduces reliably the static and, as we show in this paper, important 
dynamic properties of different titanium polymorphs. In the BOP method we have used 
13 moments in the DOS expansion and an electron temperature 0.1 eV. We also show in 
this paper that this level of approximation has little effect on the accuracy of the evaluated 
phonon frequencies and higher order force constants. 

As the crystalline lattice distorts, so does the charge density, causing the changes in 
bonding energy. In tight-binding calculations this is reflected by a change of the electronic 
spectrum or electron density of states with respect to atomic positions. The important 
characteristics reflecting the changes in the DOS (which also enter any theory of the electron- 
phonon interaction) are the position of the chemical potential // (= Fermi-level at T=0 K), 
and the density of states at the chemical potential level n(//). 

Phonon calculations 

Let us first consider the optical phonons in titanium o-phase. At q=0 the displacement 
along the longitudinal phonon consists of the antiphase vibration of the adjacent basal planes 
along the [0001] axis. The transverse optical phonon (TO||) can be thought of as the vibration 
of the basal planes along some axis normal to the [0001] direction. We consider here the 
TO phonon with [0110] polarization.  The zone boundary (0001) phonons {q = i) consist 
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Table 1: The frequencies of the transverse and longitudinal (0001) phonons of a-Ti and the third- 
and forth-order force constants calculated at the zone centre and zone boundary within the frozen 
phonon and MD (96 atoms) methods. The experimental data are taken from [1], The frozen phonon 
curves are calculated with 13 moments in electron DOS expansion and electron temperature 0.1 eV. 
In brackets are given the values calculated with 41 moments and kT=0.001 eV. 

Phonon Frequency (THz) g 
(eV A"3) 

h 
(eV A"4) Frozen 

OK 
MD Exp. 

295 K 59 K    292 K 
LO             (q=0) 
TO             (q=0) 
LO=LA    (q=0.5) 
TO=TA    (q=0.5) 

5.90 (5.75) 
4.48 
3.87 (3.84) 
2.57 

5.90      5.92 
4.25      3.74 
4.0      3.82 
2.3       2.05 

5.54 
4.10 
5.73 
3.05 

0.0 
4.2 
0.0 
0.0 

336.0 (316.8) 
-307.2 
-31.2 (-67.2) 
-264.0 

of the corresponding antiphase vibrations of even basal planes, while the odd planes stay 
frozen. First we have calculated the adiabatic curves of cohesive energy U(Qk) against the 
displacement vectors Q^ corresponding to LO and TO phonons at the zone centre and zone 
boundary up to the maximum amplitude 0.1 A, (index k numerates both a phonon branch 
and a wave vector). Then, in order to obtain the force constants, we approximated each 
curve U(Qk) by its least-square fit polynomial function: 

U(Qk) = U0 + \ulkMQ\ + l-gkQ\ + ^hkQl (1) 

Here U0 is the energy at equilibrium, u>ok, gk, and hk are respectively the harmonic frequency, 
third-, and forth-order force constants corresponding to a phonon k, M is the atomic mass 
of titanium. The frequencies UJ0 are listed in the table 1 together with the experimental 
frequencies obtained in inelastic neutron scattering experiments [1] and from MD simulations. 
The calculated values of higher order force constants gk, and hk are also shown in the table. 

Next we consider a longitudinal §[111] phonon in ß titanium. The extension of this phonon 
to finite displacements leads to the phase transformation from ß to the high pressure w-phase. 
This transformation can be seen as a distortion of the ABC... stacking of the (111) bcc planes, 
when B and C planes are moving towards each other along the [111] axis, whereas A planes 
stay at rest. The hexagonal w phase with three atoms in the unit cell is obtained when B 
and C planes collapse into one plane for a displacement a^^f. The adiabatic cohesive energy 
curve along the |[lll]i phonon displacement is depicted in figure 1 (top). The bottom curve 
represents a corresponding shift of the chemical potential. 

Finally, we consider the zone boundary ^llOlTj phonon (N-point phonon), which is a first 
step in the bcc-hcp transformation along the Burgers path. The finite displacement along 
this phonon produces the hep stacking by the antiphase displacement of the two neighbouring 
(110) planes by the distance ap^ in the [110] direction. The hep structure is then obtained 
by two equivalent long-wave shears deforming irregular hexagons within the (110) planes into 
the regular ones, so the (110) planes in the bcc structure become the (0001) basal planes 
in the hep structure. The cohesive and bonding energy curves together with a chemical 
potential shift corresponding to the ^[110]^ phonon are shown in figure 2. 
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-0.5 0.0 0.5 1.0 
Transformation coordinate (Jl3 a„/12) 

Figure 1: The cohesive energy (top) and chemi- 
cal potential (bottom) versus displacement along 
the |[111]L phonon. 0 corresponds to the ui phase 
1 to the bec phase; o0 is the bec equilibrium lat- 
tice constant. Ua - cohesive energy of bec, ;i0 - 
chemical potential of bec. 

0.0 0.5 1.0 1.5 
Transformation coordinate (ßa,/12) 

Figure 2: The cohesive and bonding energy per 
atom (top), and chemical potential (bottom) ver- 
sus displacement along the ^[011]T| phonon. 0 
corresponds to the bec structure; 1 to the hep 
stacking of the (110) planes. 

Discussion 

LO and TO phonons in a - Ti 

As seen in table 1, the calculated FP and MD phonon frequencies are in good agreement 
with the experimental data [1], although a substantial difference is observed for the zone- 
boundary longitudinal phonon. Also, FP frequencies agree well with the values obtained 
from the MD simulations. The comparison of the MD frequencies calculated at tempera- 
tures 59 and 292 K show that, in agreement with the experiment [1], the zone center LO 
phonon becomes stiffer with temperature, while the TO phonon becomes softer. At the 
zone boundary the frequencies of both longitudinal and transverse phonons decrease with 
temperature. The qualitative information on the thermal frequency shifts can be also ob- 
tained from the frozen phonon calculations using the following argument. Neglecting the 
effects of phonon-phonon coupling, each phonon can be considered as a one-dimensional 
conservative anharmonic oscillator with the potential function (1). Then, if the forth-order 
force constant hk is positive, the potential (1) will be steeper than the reference harmonic 
potential \<JlkMQ\, thus resulting in frequency increase with the oscillators energy (tem- 
perature). Conversely, hk < 0 (with any sign of gk) results in the potential (1) being softer 
then the reference harmonic potential, that is, the corresponding frequency will decrease 
with temperature. Given these considerations our FP calculations (table 1) predict at the 
zone centre strong positive thermal frequency shift for the LO phonon, and negative shift 
for TO phonon. At the zone boundary both (0001) longitudinal and transverse phonons 
display the negative frequency shifts. We note that the lattice thermal expansion has not 
been considered in either FP or MD calculations. Since Ti has normal (positive) thermal 
expansion coefficient, the account of this effect would weaken the positive and enhance the 
negative frequency shift. 

In order to demonstrate the effects of the lattice distortions on the electron distribution, 
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we analyse the electron DOS corresponding to a fully relaxed a-structure, and to 0.1 A 
atomic displacements along the LO and TO zone-centre phonons (figure 3). In agreement 
with [3,4], the LO phonon indeed causes the marked decrease of the density of states at the 
Fermi-level n(ß). The position of the Fermi-level for both phonons shifts slowly to the lower 
energies with amplitude increase. Another remarkable feature of the distorted density of 
states for the LO phonon is that it acquires significant changes in the energy region as far as 
1 eV below the ß. This suggests that some of the low-lying energy bands are strongly coupled 
to the LO phonon as well as the earlier suggested [4] bands at the Fermi-level. Therefore, the 
semiquantitative model proposed in [4], in which the electronic energy change causing the 
frequency shift is associated solely with the change in the few selected bands in the vicinity 
of the Fermi-level, is somewhat oversimplified. In contrast to the longitudinal phonon, the 
distortion along transverse phonon results in the increase in the n(ß) (figure 3). This causes 
anomalously strong thermal softening of the TO branch reported for both a-Ti and a-Zr [1]. 

We note that, although the details of the density of states depend on the number of 
moments used in the DOS calculation, the same trends have been observed in the DOS 
approximated by 41 moments or in k-space calculations with electron temperature 0.001 eV. 

§[111]L and ^[110]^ phonons in ß - Ti 

Our FP calculations in /3-Ti predict the imaginary frequencies for both §[111]£ and 
|[110]Ti phonons (figures 1,2) indicating the instability of the titanium bec phase at 0 K 
towards the bec-w and bec-hep transformations. The interesting feature of the bec-u trans- 
formation is that the electron DOS changes substantially with the small lattice distortions 
around the bec structure, but it is almost completely insensitive to the distortions near the 
w-phase. This is reflected by both the change of the chemical potential ß (figure 1 (bottom)) 
and n(ß) (not shown) with the transformation coordinate. This suggests that the iv-Ti may 
also have a trigonal modification (when B and C planes are not totally collapsed) along with 
the hexagonal one discussed above. Such a structure has been recently observed in Ti films 
grown on an iron surface [9]. 

It is seen in figure 2 (bottom), that the chemical potential curve for the ^[HO]^ phonon 
displacement has two extrema - the minimum in the bec structure and the maximum cor- 
responding to the hep stacking of the bec (011) planes. We note that chemical potential 
reflects the changes in the electronic Gibbs free energy [10].   The more detailed analysis 
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shows that the hep stacking configuration corresponds to the minimum of the Gibbs free 
energy along the chosen direction, which results from the interplay between the bonding 
energy (sec figure 2) and electronic [pressure x volume] term. The pair repulsive part of the 
potential counterbalances the decrease in bonding energy and causes the shift of the total 
energy minimum somewhere in between bec and hep stacking. Therefore, the transforma- 
tion along the Burgers mechanism, requires a simultaneous (not consequtive) action of the 
N-point phonon and long-wave shears. Such a process is only statistically important when 
the frequency of the N-point phonon falls to zero, in order it to 'freeze' and interact with 
low frequency shear deformations. 

In summary we have modelled the phonon anomalies in a- and /J-Ti and found the sim- 
ple orthogonal TB approximation to be adequate in describing the effects of the electron 
redistribution coupled to the particular lattice distortions. Having their own limitations, the 
FP and MD methods complement each other in calculations of the lattice dynamics and the 
scheme as a whole makes it a powerful tool to further studies of defect properties which are 
currently in progress. 
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ABSTRACT 

Tight-binding molecular dynamics simulations of typical high-energy grain boundaries in 
silicon show that the atomic structure of the interface in thermodynamic equilibrium is similar to 
that of bulk amorphous silicon and contains coordination defects. The corresponding electronic 
structure is also amorphous-like, displaying extra states in the forbidden gap mainly localized 
around the coordination defects, where large changes in the bond-hybridization character are 
observed. It is proposed that such coordination defects in disordered high-energy grain 
boundaries are responsible for the experimentally observed gap states in polycrystalline Si. 

INTRODUCTION 

It is well known that the electrical properties of polycrystalline Si are dominated by localized 
electronic states in the band gap closely connected with the presence of grain boundaries (GBs). 
Such gap states can act as traps for charge carriers, thereby altering the electrical nature of the 
material. For example, in the case of p-n junctions for solar cells [1] the GBs provide effective 
recombination centers for the light-generated charge carriers, thereby reducing device 
performance [1,2]. Optical and electronic measurements on fine-grained Si films indicate the 
presence of exponential band tails penetrating into the band gap and narrow continua of states 
located deeper in the band gap [3-5]. The band tails are thought to be connected with structural 
disorder [6], through either the smearing of bulk states or the appearance of "shallow" gap states 
(i.e., new states at the band edges). The deep gap states, in turn, are usually attributed to either 
dangling bonds (i.e., 3-fold coordinated Si atoms) or to segregated impurities. Unfortunately, the 
fact that polycrystalline Si always contains sizable amounts of hydrogen and other impurities is a 
significant difficulty for the experimental investigation of the effect of GBs on the electronic 
properties. The structural and electronic properties of ideally pure GBs are, in turn, a subject 
particularly suitable for theoretical investigation by computer simulations. 

Recent empirical-potential molecular dynamics (MD) simulations of several large-unit-cell 
Si GBs, either grown from the melt or annealed at high temperature, and subsequently cooled to 
T=0 K [7], revealed a common, highly disordered GB structure of uniform thickness (typically -5 
Ä) and energy. Such disordered structure represents the thermodynamic ground state, as far as 
the high-temperature-annealed structure is found to have a lower GB excess energy with respect 
to the zero-temperature relaxed input structure of these same GBs. Moreover, the universal, 
"confined amorphous" structure of these GBs was found to be very similar to that of bulk 
amorphous Si (a-Si); in particular, a small fraction of coordination defects was found to exist in 
thermal equilibrium in this structure. 

Previous electronic-structure simulations of Si GBs based simply on zero-temperature static 
relaxation have mainly focused on symmetric-tilt boundaries (STGB) [8-10], known to have a 
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relatively low energy compared to large-unit-cell, high-angle twist GBs [11]. The main result of 
these studies is that STGBs are relatively ordered and hence do not contribute deep gap states to 
the DOS. Similar simulations of twist GBs in Si [12] and Ge [13] revealed, by contrast, more 
disordered structures, containing coordination defects and exhibiting a broad continuum of gap 
states. (It is worth noting that, due to computational limitations, the only system studied was the 
the so-called 15 (001) twist GB, see below.) It therefore appears that, although the highly 
disordered, high-energy GBs represent only a minor component of a well-annealed coarse- 
grained microstructure, their pronounced electrical activity may dominate the electrical behavior 
of rather pure polycrystalline Si. Such a dominance should become even more pronounced in 
fine-grained (10-50 nm) microstructures, in which a much larger fraction of high-energy GBs 
should be present [14]. Electrical measurements have, indeed, demonstrated a significant 
increase in the density of gap states with decreasing grain size [4]. These observations suggest 
that, withour explicitly simulating a random microstructure, insights into the electrical behavior 
of polycrystalline Si could be obtained from a deeper understanding of the properties of high- 
energy GBs. 

TWIST GRAIN BOUNDARIES IN SILICON AND SIMULATION METHODS 

As pointed out in earlier studies [7], from a purely geometric point of view the twist GBs on 
the (001) plane of the Si diamond lattice are representative of virtually all high-energy GBs, 
since two out of four bonds of each GB atom involve partners across the interface, while the 
remaining two bonds are within the same grain. This results in relatively high GB energies, 
compared to the GBs on the two densest planes (i.e., (011) and (111)), in which only one bond 
per atom is directed across the interface. Based on these findings [7], we choose the (001) 
(j)=43.6° (so-called E29) twist boundary as a typical high-energy GB for our high-temperature 
annealing TB-MD simulations; this GB has a planar unit-cell 1=29 times larger than the 
primitive planar unit cell of perfect-crystal (001) planes. For the sake of comparison, similar 
simulations will be performed also on the (001) 0=36.9° (15) twist GB; this system was already 
studied in Refs. [12,13] however without taking into account the fundamental role of high- 
temperature annealing. As it will be shown, upon high-temperature annealing the £5 GB displays 
all the basic features of the £29 GB; moreover, its smaller planar unit cell will enable us to 
expose more clearly the correlation between atomic and electronic structure. 

In all our simulations we consider a threc-dimensionally periodic supercell with 24 (001) 
planes, containing two identical GBs separated by 12 (001) planes. The z-dimension of the 
simulation cell is then equal to L7=6ao, while the x- and y-dimensions are equal to L=(29/2)" a0 

and L=(5/2)l/2a0 for the £29 and 15 supercells, containing 696 and 120 atoms, respectively; 
a0=5.43 Ä is the Si lattice parameter. To describe the covalent bonding in Si we use an orthogonal 
TB Hamiltonian based on the minimal sp3 basis set [15]; this TB parametrization is known to give 
a good description of Si point-defect properties [16]. Although less accurate than a fully ab-initio 
model, the TB formalism is nevertheless capable of describing in a simple and intuitive way the 
physics of covalent bonding and rehybridization in the presence of disorder, thus capturing the 
basic correlation between atomic structure and electronic properties. Moreover, it should be noted 
that MD simulations of such large systems as the £29 GB arc still out of reach for ah-initio 
techniques. 

The input supercell configurations for the two GBs were obtained by high-temperature 
equilibration followed by cooling to, and relaxation at, zero temperature [7] using Tersoffs 
empirical potential [17]. These configurations were then subjected to TB-MD annealing at 
T=700 K, followed by cooling to, and relaxation at, T=0 K with TB quantum-mechanical forces. 
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Figure 1. Pair distribution function (upper panel) and bond-angle distribution function (lower 
panel) averaged over the atoms in the planes adjacent the E29 and £5 grain boundaries. Dashed 
lines are the corresponding distribution functions for a-Si. The arrow in the lower panel indicates 
the crystalline-Si tetrahedral angle of 6=109.5°. 

The relaxation was terminated when the largest force was smaller than 0.03 eV/Ä. Stress 
relaxation in the z-direction perpendicular to the GB plane was allowed in both the Tersoff and 
TB cycles while keeping the xy-plane dimensions fixed so as to mimic embedding of the GB 
between bulk material. 

ATOMIC STRUCTURE RESULTS 

The results of TB-MD simulations confirm the previous empirical-potential results [7], thus 
supporting the notion that high-energy GBs in Si, indeed, exhibit a universal, confined- 
amorphous structure under thermodynamic-equilibrium conditions. The high-temperature- 
annealed 229 and Z5 GBs display a disordered structure extending over a width of about 5 Ä. 
Figure 1 shows the pair distribution function, g(r), and the bond-angle distribution function, 
P(cos9), for the atoms comprised within the disordered region (±a0/2 from the GB plane). Both 
sets of curves are very similar to the same distributions for a-Si (dotted line in Fig. 1), also 
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obtained with the procedure described above. These GBs have excess energies of EGD=1864 

mJ/m2 and EGB='497 mJ/m2, respectively. Both values are about 14% lower than the 
corresponding zero-temperature relaxed GB energies, in agreement with the value of about 109; 
energy lowering obtained by empirical-potential simulations on several high-energy GBs [7]. 
The average coordination in the GB regions is 4.05, somewhat lower than the empirical-potential 
value of 4.21 [7], but in good agreement with ab-initio [18] and TB [19] results foro-Si. 

In the case of the £5 GB, we checked the stability of the high-temperature configuration 
against several others obtained from the conventional zero-temperature relaxation with TB 
forces. Each zero-temperature configuration is characterized by a different rigid-body translation 
vector in the GB plane, t=(nx,ny)L/20, with values of nj=0, 1 or 2 to cover the irreducible part of 
the so-called "displacement-shift-complete" lattice [12]. The values of Ecn as a function oft 
cluster in two groups centered at about 1680 and 1920 erg/cm2, with a spread of about 30 
erg/cm2 in each group. The minimum-energy configuration is found for t=(l,l): it has an excess 
energy EGB=1664 erg/cm2, i.e., higher than that of the amorphous GB configuration by about 
12%. Although considerably less disordered when compared to the amorphous GBs, all the zero- 
temperature-relaxed GB configurations display larger values of volume expansion and contain 
larger fractions of three-fold coordinated atoms. Some of these relaxed configurations were also 
subjected to the high-temperature cycle with the Tersoff potential and subsequent relaxation with 
the TB model: amorphous GB configurations were found which are statistically equivalent to the 
one described above, as far as the values of EGB. average coordination, g(r) and P(cos9) arc 
concerned, althought the details of the atomic structure could be locally different. 

ELECTRONIC STRUCTURE RESULTS 

We now turn to the study of the electronic properties of these confined-amorphous GBs. The 
electronic structure is calculated by sampling the k-space of the relaxed GB supcrcell, using the 
k=0 T-point for the £29 GB, and with a uniform mesh corresponding to about 2,000 points in the 
irreducible Brillouin zone of the diamond lattice for the £5 GB. The site- or orbital-projected 
local DOS is obtained from the eigenvector spectrum c. (k) by separately summing I c. (k) I2 

over either the atomic index i or the orbital index a=s, px, py, pz. Energies are measured with 
respect to the top of the valence band in the perfect crystal. The bottom of the conduction band 
(also defining the band gap) for this TB representation lies at 0.78 eV. 

Figure 2 shows the local DOS averaged over the atoms in the disordered GB structure (top 
panel), and in the perfect-crystal-like planes (bottom panel) at z ~+a0 from the GB, for both the 
£29 and the £5 GBs. By comparison with the a-Si DOS (also shown in the top panel of Fig. 2), 
obtained with the same k-space sampling density as above, it can be seen that the GB region is, 
indeed, amorphous-like also from an electronic-structure point of view. The local DOS shows the 
broadening of the valence s- and p-subbands (centered at about -10 eV and -4 eV, respectively, in 
the perfect crystal), characteristic of a-Si [20]; the conduction band is almost flat, in agreement 
with x-ray-absorption measurements on «-Si [21]. Only minor features of the perfect-crystal 
DOS persist in the GB local DOS, such as the small s-p mixing peak at about -6 eV. Several 
peaks in the band-gap region are visible; their origin will be discussed in more detail below. By 
contrast, the local DOS of atoms in the planes at z - ±ao is practically identical to that of 
crystalline Si, also shown in the bottom panel of Fig. 2, with only very minor signatures of the 
gap states; the latter arc mostly due to finite-size effects. 
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Figure 2. Upper panel: Electron DOS averaged over the atoms in the 129 and £5 grain 
boundaries; the dashed line corresponds to the a-Si DOS. Lower panel: Electron DOS averaged 
over the atoms in the planes at a distance ±a0 from the grain boundaries; the dashed line 
corresponds to the crystalline-Si DOS. The shaded region indicates the crystalline-Si band gap 
(0.-0.78 eV). 

LOCALIZED GAP STATES AND COORDINATION DEFECTS 

The correlation between the atomic structure of the GB and the gap states appearing in the 
GB local DOS can be elucidated by computing at each atom a localization index for the 
eigenvalues corresponding to the gap-state energies. This correlation can bee seen rather nicely 
already in the £5 GB. The localization index L" for the n-th eigenvalue at atom i is defined as 

= X   Ic a    • 
n|2 (1) 

and gives the probability for atom i to contribute to that eigenvalue. Z," is thus equal to 1/N for a 
fully-distributed state in a supercell with N atoms, and equal to 1 if the state is entirely localized 
on atom i; we will consider a state to be at least partially localized whenever L">0.15 for some i. 
In Figure 3 the energy-level arrangement of the gap states for all the atoms satisfying this 
localization criterion is displayed: not surprisingly, all the atoms labeled from 1 to 16 in Fig. 3 
are located in the GB region. By summing L" over the atoms in the GB for the eigenvalues 
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Figure 3. Energy-level distribution of the eigenvalues for which the localization index Lt >0.l5 
in the Z5 GB. Each column of levels, numbered from l to 16, corresponds to a different atom i. 

corresponding to the sharp peaks in the GB local DOS, values of Ln~0.5-0.7 are obtained, 
indicating a distinctive localization of the gap states at the GB region. 

A detailed analysis of the correlation between the localization index and the local atomic 
structure reveals that localized gap states in the electronic structure arise from coordination 
defects in the disordered atomic structure of the GB. Figure 4 shows the equilibrium 
configuration of this GB, in which all the atoms satisfying the localization criterion Z,">0.15 are 
highlighted. The GB region contains one 3-fold- (atom 13) and some 5-fold-coordinated atoms 
(2, 5, 7, 8 and 12); moreover, some atoms participate in one or more odd-membcred rings. All of 
the 3- and 5-fold, and some of the 4-fold coordinated atoms in the GB structure arc found to 
display localized states; the local DOSes for three such atoms (one for each coordination state) 
are also shown in Fig. 4. From this analysis it appears that deep gap states arc mostly localized at 
coordination defects, with very high values of the localization index (up to L"~ 0.57 for E"=0.31 
eV). Shallow band-edge states, in turn, can be localized either at such defects or at their nearest- 
neighbors, with somewhat more distributed values of L". The only partial exception is 
represented by atoms 11 and 14, which give rise to shallow states around En=0.70-0.75 cV: these 
atoms are the only ones not being neighbors to any coordination defect but arc, however, in 
common to two seven-membcred rings, i.e., another kind of topological disorder also typical of 
a-Si. 

The nature of the gap states becomes apparent when analyzing the local bonding around 
coordination defects in terms of its s- and p-orbital components. The distribution of the band- 
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Figure 4. Upper panel: electron DOS for representative 3-fold, 4-fold and 5-fold coordinated 
atoms in the grain-boundary region; the shaded region indicates the crystalline-Si band gap. 
Lower panel: periodically-repeated equilibrium structure of the £5 grain boundary, with the 
atoms displaying localized gap or edge states highlighted (black=3-fold, dark grey=4-fold, light 
grey=5-fold coordinated atoms). 

structure energy (i.e., the sum of the single-particle energies for the occupied states), UBS, has 
large variations around the coordination defects. Such variations, AUBS, can be traced back to a 
change in the degree of s-p mixing, by calculating for each atom i the s-p mixing parameter [10], 

M, =Nip/Nis (2) 

with 

Nip =En,a Kf' a=P*' Py Pz 

Nis=2nlcnia=s|2 
(3) 
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Perfect sp   hybridization would result in Mj=3, while Mj=l is the value for a free Si atom with its 
valence electrons evenly distributed in unhybridized 3s and 3p orbitals. However, due to the 
competition between the hybridization energy and the promotion energy, we find Mjc=l .684 for 
atoms in bulk Si meaning that, even in the perfect crystal, bonds are never formed from complete 
sp3 hybrids. 

By plotting AUBS vs. AM=(M[jc-Mi)/(Mljc-l) in Figure 5, we find a good correlation between 
the variation in the covalcnt-bond energy and the change in the hybridization character. The 
largest s-p mixing variation is observed for the three-fold defect (atom 13), whose AM=0.47 
reflects a drastic change towards a s p2-Iike hybridization [10], the dangling electron tending to 
form states with a large s-orbital component; all those five-fold defects which display deep gap 
states (atoms 5, 8 and 12) also have sizable variations of the hybridization character, AM=0.22- 
0.26; the four-fold coordinated atoms 6 and 15, which appear to be neighbors to two coordination 
defects at once, display variations of AM in this same range and very large values of AUns- 
Clearly, such large changes in the s-p hybridization character around coordination defects arc 
responsible for the appearance of gap states at energies which arc extraneous to tctrahedrally- 
bonded Si. 
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Figure 5. Correlation plot of the band-structure energy variation, AUBS. VS. the s-p mixing 
character variation, AMj. 
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CONCLUSIONS 

The main conclusion of our study is that gap states in pure polycrystalline Si can originate 
from coordination defects present in the amorphous-like structure of the high-energy GBs. It is 
noteworthy that a similar correlation between coordination defects and localized gap states had 
previously been found in a detailed theoretical study of a-Si [22]. Despite this, the connection 
between the localization behavior of coordination defects in a-Si and localized gap states in 
polycrystalline Si has gone practically unnoticed. This is even more surprising, when considering 
that amorphous-like behavior of GB regions had been repeatedly suggested, e.g., in the analysis 
of photoconductivity of undoped Si [23], of optical-absorption measurements on columnar 
polycrystals [3], and of the DOS obtained from field-effect conductance in fine-grained samples 
[4]. Notably, Paxton and Sutton [11] discounted coordination defects in favor of impurity 
segregation as a source of gap states, "unless a mechanism of producing and sustaining a non- 
equilibrium distribution of these defects can be devised". We have shown that such a mechanism 
can indeed be provided by the amorphous GB film, however with the important difference that 
the defect distribution is here in thermodynamic equilibrium. Although impurities may also play 
an important role, the above results demonstrate that gap states in polycrystalline Si, arising from 
coordination defects existing in thermodynamic equilibrium, are an intrinsic feature of the 
system arising from the universal-, disordered structure of the high-energy GBs. 

Upon hydrogen contamination the 3-fold defects (dangling bonds) are preferentially 
passivated [3-5], while the 5-fold defects are much less affected. (Some experiments [5] indicate 
that the deep states surviving hydrogenation are shifted to higher energies, which is qualitatively 
visible in our Fig. 3 where the 5-fold-defect gap states lie about 0.2 eV above the 3-fold ones.) 
Because coordination defects carry some fraction of excess charge, they can realize intrinsic 
accumulation/depletion layers along the amorphous GBs [1]. This possibility warrants further 
investigation by a more accurate ab-initio technique, capable of elucidating also the charge 
density distribution around coordination defects. 
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ABSTRACT 

The electronic structure of a continuous network model of tetrahedrally bonded amorphous 
silicon (a-Si) and of a model hydrogenated amorphous silicon (a-Si:H) that we have built from the 
a-Si model are calculated in the tight binding approximation. The band edges near the gap are 
characterized by exponential tails of localized states induced mainly by the variations in bond 
angles. The spatial localization of the states is compared between a-Si and a-Si:H. Valence band 
offset between the amorphous and the crystalline phases is calculated. 

INTRODUCTION 

Recently, large (4096-atom supercell) computer-generated continuous network models of tet- 
rahedrally bonded amorphous carbon and silicon have been constructed such as the Wooten- 
Winer-Weaire (WWW) model [1-2]. This one reproduces with good accuracy the experimental 
radial distribution function of amorphous silicon (a-Si) and for a smaller unit cell (216-atom 
model) calculations of the first-order Raman spectrum are in very good agreement with the exper- 
imental one [3], which, as a test to measure the credibility of structural models [4], gives confi- 
dence that the WWW a-Si model is a realistic one. We have calculated its electronic structure in 
the tight-binding approximation. This exhibits a large number of deep and strongly localized 
states which correspond to the well known band tails in the amorphous semiconductor band gap. 
Such a large band tailing is attributed to a small number of bond angles which deviate greatly 
from the tetrahedral 109° value. 

In the next section, we describe the a-Si:H supercell created by hydrogenation of the a-Si 
atomic WWW model. Then we calculate the electron density of states which shows a small 
increase of the band width between amorphous and crystalline silicon (c-Si). The slope of the 
band gap tails are also determined and decrease from a-Si to a-Si:H. Finally the valence band off- 
sets between a-Si, a-Si:H and c-Si is calculated. 

THE MODEL 

A complete total energy calculation which would give the positions where hydrogen atoms are 
in a-Si:H is not yet feasible for large supercells. Starting from the WWW model, we have 
assumed that the minimum energy configuration is obtained when the hydrogen atoms are 
inserted in the regions of large bond angle distorsions (the bond length variations are quite small 
in a-Si). As there is a direct relation between the bond angle distorsions and the a-Si localized 
states, we have first determined the Si atoms which give rise to these gap states. 

For this, we "cut" small clusters (with about 50 Si atoms) centered on every atom of the super- 
cell and saturate the dangling bonds of each cluster with hydrogen atoms. Then the highest occu- 
pied molecular orbital (HOMO) and the lowest unoccupied one (LUMO) are calculated in the 
tight-binding approximation as described below. When we look at the clusters with the smallest 
gaps, the corresponding HOMO and LUMO states are found mainly localized on the same atom 
with strong bond distortions. To simplify the hydrogenation process we have removed the central 
atoms one by one and the four dangling bonds created by the atom removal are saturated with 
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hydrogen atoms as in Rcf. 5. The final concentration of hydrogen atoms is equal to 8% (83 silicon 
atoms were removed). Once this is done the atomic positions and the superccll lattice parameter 
are again relaxed by use of a Keating potential [6] as in the original WWW model. This procedure 
is rather empirical but we expect that it gives a good relaxation of the strain in the superccll. 

The electronic structure of the a-Si and a-Si:H supcrcclls has been calculated in the tight- 
binding sp3s* Vogl's approximation [7]. Even if it is a first-nearest neighbor model, the bulk c-Si 
band gap which is fitted is in good agreement with the experimental values. The model cannot be 
used to accurately determine states high in the conduction band as the resulting c-Si conduction 
bands are rather flat [8]. This is not too important in this calculation as the conduction band edge 
will always remain close to bulk c-Si one. We take a usual d variation of the tight-binding 
parameters with the interatomic distance d [9]. Harrison's parameters [9] arc used for the first- 
nearest neighbor Si-H interaction parameters. Only the T point at the center of the superccll cubic 
Brillouin zone has been used since, due to the large size of the superccll, we expect a negligible 
dispersion of the energies versus wave vector. 

THE DENSITIES OF STATES 

The local densities of states on each atom of the superccll are approximated by a continued 
fraction whose 40 first coefficients are calculated by the recursion method [10]. A semi-elliptic 
termination is used and their values arc determined by a linear prediction method [11]. Such a 
procedure uses 80 exact moments of the density of states which is sufficient to get converged 
results [12]. 

Figure 1 shows the average density which is close to those obtained in preceding calculations 
[13], The amorphous silicon valence band width is slightly larger than the c-Si one. This seems to 
be due to the variation of the interatomic distances in the amorphous phase as the shift of the bot- 
tom of the band (-0.3 eV) disappears when the variation of the interatomic tight-binding parame- 
ters with the distance is suppressed. The main difference between «-Si and n-Si:H occurs near the 
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Average density of states of a-Si (a) and o-Si:H (b) as calculated by the recursion method. The 
dotted lines indicate the limits of the gap. 
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band gap. We see that the «hydrogenation» has suppressed the deep states in the gap. 
To get a more precise information about these states, one has to diagonalize the hamiltonian 

H. For this, we have used a minimization of the Rayleigh quotient Q¥\(H-aI) f¥)/{*¥\¥) with 
respect to a trial function *P [14]. a is an energy shift close to the band gap . 

As the supercell is finite, the limits of the band gap are well defined and are equal to (-0.36 eV, 
1.00 eV) for a-Si:H and (0.19 eV, 0.72 eV) for a-Si. We shall see below that the a-Si band edges 
correspond to states strongly localized on a few atoms whereas in the a-Si:H case, they corre- 
spond to moderately localized states. One must notice that these values do not depend very much 
on the variation of the interatomic distances. For example, the top of the a-Si:H valence band is 
simply shifted by 0.04 eV when the variation of the tight-binding parameters with interatomic dis- 
tance is neglected and when all are taken equal to the c-Si ones. This shows that the variation of 
the band gap limits is mainly due in the amorphous phases to bond angle distortions. 

The band lineups between crystalline and amorphous silicon can be obtained from these gap 
values if one knows the electrostatic dipole layer at an heterojunction between these materials. In 
the molecular model and in the zero charge transfer approximation which has been often used for 
semiconductor heterojunctions [15], the electrostatic dipole layer is just equal to the opposite of 
the energy difference between the hybrid orbitals on silicon atoms close to the heterojunction. The 
average bond angle for the a-Si:H model which is equal to 109°27 is very close to the c-Si one 
which is determined by the 109°47 tetrahedral bond angle so that the mean hybrid orbital energy 
in a-Si will be close to the c-Si. Using cs and cp the average s and p characters for the valence 
band that one can calculate using the recursion method (cs + cp = 4), one can define an average 
hybrid orbital (csEs + cpEp)/4 for c-Si, a-Si and a-Si:H where Es and Ep are the s and p Si 
orbital energies, respectively. The energy difference between the amorphous and crystalline sili- 
con is less than 0.02 eV. So the electrostatic dipole layer at the heterojunction between these mate- 
rials is negligible. The valence band offset is thus directly obtained from the limits of the band gap 
discussed before. It is then equal to 0.36 eV between a-Si:H and c-Si (with a valence band higher 
in c-Si) and equal to -0.19 eV between a-Si and c-Si (with a valence band higher in a-Si) in agree- 
ment with recent ab initio pseudopotential calculation for a smaller supercell [16]. For a-Si:H, 
this is also in agreement with the experimental results which vary from 0 to 0.71 eV [16] depend- 
ing on preparation conditions of the amorphous materials. 

The density of states due to localized states in amorphous semiconductors is often assumed to 
decay exponentially away from the conduction and valence band edges [17-19]. This would also 
be true for the integrated density. Figure 2 shows the fit of the staircase integrated density by 
exponential curves exp(-|£|/E0) where E0 is the band tail slope. The slopes E0 are equal to 
142 meV and 81 meV respectively for the a-Si valence and conduction bands. These values are 
reduced to 37 meV and 19 meV for a-Si:H. The values for a-Si:H are slightly smaller than the 
experimental ones which are in the range of 43-103 meV (for the valence band tail) and 27-37 
meV (for the conduction one) [17-21]. Let us recall that due to the finite size of the supercell, we 
do not have very large wavelength lattice distortions. Their effect will be to spread the band tails 
we have obtained and then to slightly increase the slope values we have calculated. 

a-Si AND a-Si:H STATES LOCALIZATION 

We shall characterize this localization by: 

Nat(Ej) 
(  5        \2vl 

2 
(1) 

V i 
xx«; 

V= 1     / 
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Fig. 2 Integrated density of states near the band gap (full line). The exponential fit (dotted line) is 
almost indistinguishable from the staircase integrated density. 
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Figure 3 Spatial localization of the band tail states. The dotted line indicates the number of Si 
atoms in the superccll. 
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where th^e sum is extended to all the supercell atoms Rt and to the 5 sp3s* atomic functions 
(|>;(r - Rt) , the tight-binding eigenfunction for the energy £. being equal to: 

i, I 
5 

When an eigenstate is completely uniform over n atoms, we have ^ au = \/n and 
/= l 

Nat{E ) is just equal to n. So Nat(Ej) gives an order of magnitude of the number of atoms on 
which the state is localized. Figures 3 shows this localization for the states close to the gap. For a- 
Si, states close to the band edges are found to be localized on about 10 atoms. Such states are sup- 
pressed by the hydrogenation. Nevertheless for a-Si:H, the gap edges are still localized on a few 
tens of atoms. This number rapidly increases as one goes deeper for example in the valence band 
but 0.15 eV below the valence band edge, the states still extend over less than a thousand atoms. 

CONCLUSION 

The electronic structure of large amorphous silicon cells has been calculated in the tight-bind- 
ing approximation. The width of the band is slightly increased due to the small variations of the 
interatomic distances. Localized gap states which are due to bond angle distortions have been 
used to create an atomic a-Si:H model. The a-Si and a-Si:H valence band offset and the slopes of 
the exponential tails of the density of states close to the gap are in good agreement with experi- 
mental values. This gives good confidence in the structural models. 
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Abstract 

We investigated by tight-binding molecular dynamics the structure, the bulk mod- 
ulus and the electronic properties of the smallest four-branched carbon schwarzites 
fcc-(C28)2, fcc-(C36)2 and fcc-(C4o)2 having the shape of a D minimal periodic sur- 
face. They are found to have a stability comparable to that of fullerene Ceo and to 
exhibit alternative metallic and insulating characters, with an apparent relationship 
to their local geometry. We also studied the coalescence of fullerenic fragments and 
carbon clusters by following the evolution of the topological connectivity. Though 
different temperature variation protocols lead to irregular structures similar to ran- 
dom schwarzites, their connectivity is found to stabilize at values corresponding ei- 
ther to tubulene or three-branched schwarzites, indicating that long time evolution 
at constant connectivity is potentially able to yield regular shapes. Experiments on 
laser-induced transformations of fullerite occasionally yield branched tubular struc- 
tures with a schwarzite shape. 

Introduction 
One of the most challenging development in modern technology is represented by devices 
based on atomic-scale porous materials. The interesting features that such materials exhibit 
range from large specific area (that permit to intercalate a great deal of lighter atoms such 
as alkali) to a large stability and stiffness (to prevent induced stress during the intercalation, 
unlike graphite that is damaged when intercalated.) In this framework carbon schwarzites [1] 
are predicted to be very interesting and promising materials for technological applications, 
e.g. as lithium absorbers for various functions in ionic devices. In particular, conducting 
schwarzites could be employed in cathodes (or/and anodes, depending on the combination 
of chemical potentials), while insulating schwarzites may work as low-temperature ionic 
conductors or molecular sieves. 

Most of schwarzite intriguing features derive from their peculiar atomic structure. The 
topology of schwarzites can be constructed solving the Euler's theorem for surface polygonal 
tilings. The theorem has to be referred to a single element, since schwarzites are open and 
infinitely extended surfaces. 

Among all the possible minimal periodic surfaces we constructed the topology of the 
D-type minimal periodic surfaces where each element coordinates four identical elements in 
the tetrahedral (staggered) configuration. The resulting crystal is fee and has, like diamond, 
two elements per unit cell. In order to find the connectivity of this kind of schwarzites we 
can imagine to close a unit cell on itself by joining three pairs of opposite branches and 
transforming the surface in the topological equivalent of a three-hole torus of connectivity 
7. Therefore, the Euler's theorem can be recast in the following form: 

vei -eel + fel = 3-K = -2 (1) 
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where vet, eei and /e( are the numbers of vertices (atoms), edges (bonds) and polygonal fares 
(rings) per element and K is the connectivity. We further focused on schwarzites with only 
heptagons and hexagons because they are the equivalent of fullerenes. Indeed by solving the 
Euler's theorem with these conditions we find that it is necessary to use 12 heptagons and 
an arbitrary numbers of hexagons compatibly with the symmetry of the crystal. Morever it 
is possible to use topology to characterize the evolution of a system of atoms by its order of 
connectivity[2]. From Euler's theorem we can compute the connectivity from the number 
(/it) of fc-membered rings of the systems: 

tf = -£/* + e-5>„ + 3 (2) 
k n 

where e = £„(rc/2)un is the total number of edges (bonds) in the simulation cell and v„ is 
the number of n-coordinated atoms. 

Structural,   elastic  and  electronic  properties  of fec- 
(C28)2, fcc-(C36)2 and fcc-(C40)2. 

We studied the three smallest schwarzites of the series made with only heptagons and 
hexagons [3], The smallest one has only heptagons formed by 28 atoms per unit cell (Fig.l) 
and shows a chirality; the second one contains four hexagons in each element lying on the 
faces of a tetrahedron and has 36 atoms per element; the largest schwarzite here studied has 
six hexagons lying on the edges of a tetrahedron and its element is composed by 40 atoms. 
We calculated the equilibrium structure, the ground-state properties and the electronic 
structure of these schwarzites by performing tight-binding molecular dynamics (TBMD) 
simulations with the parametrization of Xu et al.[4]. 

Figure 1: The unit cell of the schwarzite fcc-(C2s)2- 

This scheme conjugates a low computational cost as needed for simulating the present 
systems to an accurate quantum-mechanical treatment as required to study the chemistry 
of the C-C bond (i.e. its allotropy, directionality and covalenee)[5]. 
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We obtained the equilibrium structure by a simultaneous minimization of both the to- 
tal energy (performed by TBMD relaxations at T=0 K and with cubic cells containing 
respectively 288, 300 and 320 atoms), and of the density (using a Murnagham-like equation 
of state). Canonical simulations at room temperature have confirmed the stability of the 
structures. 

In Table I we report the calculated cohesive energy per atom (relative to diamond), the 
density, the bulk modulus (B) and the stiffness per bond (b), defined as 

b = -BVat (3) 

where Vat is the atomic volume. 

Table 1: Calculated cohesive energy with respect to diamond (Eco/,), density, bulk modulus 
(B), stiffness per bond (b) and electronic behavior of fcc-(C2s)2, fcc-(C36)2 and fcc-(Cjo)2- 
The corresponding values for fullerite and diamond (as obtained with the present TBMD 
model) are reported for comparison. 

ECoh 
(eV/atom) 

Density 
(g/cm3) 

B 
(Mbar) 

b 
(MbarÄ3) 

fcC-(C28)2 0.70 1.33 1.58 16.12 Metal 

fcC-(C36)2 0.65 1.05 1.26 16.20 Insulator 

fcC-(C40)2 0.44 1.60 1.92 16.25 Metal 

Fullerite 0.37 1.71 Insulator 

Diamond 3.52 4.42 16.71 Insulator 

It is apparent from Table I that these new crystals have a cohesive energy similar to that 
of fullerene even if they are the smallest of the series and consequently the less energetically 
favored. Moreover they have a density compared to either fullerite or graphite-a remarkable 
property related to the fact that, unlike graphite and fullerite, schwarzites are fully covalent 
in three dimensions and have a stiffness per bond similar to that of diamond. Both the band 
structure and the electronic density of states (DOS) have been calculated with the same 
tight-binding parametrization [3]. These crystals exhibit alternative metallic and insulating 
behaviors depending on their geometry. 
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Characterization of the structural evolution during and 
after the coalescence of carbon fragments. 

A natural question is whether it is possible to syntctize schwarzites. We started from the 
experimental work of Milani et al.[6] e Ferretti et al.[7] who have recently used laser-induced 
transformations of fullerite to process carbon nano-structurcs even if it is very hard to predict 
the final atomic structure of the sample. We tried to understand the relationship among the 
nature of precursors in the disordered phase, the temperature effects and the topology of 
the final condensed phase. With this aim we studied in the same computational framework 
as above the early stages of the aggregation process of carbon fragments by monitoring the 
connectivity of the system as a function of time. 

(a) 

(c) (d) 

Figure 2: Snapshots of the initial (a) and final (b) configuration of a system of two C39 

fragments embedded in a gas of C2 dimers, after annealing through three different temper- 
atures. Similar snapshots (c), (d) are shown also for a system of 90 C2 dimers annealed at 
a constant temperature of 3500 K. 

We performed three constant-temperature, constant-volume simulations differing for 
starting configurations and annealing procedure, but with the same number of atoms per 
cell (180 atoms) and the same density of the sample fixed at 0.876 g/cm3 which is smaller 
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than solid fullerite, but higher than vaporized graphite as experimentally observed in laser 
ablation conditions. We choose a time step of 0.7 fs. 

The first simulation was performed on a system of two C39 bowl-shaped cap fragments 
embedded into a gas of 51 C2 dimers (Fig.2 (a)). The starting configuration was annealed 
consecutively at three different temperatures 1500, 2500, 3500K. The configuration reached 
at the end of this simulation is shown in Fig. 2 (b) and appears to be very similar to a random 
schwarzite described by Townsend et al.[8]. A very interesting feature is the presence of 7- 
membered rings which introduce the local negative curvature characteristic of schwarzites. 
This schwarzite-like configuration is also confirmed by the value of the connectivity that 
stabilizes in K=5, as shown in Fig.3. In the second simulation, where the two fragments in 
a dimer gas have been annealed at one single constant temperature T=3500 K , K tends 
to a value much smaller then 5 and the average coordination is resulted to be 2.81 while 
greater than the 2.68 of the first simulation, indicating a more graphite-like behavior. 

These two simulations have also demonstrated that the final configuration depends on 
the precursors, as well as on the thermal treatment. 

a- 

20000 25000 
time(time-step) 

Figure 3: Time evolution of the order of connectivity K for the system of two C39 fragments 
(dashed line with O symbols) and the gas of 90 C2 dimers (dotted line with + symbols). 

In order to check the validity of our topological analisys we performed a third different 
simulation: a gas of ninety C2 dimers (Fig.2 (c)) was annealed at T=3500 K for 35000 time 
steps. Now stabilization occurs at the value K=3 (Fig.4) that is the topological fingerprint 
of an open-ended tubulene easly visible in Fig.2 (d). The choice of this starting configuration 
is based on the lack of precursors for condensation that make the evolution of the system 
depending only on thermodynamics, i.e. on temperature and density conditions. 

In conclusion these TBMD simulations have shown that under certain conditions, anneal- 
ing experiments on fullerite may lead to branched tubulenes, or at least to topological struc- 
tures with the appropriate topology for a continous transformation in a schwarzite. With 
different precursors and annealings, however, the system preferably evolves into graphite- 
like structures. From the observation that the order of connectivity, after an initial time of 
rapid transformations remains constant during the evolution of the condensed system, thus 
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0        5000    10000   15000  20000  25000   30000   35000 
time(time-step) 

Figure 4:  Time evolution of the ring statistics for the systems of 90 C2 dimers shown in 
Fig.3 (c-d). Symbols: O 5-membered rings; + 6-membcrcd rings; D 7-mrmbercd rings. 

providing an important index to monitor and classify the possible structures towards which 
the system can evolve over longer time scales. 
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